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Prólogo 

Una ojeada al índice analítico pondrá de manifiesto que este libro de texto 
trata temas de análisis a nivel de "Cálculo superior». La pretensión ha sido 
proporcionar un desarrollo de la materia que sea honesto, eficaz, puesto al día 
y, al mismo tiempo, que no resulte pedante. El libro constituye una transición 
del Cálculo elemental a cursos más avanzados de la teoría de las funciones 
real y compleja e introduce al lector un poco en el pensamiento abstracto que 
ocupa el análisis moderno. 

La segunda edición difiere de la primera en muchos aspectos. La topología 
en conjuntos de puntos se explica al establecer los espacios métricos generales, 
así como el espacio euclídeo n-dimensional, y se han añadido dos nuevos ca­
pítulos sobre la integración de Lebesgue. Se ha suprimido lo referente a inte­
grales lineales, análisis vectorial e integrales de superficie. Se ha cambiado el 
orden de algunos capítulos, se han escrito totalmente nuevos algunos apartados 
y se han añadido ejercicios nuevos. 

El desarrollo de la integración de Lebesgue se deduce de la propuesta de 
Rlesz-Nagy que se enfoca directamente a las funciones y sus integrales y no 
depende de la teoría de la medida. El tratamiento aquí está simplificado, puesto 
a la vista y un tanto reordenado para estudiantes de cursos inferiores. 

La primera edición se ha seguido en cursos de matemáticas de distintos 
niveles, desde el primer curso de estudiantes no graduados al primero de gra­
duados, tanto como libro de texto, como de referencia suplementaria. La se­
gunda edición conserva esa flexibilidad: por ejemplo, los capítulos 1 al 5, 12 
Y 13 son un curso de cálculo diferencial de funciones con una o más variables; 
los capítulos 6 al 11, 14 y 15, un curso de teoría de la integración. Son posibles 
muchas otras combinaciones: cada profesor puede elegir los temas que se aco­
moden a sus necesidades consultando el diagrama de la página siguiente, que 
expone la interdependencia lógica de los capítulos. 

Quisiera expresar mi gratitud a muchas personas que se tomaron la molestia 
de escribirme sobre la primera edición. Sus comentarios y sugerencias influ­
yeron en la preparación de la segunda. Debo dar las gracias especialmente al 
doctor Charalambos Aliprantis, que leyó detenidamente todo el manuscrito 
de la obra e hizo numerosas observaciones oportunas, además de proporcio­
narme algunos de los nuevos ejercicios. Por último, quisiera hacer patente mi 
agradecimiento a los estudiantes de CaJi~ch, cuyo entusiasmo por las matemá­
ticas fue el primer incentivo para esta obra. 

T. M. A. 
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------

CAPíTULO 1 

El sistema de los números 

reales y el de los complejos 

1.1 INTRODUCCIóN 

El Análisis matemático estudia conceptos relacionados de alguna manera con 
los números reales; por ello empezaremos nuestro estudio del Análisis con una 
discusión del sistema de los números reales . 

. Existen diversos métodos para introducir los números reales. Uno de ellos 
parte de los enteros positivos 1, 2, 3, .... que considera conceptos no defini­
dos. utilizándolos para construir un sistema más amplio, los números racio­
nales positivos (cocientes de enteros positivos), los negativos y el cero. Los 
números racionales son utilizados, a su vez, para construir los números irracio­
nales, números reales como .,/2 y7/", que no son racionales. El sistema de los 
números reales lo constituye la reunión de los números racionales e irracionales. 

A pesar de que estas cuestiones constituyen una parte importante de los 
fundamentos de la Matemática, no las describiremos aquí con detalle. Es un 
hecho que, en la mayor parte del Análisis, nos interesarán solamente las pro­
piedades de los números reales antes que los métodos utilizados para construir­
los. Por lo tanto, consideraremos los números reales mismos como objetos no 
definidos, sometidos a ciertos axiomas de los que extraeremos ulteriores pro­
piedades. Dado que el lector está, probablemente. familiarizado con la mayoría 
de las propiedades de los números reales que consideraremos en las páginas que 
siguen, la exposición será más bien breve. Su propósito es examinar las carac­
terísticas más importantes y persuadir al lector de que, de ser necesario, todas 
las propiedades se podrían deducir a partir de los axiomas. Tratamientos más 
detallados podrán hallarse en las referencias del final de este capítulo. 

Por conveniencia usaremos la notación y la terminología de la teoría de con­
juntos elemental. Supongamos que S designa un conjunto (una colección de ob­
jetos). La notación x E S significa que x está en el conjunto S, escribiendo x Et- S 
para indicar que x no está en S. . 

Un conjunto S es un subconjunto de T si cada elemento de S está también 
en T. Lo indicaremos escribiendo S ~ T. Un conjunto es no vacío si contiene, 
por lo menos. un elemento. 

1 
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2 El sistema de los números reales y el de los complejos 

Suponemos que existe un conjunto no vacío R de elementos, llamados núme­
ros reales, que satisfacen los diez axiomas enumerados a continuación. Los axio­
mas se clasifican de manera natural en tres grupos a los que nos referiremos 
como axiomas de cuerpo, axiomas de orden y axioma de completitud (llamado 
también axioma del supremo o axioma de continuidad). 

1.2 LOS AXIOMAS DE CUERPO 

Junto con el conjunto R de los números reales admitimos la existencia de dos 
operaciones, llamadas suma y multiplicación, tales que, para cada par de nú­
meros reales x e y, la suma x + y y el producto xy son números reales deter­
minados unívocamente por x e y, satisfaciendo los siguientes axiomas. (En los 
axiomas que a continuación se exponen, x, y, z representan números reales arbi­
trarios en tanto no se precise lo contrario.) 

Axioma 1. x + y = y + x, xy = yx (leyes éonmutativas). 

Axioma 2. x + (y + z) = (x + y) + z, x(yz) = (xy)z (leyes asociativas). 

Axioma 3. x(y + z) = xy + xz (ley distributiva). 

. 4xioma 4. Dados dos números reales cualesquiera x e y, existe un número 
real z tal que x + z = y. Dicho número Z se designará por y - x; el número 
x - x se designará por O. (Se puede demostrar que O es independiente de x.) 
Escribiremos - x en vez de O - x y al número - x lo llamaremos opuesto de x. 

Axioma 5. Existe, por lo menos, un núm'ero real x -:j::. O. Si x e y son dos 
números reales con x -:j::. O, entonces existe un número Z tal que xz = y. Dicho 
número z se desginará por y/x; el número x/x se designará por 1 y puede de­
mostrarse que es independiente de x. Escribiremos x- l en vez de l/x si x * O 
y a x- 1 lo llamaremos recíproco o inverso de x. 

De estos axiomas pueden deducirse todas las leyes usuales de la Aritmé­
tica; por ejemplo, - (- x) = x, (X-l)-l = x, - (x - y) = y - x, x - y = 
x + (- y), etc. (Para un desarrollo más detallado, ver Referencia 1.1.) 

1.3 LOS AXIOMAS DE ORDEN 

Suponemos también la existencia de una relación < que establece una orde­
nación entre los números reales y que satisface los axiomas siguientes: 
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Axioma 6. Se verifica una y sólo una de las relaciones x = y, x < y, x> y. 

NOTA. x> Y significa lo mismo que Y < x. 

Axioma 7. Si x < y, entonces, para cada z, es x + z < Y + z. 

Axioma 8. Si x> O e y> O, entonces xy > O. 

Axioma 9. Si x> y e y> z, entonces x> Z. 

NOTA. Un número real x se llama positivo si x> O Y negatiw!. si x < O. De~ig­
naremos por R+ el conjunto de todos los n~meros reales POSItiVOS Y por R el 
conjunto de todos los números reales negativos. 

De estos axiomas pueden deducirse las reglas usuales que rigen las opera­
ciones con desigualdades. Por ejemplo. si tenemos que x < y, en~onc~s xz < yz 
si z es positivo, mientras que xz > yz si z es negativo .. Ad~~as. ,SI: >/ / 
z > w con y y w positivos, entonces xz > yw. (Para una dlscuslon mas eta a a 
de estas reglas ver Referencia 1.1.) 

NOTA . El simbolismo x <y se utiliza para abreviar la afirmación: 

"x < y o x = y." 

2 3 . 2 < 2 a que 2 = 2. El símbolo > Resulta, pues, que 2 <3 ya que < ,y - y . . 
se utiliza de forma análoga. Un número real x se llama no negatIvo SI ~ > O. 
Un par simultáneo de desigualdades tales como x < y, y < Z se abreVia por 

medio de la expresión x < y < z. ., . d 
El teorema que sigue, que no es más que una consecuencIa. mmedlata e 

los axiomas precedentes, se utiliza a menudo en las demostraclOnes del Aná-

lisis. 

Teorema 1.1. Sean a y b números realeS tales que 

a ~ b + e para cada e > O. 

Entonces a < b. 

(1) 

Demostración. Si b < a, entonces la desigualdad (1) no se satisface para e = 
(a- b)/2 puesto que 

a-b a-tb a+a 
b + e = b + - 2 = -2- < -2- = a. 
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4 El sistema de los números reales y el de los complejos 

Por lo tanto, por el axioma 6, resulta que a < b. 
El axioma 10, axioma de completitud, será enunciado en la sección 1.11. 

1.4. REPRESENTACIóN GEOMÉTRICA 
DE LOS NúMEROS REALES 

Los números reales son, a menudo, representados geométricamente como pun­
tos de una recta (denominada recta real o eje real). Se elige un punto 
para que represente el O y otro a la derecha del O para que represente el 1, 
como muestra la Fig. 1.1. Esta elección determina la escala. Con un conjunto 
apropiado de axiomas para la Geometría euclídea a cada punto de la recta 
real corresponde un número real y uno sólo y, recíprocamente, cada número 
real está representado por un punto de la recta real y uno solo. Es usual refe­
rirse al punto x en vez de referirse al punto correspondiente al número real x. 

0
1 Figura 1.1 

x y 

La relación de orden admite una interpretación geométrica simple. Si x < y. 
el punto x está a la izquierda del punto y. como muestra la figura 1.1. Los nú­
meros positivos están a la derecha del O y los números negativos están a la 
izquierda del o. Si a < b. un punto x satisface las desigualdades a < x < b si, 
y sólo si, :.x está entre a y b. 

1.5 INTERVALOS 

El conjunto de todos los puntos comprendidos entre a y b se denomina inter­
valo. A menudo es importante distinguir entre los intervalos que incluyen sus 
extremos y los intervalos que no los incluyen. 

NOTACIÓN. La notación {x: x verifica, P} designa el conjunto de todos los nú­
meros reales x tales que satisfacen la propiedad P. 

Definición 1.2. Supongamos a < b. El intervalo abierto (a. b) se define por 

(a, b) = {x: a < x < b}. 

El intervalo cerrado [a, b] es el conjunto {x:a<x < b}. Los intervalos semi­
abiertos (a, b] y [a, b) se definen análogamente utilizando. respectivamente, las 
desigualdades a < x <b Y a <x < b. Los intervalos infinitos se definen como 
sigue: 

(a, +(0) = {x:x > a}, [a, +(0) = {x:x ~ a}, 

-----------------------
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( - 00, a) = {x: x < a}, (- 00, a] = {x: x :5 a}. 

Se utiliza a veces el intervalo (- 00, + 00) para designar la recta real R. 
Un solo punto es considerado como un intervalo cerrado ((degenerado». 

NOTA. Los símbolos + 00 y - 00 se utilizan aquí tan sólo por conveniencias 
de notación y no deben ser considerados como números reales. Más adelante 
extenderemos el sistema de los números reales incluyendo estos dos símbolos, 
pero, mientras no lo hagamos, el lector deberá entender que todos los números 
reales son «finitos». 

1.6 LOS ENTEROS 

En esta sección se describen los enteros como un subconjunto especial de R. 
Antes de definir los enteros conviene introducir la noción de conjunto induc­
tivo. 

Definición 1.3. Un conjunto de números reales se denomina conjunto in­
ductivo si tiene las dos propiedades siguientes: 

a) El número 1 está en el conjunto. 
b) Para cada x del conjunto, el número x + 1 está también en el conjunto. 

Por ejemplo, R es un conjunto inductivo. También 10 es R+. Definiremos 
los enteros positivos como aquellos números reales que pertenecen a todos los 
conjuntos inductivos. 

Definición 1.4. Un número real se denomina entero positivo si pertenece a 
cada uno de los conjuntos inductivos. El conjunto de los enteros positivos se 
designa por Z+. 

El conjunto z+ es, a su vez, inductivo. Contiene al número 1, al núme­
ro 1 + 1 (designado por 2), al número 2 + 1 (designado por 3), y así sucesi­
vamente. Como Z+ es subconjunto de cada uno de los conjuntos inductivos 
consideraremos a Z+ como el menor conjunto inductivo. Esta propiedad de Z+ 
se denomina, a menudo, principio de inducción. Suponemos al lector fami­
liarizado con las demostraciones por inducción que se basan en este principio. 
(Ver Referencia 1.1.) Ejemplos de tales demostraciones se dan en la sección si­
guiente. 

Los opuestos de los enteros positivos se llaman enteros negativos. Los en­
teros positivos junto con los enteros negativos y el O (cero), forman un con­
junto Z que llamaremos, simplemente, conjunto de los enteros. 
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6 El sistema de los números reales y el de los complejos 

1.7 TEOREMA DE DESCOMPOSICIóN ÚNICA 
PARA ENTEROS 

Si n y d son enteros y si n = cd para algún entero c, diremos que d es un divi­
${)r de n, o que n es un múltiplo de d, y escribiremos dln (se lee: d divide a n). 
Un entero n es primo si n > 1 Y si los únicos divisores positivos de n son 1 y n. 
Si n > 1 Y n no es primo, entonces n es compuesto. El entero 1 no es ni primo 
ni compuesto. 

Esta sección expone algunos resultados elementales acerca de la descom-
posición de enteros, culminando con el teorema de descomposición única, lla­
mado también el teorema fundamental de la Aritmética. 

El teorema fundamental establece que (1) cada entero n > 1 puede ser re­
presentado como producto de factores primos y que (2) esta descomposición 
es única, salvo en el orden de los factores. Es fácil probar la parte (l). 

Teorema 1.5. Cada entero n> 1 es primo o producto de primos. 

Demostración. Utilizaremos la inducción sobre n. El teorema se verifica tri­
vialmente para n = 2. Supongamos que es cierto para cada entero k con 
1 < k < n. Si n no es primo, admite un divisor d con 1 < d < n. Por lo tanto, 
n = cd, con 1 < c < n. Puesto que tanto c como d son < n, cada uno es 
primo o es producto de primos; luego n es un producto de primos; 

Antes de probar la parte (2), la unicidad de la descomposición, introducire-
mos otros conceptos. 

Si dla y dlb, diremos que d es un divisor común de a y ~ .. El teore~a que 
sigue demuestra que cada par de enteros a y b posee un diVIsor comun que 
es combinación lineal de a y de b. 

Teorema 1.6. Cada par de enteros a y b admite un divisor común d de la 

forma 

d = ax + by 

donde x e y son enteros. Además, cada divisor común de a y b divide a d. 

Demostración. Supongamos primeramente que a > O Y b > O y procedamos por 
inducción sobre n = a + b. Si n = O, entonces a= b = O Y podemos tomar 
d = O con x = y = O. Supongamos entonces que el teorema ha sido probado 
para O, 1, 2, ... , n - 1. Por simetría podemos su~oner a ~ b. S~ b =?, en­
tonces d = a, x = 1, y = O. Si b > 1 podemos aplIcar la hIpóteSIS de mduc­
ción a a - b Y a b, ya que su suma es a = n - b < n-l. Por lo tanto existe 
un divisor común d de a - b y b de la forma d = (a - b)x + by. Este entero d 
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divide también a (a - b) + b = a, luego d es un divisor común de a y de b 
y tenemos que d = ax + (y-x)b, es combinación lineal de a y b. Para com­
pletar la demostración debemos probar que cada divisor común divide a d. 
Como un divisor común divide a a y a b, dividirá también a la combinación 
lineal ax + (y - x)b = d. Esto completa la demostración si a > 0 Y b > O. Si 
uno de ellos o ambos fuesen negativos, aplicaríamos el resultado que acabamos 
de demostrar a lal y Ibl. 

NOTA. Si d es un divisor común de a y b de la forma d = ax + by, entonces 
- d es también un divisor común de la misma forma, - d = a(-x) + b(- y). 
De estos dos divisores comunes sólo el no negativo se denomina el máximo 
oomún divisor de a y de b y se designa por mcd(a, b) o, simplemente, por (a, b). 
Si (a, b) = 1, se dice que a y b son primos entre sí. 

Teorema 1.7 (Lema de Euclides). Si albc y (a, b) = 1, entonces alc. 

Demostración. Como (a, b) = 1, podemos escribir 1 = ax + by. Por lo tanto, 
c = acx + bcy. Pero alacx y albcy, luego alc. 

Teorema 1.B. Si un número primo p divide a ab, entonces pla o plb. En ge­
neral, si un número primo p divide al producto al ... ak, entonces p divide a 
uno de los factores por lo menos. 

Demostración. Supongamos que plab y que p no divida a a. Si probamos que 
(p, a) = 1, el lema de Euclides implica que plb. Sea d = (p, a). Entonces dlp, 
luego d = 1 o d = p. No puede ser que d = p ya que di a, pero p no divide a a. 
Por lo tanto, d = 1. Para demostrar la afirmación más general se procede por 
inducción sobre el número k de factores . Los detalles se dejan al lector. 

Teorema 1.9 (Teorema de descomposición ú"ica). Cada entero n> 1 
puede ser representado como producto de factores primos, y si se prescinde del 
orden de los factores la representación es única. 

Demostración. Procederemos por inducción sobre n. El teorema es cierto para 
n = 2. Supongamos, entonces, que es cierto para todos los enteros mayores 
que 1 y menores que n. Si nes primo, no hay nada que demostrar. Suponga­
mos, por lo tanto, que n es compuesto y que admite dos descomposiciones en 
factores primos; a saber 

(2) 

Deseamos probar que s= t y que cada p es igual a algún q. Dado que Pl di­
vide a q¡ 'q , ... qt , divide por 10 menos a uno de los factores. Cambiando los 
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índices de las q, si es necesario, se puede suponer p,/q,. Por lo tanto, Pl = q, 
ya que tanto PI como ql son primos. En (2) simplificamos P, en ambos miem­
bros y obtenemos 

n = P2 ... Ps = q 2 ••• q t· 
PI 

Como n es compuesto, 1 < n}pl < n; luego pOr la hipótesis de inducción las 
dos descomposiciones de n/p, son idénticas, si se prescinde del orden de los 
factores. Por lo tanto, lo mismo es cierto para (2) y la demostración está ter­
minada. 

1.8 LOS NÚMEROS RACIONALES 

Los cocientes de enteros a/b (donde b =F O) se llamarán números racionales. 
Por ejemplo, Ij2, -7/5, y 6 son números racionales. El conjunto de los nú­
meros racionales, que designaremos por Q, contiene a Z como subconjunto. 
Observe el lector que todos los axiomas de cuerpo y todos los axiomas de 
orden se verifican en Q. 

Suponemos que el lector está familiarizado con ciertas propiedades elemen­
tales de los números racionales. Por ejemplo, si a y b son racionales, su me­
dia (a + b)/2 también lo es y está comprendida entre a y b. Así pues, entre 
dos números racionales hay una infinidad de números racionales, lo cual im­
plica que, dado un número racional cualquiera, no sea posible hablar del 
número racional «inmediato superior». 

1.9 LOS NÚMEROS IRRACIONALES 

Los números reales _que no son racionales se denominan irracionales. Por ejem­
plo. los números ..}2, e, 11: y err son irracionales. 

En general no es fácil probar que un cierto número particular es irracional. 
No existe ninguna demostración simple de la irracionalidac! de ~, por ejemplo. 
Sin embargo, la irracionalidad de números tales como ..}2, ..}3 no es excesi­
vamente difícil de establecer y, de hecho, probaremos fácilmente el siguiente: 

Teorema 1.10. Si n es un entero positivo que no sea un cuadrado perfecto, 
entonces ..}~ es irracional. 

Demostración. Suponemos en primer lugar que n nQ admite ningún divisor 
> 1 que sea cuadrado perfecto. Si_admitimos que ..) n es racional, llegamos a 
contradicción. Supongamos que ..}n = alb, donde a y b son enteros sin divi­
sores comunes. Entonces nb2 = a2 y, dado que el primer miembro de esta 
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igualdad es un múltiplo de n, también lo será a2
• Sin embargo, si a2 es múlti­

plo de n, a deberá serlo ya que n no admite divisores > 1 que sean cuadrados 
perfectos. (Esto se ve fácilmente examinando la descomposición de a en facto­
res primos.) Todo ello significa que a = en, donde e es un entero. Entonces 
la ecuación nb2 = a2 se transforma en nb2 = c2n2

, o b2 = nc2
• El mismo argu­

mento prueba que b debe ser asimismo múltiplo de n. Entonces a y b serían 
ambos múltiplos de n, lo cual contradice el hecho de que a y b carecen de di­
visores comunes. Esto finaliza la demostración en el caso de que n no admita 
un divisor > 1 que sea cuadrado perfecto. 

Si n admite un factor que sea cuadrado perfecto, podremos escribir n = m2k, 
donde k-> 1 Y k_no admite_divisores> 1 que sean cuadrados perfectos. Por lo 
tanto ..} n = m..} k; y si ..} n fuese racional, el número Jk sería también ra­
cional, contradiciendo lo que acabamos de demostrar. 

Un tipo distinto de argumentación es preciso para probar que el número e 
es irracional. (Suponemos cierta familiaridad con la exponencial eZ del Cálculo 
elemental y su representación como serie infinita.) 

Teorema 1.11. Si eZ = 1 + x + x 2/2! + x 3/3! + oo. + xn/n! + oo., entonces 
el número e es irracional. 

Demostración. Probaremos que e-1 es irracional. La serie e-1 es una serie al­
ternada con términos que decrecen constantemente en valor absoluto. En tales 
series el error cometido al cortar la serie por el n-ésimo término tiene el signo 
algebraico del primer término que se desprecia y, en valor absoluto, es menor que 
el del primer término que se desprecia. Por lo tanto, si s .. = :¿~=o (-IY'lk!, 
tenemos la desigualdad 

O < e- I - S2k-I < _1_ 
(2k)! ' 

de la que se obtiene 

9 

0< (2k - 1)! (e- 1 
- S2k-l) < ~ <~, 

2k - 2 
(3) 

para todo entero k'? 1. Ahora bien (2k - 1)! S"k-l es siempre un entero. Si e-1 

fuese racional, entonces podríamos elegir k suficientemente grande para que 
(2k-l)!e- 1 fuese también un entero. A causa de (3) la diferencia entre am­
bos enteros debería ser un número comprendido entre O y t, lo cual es impo­
sible. Luego e-1 no es racional y, por tanto, e tampoco lo es. 

NOTA. Para una demostración de la irracionalidad de 'fr, ver Ejercicio 7.33. 

Los antiguos griegos sabían de la existencia de los números irracionales 
allá por el año 500 a.C. Sin embargo, una teoría satisfactoria de tales números 
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no sería desarrollada hasta finales del siglo diecinueve en que tres teorías dis­
tintas son introducidas al mismo tiempo por Cantor, Dedekind y Weierstrass. 
En la Referencia 1.6 puede hallarse información acerca de las teorías de De­
dekind y Cantor y sus equivalencias. 

1.10 COTAS SUPERIORES; ELEMENTO MÁXIMO, 
COTA SUPERIOR MíMMA (SUPREMO) 

Los números irracionales aparecen en Álgebra cuando se pretenden resolver 
ciertas ecuaciones cuadráticas. Por ejemplo, se desea un número real x tal que 
X2 = 2. De los nueve axiomas enumerados anteriormente no puede deducirse 
si en R existe o no un número x, puesto que Q satisface también estos nueve 
axiomas y hemos probado que no existe ningún número racional cuyo cua­
drado sea 2. El axioma de _ completitud nos permitirá introducir los números 
irracionales en el sistema de los números reales y proporcionar.- al sistema de 
los números reales una propiedad de continuidad que es fundamental en mu­
chos de los teoremas de Análisis. 

Antes de describir el axioma de completitud, es conveniente introducir una 
terminología y una notación adicionales. 

Definición 1.12. Sea S un conjunto de números reales. Si existe un número 
real b tal que x < b para todo x de S, diremos que b es una cota superior de S 
y que S está acotado superiormente por b. 

Decimos una cota superior ya que cada número mayor que b también es 
una cota superior. Si una cota superior b es, además, un elemento de S, b se 
denomina último elemento o elemento máximo de S. A lo sumo habrá uno 
de tales b. Si existe tal número b, escribiremos 

b = máx S. 
Un conjunto carente de cotas superiores se denomina no acotado superior­
mente. 

Las definiciones de los términos cota inferior, acotado inferiormente, primer 
elemento (o elemento mínimo) pueden formularse análogamente. Si S tiene un 
elemento mínimo, designaremos a dicho mínimo por mÍn S. 

Ejemplos. 

1. El conjunto R+ = (O, + 00) es un conjunto no acotado superiormente. No po­
see ni cotas superiores ni elemento máximo. Está acotado inferiormente por O, 
pero no posee elemento mínimo. 

2. El intervalo cerrado S = [O, 1] está acotado superiormente por 1 e inferiormen­
te por O. De hecho, máx S = I Y mÍn S = O. 

-----'---------------~---_. _._- -----
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3. El intervalo semiabierto S = [O, 1) está acotado superiormente por 1, pero ca­
rece de elemento máximo. Su elemento mínimo es O. 

Para conjuntos como los del ejemplo ,3 que están acotados superiormente 
pero que carecen de elemento máximo, existe un concepto que sustituye al de 
elemento máximo. Se denomina extremo superior o supremo del conjunto y se 
define como sigue: 

Definición 1.13. Sea S un conjunto de números reales acotado superiormen­
te. Un número real b se denomina extremo superior de S si verifica las dos 
propiedades siguientes: 

a) b es una cota superior de S. 
b) Ningún número menor que b es cota superior de S. 

Ejemplos. Si S = [O, 1] el elemento máximo I es asimismo extremo superior de S. 
Si S = [O, 1), el número I es extremo superior de S, aun cuando S carece' de ele­
mento máximo. 

Es fácil probar que un conjunto no puede tener dos extremos superiores 
distintos. Por lo tanto, si existe extremo superior de S, existe sólo uno y puede 
hablarse del extremo superior. 

Es corriente, en la práctica, referirse al extremo superior de un conjunto 
por medio del término más breve de supremo, abreviado supo Adoptamos esta 
convención y escribimos 

b = sup S, 

para indicar que b es el supremo de S. Si S tiene un elemento máximo, en­
tonces máx S = sup S. 

El extremo inferior o ínfimo de S, designado por inf S, se define de for­
ma análoga. 

1.11 EL AXIOMA DE COMPLETITUD 

Nuestro último axioma del sistema de los números reales involucra la noción 
de supremo. 

Axioma 10. Todo conjunto no vacío S de números reales que esté acotado 
superiormente admite un supremo; es decir, existe un número real b tal que 
b = sup S. 

Como consecuencia de este axioma se obtiene que todo conjunto no vacío 
de números reales acotlldo inferiormente admite un ínfimo. 

,J) 
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1.12 ALGUNAS PROPIEDADES DEL SUPREMO 

En esta s~~ción se discuten algunas propiedades fundamentales del supremo. 
que se utIlIzarán en este texto. Existe un conjunto análogo de propiedades 
para el ínfimo que el lector formulará por sí mismo. 

La primera de ellas establece que todo conjunto de números con un su­
premo contiene números tan próximos como se quiera a dicho supremo. 

Teorema 1.14 (Propiedad de la aproximación). Sea S un conjunto no' 
vacío de números reales con un supremo que se designa por b = sup S. En­
tonces, para cada a < b, existe un x de S tal que 

a < x :$; b. 

Demostración. Ante todo. x < b para todo x de S. Si fuese x <a para todo x 
de S, entonces a sería una cota superior para S menor que eÍ supremo que es 
la cota superior mínima. Por lo tanto, x > a para un x de S, por lo menos. 

Teorema 1.15 (Propiedad aditiva). Dados dos subconjuntos no vacíos de R, 
A Y B, sea e el conjunto 

e = {x + y: x E A, Y E B}. 

Si tanto A como B tienen un supremo, entonces e tiene un supremo y 

sup e = sup A + sup B. 

Demostración. Sea a = sup A, b = sup B. Si z E e, entonces z = x + y, don­
de x E A, Y E B, luego z = x + y < a + b. Por 10 tanto a + b es una cota su­
perior de e, luego e admite un supremo. sea c = sup e y e <a + b. Vere­
mos ahora que a + b < c. Elijamos un E> O. Por el teorema 1.14 existe un x 
de A y un y de B tales que 

a-e<x 

y 
b - e < y. 

Sumando estas desigualdades. obtenemos 

a + b - 2e < x + y :$; c. 

Luego, a + b < c + 2E para cada E > O y, por el teorema 1.1, a + b < c. 

La demostración del teorema que sigue se deja como ejercicio para el lector. 
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Teorema 1.16 (Propiedad de la comparación). Dados dos subconjuntos 
no vacíos S y T de R tales que s <t para todo s de S y todo t de T, si T tiene 
supremo, entonces S tiene supremo, y 

sup S :s; sup T. 

1.13 PROPIEDADES DE LOS ENTEROS DEDUCIDAS 
DEL AXIOMA DE COMPLETITUD 

Teorema 1.17. El conjunto z+ de los enteros positivos 1. 2. 3 •...• no está 
acotado superiormente. 

Demostración. Si Z+ estuviese acotado superiormente. entonces Z+ admitiría 
un supremo, tal como a = sup Z+. Por el teorema 1.14 tendríamos que a-1 
< n para algún n de Z+. Por lo tanto n + 1> a para esta n. Esto contra­
dice el hecho de ser a = sup Z+ ya que n + 1 E Z+. 

Teorema 1.18. Para cada número real x existe un entero positivo n tal que 

n>x. 

Demostración. Si no fuese así. existiría un x que sería una cota superior para 
z+, en contradicción con el teorema 1.17. 

1.14 LA PROPIEDAH ARQUIMEDIANA DEL SISTEMA 
DE LOS NúMEROS REALES 

El teorema que sigue enuncia la propiedad arquimediana del sistema de los 
números reales. Geométricamente dice que todo segmento lineal. por largo que 
sea, puede recubrirse PQr medio de un número finito de segmentos lineales de 
longitud positiva dada. por pequeña que sea. 

Teorema 1.19. Si x> O Y si y es un número real arbitrario, existe un en­
tero positivo n tal que nx > y. 

Demostración. Aplicar el teorema 1.18 sustituyendo x por y/x. 

1.15 LOS NÚMEROS RACIONALES CON REPRESENTACIóN 
DECIMAL FINITA 

Un número real de la forma 
al a2 a r = a o + - + -2 + ... + _n 
10 10 Ion' 

APOSTOL, análisis - 2 

http://libreria-universitaria.blogspot.com



14 El sistema de los números reales y el de los complejos 

donde ao es un entero no negativo y al' ... , a" son enteros que satisfacen 
O::;: ai < 9, se expresa usualmente de la siguiente forma: 

Dicha expresión recibe el nombre de representación decimal finita de r. Por 
ejemplo, 

1 5 
- = - = 0,5, 
2 10 

1 2 
-=-=002 
50 102 " 

29 2 5 - = 7 + - + - = 7,25. 
4 10 102 

Los números reales de este tipo son necesariamente racionales y, de hecho, 
todos ellos son de la forma r = o/IOn, donde a es un entero. Sin embargo, no 
todos los números racionales pueden expresarse mediante representaciones de­
cimales finitas. Por ejemplo, si 1/3 pudiese expresarse así, tendríamos que 
1/3 = a/lOn o 3a = 10" para un cierto entero a. Pero esto es imposbile ya que 3 
no divide a ninguna potencia de 10. 

1.16 APROXIMACIONES DECIMALES FINITAS 
DE LOS NúMEROS REALES 

Esta sección utiliza el axioma de completitud para demostrar que los números 
reales pueden aproximarse, con la exactitud que se desee, por medio de núme­
ros racionales que admitan representación decimal finita. 

Teorema 1.20. Suponemos x:::=:: o. Entonces, para todo entero n > 1, existe 
un decimal finito rn = ao • al a2 ••• a" tal que 

1 
r n ::; x < r n + -. 

10" 

Demostración. Sea S el conjunto de todos los enteros no negativos < x. S es 
no vacío, ya que O E S, y está acotado superiormente por x. Por lo tanto, S 
admite un supremo: 00 = sup S. Es fácil ver que ao E S; luego ao es un entero 
no negativo. Llamaremos a ao el mayor entero cóntenido en x, y escribiremos 
ao = [x]. Es claro que 

aosx<ao+1. 

Sea ahora al = [lOx-lOao], el mayor entero contenido en 10x-lOao' Co­
mo O < lOx - 10ao = 100x - ao) < lO, tenemos que O < al < 9 Y 
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En otras palabras, al es el mayor entero que satisface las desigualdades 

al al + 1 a + - ::; x < ao + --- . 
o 10 10 

En general, habiendo elegido al' oo. , a,,-l con O <ai < 9, sea a" el mayor 
entero que satisfaga las desigualdades 

al an al an + 1 a +_+oo'+-::;x<a + _ +00'+ __ -. 
o 10 10. o 10 Ion 

Entonces O < a" < 9 Y tendremos 

1 
r<x<r+-
• - • 10·' 

(4) 

donde rn = ao • ala2 oo' a". Esto completa la demostración. Es fácil verificar que 
~ es, de hecho, el supremo del conjunto de los números racionales r l , r 2 , 

1.17 REPRESENTACIONES DECIMALES INFINITAS 
DE LOS NÚMEROS REALES 

Los enteros ao' al' a2, oo., obtenidos en la demostración del teorema 1.20 pue­
den utilizarse para definir una representación decimal infinita de x. Escribi­
remos 

para indicar que a" es el mayor entero que satisface (4). Por ejemplo, si x = t, 
obtendremos ao = O, al = 1, a2 = 2, a3 = 5 y a.." = O para todo n > 4. Por lo 
tanto, podemos escribir 

t = 0,125000' .. 

Si intercambiamos los signos de desigualdad < y < en (4), obtenemos una 
definíción ligeramente diferente de representación decimal. Los decimales fini­
tos r", satisfacen r", < x <rn + lo-n, sin embargo los dígitos ao' al' a2, oo., ne­
cesarios no son los mismos que en (4). Por ejemplo, si aplicamos esta segunda 
definición a x = t, obtenemos la representación decimal infinita 

t = 0,124999 ... 

El que un número real admita dos representaciones decimales distintas es un 
simple ejemplo del hecho de que dos conjuntos diferentes de números reales 
pueden tener el mismo supremo. 
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16 El sistema de los números reales y el de los complejos 

1.18 VALOR ABSOLUTO Y DESIGUALDAD TRIANGULAR 

En Análisis son bastante frecuentes los cálculos con desigualdades. Son de par­
ticular importancia las que se relacionan con la noción de valor absoluto. Si x 
es un número real, el valor absoluto de x, desginado por Ix¡, se define como 
sigue: 

Ixl = { x, 
-x, 

si x 2 O, 

si x ~ O. 

Una desigualdad importante concerniente a los valores absolutos viene dada por 
el siguiente: 

Teorema 1.21. Si a >0, entonces tenemos la desigualdad Ixl < a si, y sólo 
si, -a<x<a. 

Demostración. De la definición de Ixl se obtiene la desigualdad - Ixl < x < Ix¡, 
ya que x = Ixl . o x = -lxI- Si suponemos que Ixl < a, podemos escribir -a < 
-Ixl < x < Ixl < a y la mitad del teorema queda demostrada. Recíprocamente, 
si suponemos - a < x <a, entonces, si x > O, tenemos que Ixl = x <a, mien­
tras que si x < 0, tenemos que Ixl = - x <a. En ambos casos obtenemos que 
Ixl < a y el teorema queda demostrado. 

Podemos utilizar este teorema para demostrar la desigualdad trlangular. 

Teorema 1.22. Para números reales arbitrarios x e y se verifica 

Ix + yl ::; Ixl + Iyl (desigualdad triangular) 

Demostración. Tenemos que -Ixl < x < Ixl y que -Iyl < y <Iyl. Sumando 
obtenemos - <lxl + Iyl) < x + y < Ixl + Iyl y, en virtud del teorema 1.21, con­
cluimos que Ix + yl < Ixl + Iyl· Esto demuestra el teorema. 

A menudo se utilizan otras formas de la desgiualdad triangular. Por ejem­
plo, si en el teorema 1.22 hacemos x = a - c e y= c - b, resulta 

la - bl ::; la - el + le - bl. 

Asimismo, del teorema 1.22, obtenemos Ixl > Ix + yl-Iyl. Haciendo x = a + b, 
Y = - b, resulta 

la + bl 2 lal - Ibl . 
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Intercambiando a Y b obtendremos, además, la + bl > Ibl-Ial = - (Ial-Ibl), 
y por lo tanto 

y 

la + bl 2 Ilal - Ibll· 

Por inducción podemos probar asimismo las generalizaciones 

IX
I 

+ X z + .,. + xIII::; Ixll + Ix21 + .. , + Ixlll 

Ix! + X z + .,. + xIII 2 Ixll - IX 21 - .. ' - Ixlll· 

1.19 LA DESIGUALDAD DE CAUCHY-SCHWARZ 

Vamos a deducir ahora otra desigualdad usada a menudo en Análisis. 

Teorema 1.23 (Desigualdad de Cauchy-Schwarz). Si al' ... , a" Y h" ... , b", 
son números reales cualesquiera, se tiene 

Además, la igualdad se verifica si, y sólo si, existe un número real x tal que 

a,.x + bk = O para cada k = 1, 2, ... , n. 

Demostración. Una suma de cuadrados no puede ser nunca negativa. Por lo 

tanto tenemos 

t (akx + bk)2 2 O 
k=l 

para todo número real x, y es igualdad si, y sólo si, cada término es cero. Esta 
desigualdad puede escribirse en la forma 

Ax2 + 2Bx + C 2 0, 

donde 
11 

A '\ L a¡, 
k=l 

Si A > O, hacemos x = - B/A a fin de obtener B2 - AC < ° que es la desigual­
dad deseada. Si A = O, la demostración es trivial. 

J. 
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NOTA. Utilizando notación t' 1 1 
la forma vec ona , a desigualdad de Cauchy-Schwarz toma 

donde a =: (a . ) h - (b 
" .. " a,. , - l' ... , bn ) son dos vectores n-dimensionales, 

es su producto escalar, y Ila ll =: (a·a)' / 2 es la longitud de a. 

~i~ S~:E~A~~O{O~~~~~~O~ i~!~~ENSIÚN R* 

En esta sección extenderemos el sistema dI' .. 
«puntos ideales» designados por 1 'be 1 os numeras reales adjuntando dos 
((menos infinito»). os SlDl o os + 00 y -00 «(más infinito» y 

D f' '" 1 e . lnlClon .24. Por sistema ampliado de l ' 
remos el conjunto de los números reales R' os numeras ,reales, R*, entende­
que satisfagan las siguientes propiedades: ¡unto con dos slmbolos + 00 y - 00 

a) Si x E R, tenemos 

x + (+ 00 ) = + 00, 
x-(+ oo)=- oo 

x/e + 00) = x/e - '00 ) = O, 

b) Si x> 0, tenemos 

x( + 00) = + 00 , 

c) Si x < 0, tenemos 

x( + 00) = - 00, 
d) 

x + (- 00) = - 00, 
x-(- oo)= + 00, 

x(-oo) = - 00 , 

x(-oo) = + 00 , 

( + 00) + (+ 00) = (+ (0)( + (0) = (- 00 )( _ 00) = 
( - (0 ) + (- (0) = (+ 00)( - 00) = - oo. + 00, 

e) Si x E R, entonces -00 < x < + oo. 

NOTACIÓN, Utilizaremos el símbolo (-00 + 00 • 

+ 00] para designar a R* L d') para desIgnar a R y [-00 
l . os puntos e R se llama fi' • 
os de los puntos ccinfinitos» + 00 y _ oo. n « mtos» para distinguir-

I 
1 
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La razón principal para introducir los símbolos + 00 y - 00 es de pura 
conveniencia. Por ejemplo. si definimos + '00 como el sup de un conjunto de 
números no acotado superiormente. resulta que. en R*, todo subconjunto no 
vacío de R tiene un supremo. El supremo es finito si el conjunto está acotado 
superiormente e infinito si no está acotado superiormente. Análogamente. defi­
nimos que el ínfimo de todo compuesto no acotado inferiormente es -~. En­
tonces todo subconjunto no vacío de R tiene ínf en R*. 

Para ciertos trabajos posteriores acerca de los límites. conviene además in­
troducir la siguiente terminología. 

Definición 1.25. Cada intervalo abierto (a. + (0) se dice que es un entorno 
de + oo. o una bola con centro + oo. Cada intervalo abierto (-00, a) se dice 
que eS un entorno de - 00, o una bola con centro - oo. 

1.21 LOS NÚMEROS COMPLEJOS 

De los axiomas que gobiernan la relación < se deduce que el cuadrado de un 
número real no es nunca negativo. Entonces. ecuaciones cuadráticas elementales 
tales como, por ejemplo. r = -1 no poseen solución entre los números reales. 
Un nuevo tipo de números. llamados números complejos, debe introducrise 
para conseguir soluciones de tales ecuaciones. Resulta entonces que la introduc­
ción de tales números proporciona, al mismo tiempo, soluciones de las ecuaciq­
nes algebraicas generales de la forma 

ao + a1x + ... + anx" = O. 

donde los coeficientes 0 o• a" ... , a.,. son números reales cualesquiera. (Este re­
sultado es conocido como Teorema fundamental del Algebra.) 

Definiremos ahora los números complejos y los discutiremos con cierto de­
talle. 

Definición 1.26. Por número complejo entenderemos un par ordenado de nú­
meros reales, que designaremos por (x" x 2). La primera componente, x,, se llama 
parte real del número complejo; la segunda componente, X 2 • se llama parte 
imaginaria. Dos números complejos X = (x" x2) e Y = (Y" Y2) son iguales. y 
escribiremos x = y, si. y sólo si, x, = Y, Y x2 = Y2' Deflnimos la suma X + Y 
Y el producto xy por 

X + y = (XI + YI' X 2 + Y2) , 

NOTA. El conjunto de todos los números complejos será designado por C. 

Teorema 1.27. Las operaciones de suma y multiplicación que acabamos de 
definir satisfacen las leyes conmutativa, asociativa y distributiva. 

( 
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20 El sistema de los números reales y el de los complejos 

Demostración. Solamente demostraremos la propiedad distributiva; las otras 
demostraciones son más simples. Si x = (x¡, x 2), Y = (yl' Y2) Y z = (z¡, Z2), en­
tonces tenemos 

x( y + z) = (Xl' Xz)(y¡ + Z¡ , y z + Zz) 

= (X¡Y¡ + XIZ¡ - X2Yz - XzZz, X¡Y2 + XIZ2 + X2YI + XZZ¡) 
= (X¡Y¡ - xzYz, XI Y2 + XZYI) + (X¡Z¡ - X2ZZ, XIZZ + XZZ¡) 
= xy + XZ. 

Teorema 1.28. 

(XI ' Xz) + (O, O) = (XI ' Xz), 

(XI' xz )(l, O) = (XI , Xz), 

(X 1> X 2)(0, O) = (O, O), 

(XI, Xz) + (-X¡, -Xz) = (O, O) . 

Demostración. Las demostraciones son inmediatas a partir de las definiciones, 
lo mismo que en los teoremas 1.29, 1.30, 1.32 Y 1.33. 

Teorema 1.29. Dados dos números complejos X = (Xl' X2 ) e Y = (YI' Y2)' exis­
le un número complejo z tal que x + Z = y. De hecho, Z = (Yl -Xl' Y2 -x

2
). 

Este Z se designa por y - x: El número complejo (- X¡, - x.) se designa 
por -x. 

Teorema 1.30. Para cualquier par de números complejos X e y, tenemos 

( - x )y = x( - y ) = - (xy ) = (- 1, O)(xy) . 

Definición 1.31. Si X = (Xl ' X2) =1= (O, O) e y son números complejos, defini­
lilas x-l = [x1/(xi + xD, -X2/(X~ + .iD], e y/x = yx-1• 

Teorema 1.32. Si X e y son números complejos con X =1= (O, O), existe un nú­
lIIero complejo z tal que xz = y, a saber, z = yx-l. 

Revisten especial interés las operaciones con números complejos cuya parte 
imaginaria es O. 

Teorema 1.33. 

(XI' O) + (YI' O) = (XI + YI, O), 

(XI' O)(y¡ , O) = (XIYI' O), 

(XI, O)/(YI, O) = (X¡jYI, O), si.h =1= O. 

NOTA. Es evidente, que en virtud del teorema 1.33, podemos realizar las ope­
raciones aritméticas de los números complejos de parte imaginaria nula operan-
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o = (O, O) XI = (XI, O) 

Figura 1.2 

do tan sólo con las partes reales por medio de las operaciones de los números 
reales. Por lo tanto, los números complejos de la forma (x, O) tienen las mismas 
propiedades aritméticas que los números reales. Por esta razón es conveniente 
considerar el sistema de los números reales como un caso particular del sis­
tema de los números complejos, y convendremos en identificar el número com­
plejo (x, O) con el número real x. Por eso escribiremos X = (x, O). En particu­
lar, O = (O, O) Y 1 = O, O). 

1.22 REPRESENTACIóN GEOMÉTRICA 
DE LOS NúMEROS COMPLEJOS 

Así como los números reales se representan geométricamente como puntos, de 
una recta, los números c.omplejos se representan como puntos de un plano. " El 
número complejo x = (x¡, x2 ) puede ser imaginado como el ((punto» de coor­
denadas (Xl' x 2 ) Hecho esto, la definición de suma coincide con la suma según 
la regla del paralelogramo. (Ver Fig. 1.2.) 

La idea de expresar geométricamente los números complejos como puntos 
de un plano fue formulada por Gauss en su disertación de 1799 e, indepen-

Figura 1.3 

1 
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dientemente, por Argand en 1806. Más tarde Gauss ideó la expresión un tanto 
desafortunada de ((número complejo». Los números complejos admiten otras re­
pr~~entaciones geométricas. En vez de utilizar puntos de un plano, se pueden 
utIlIzar puntos de otras superficies. Riemann encontró que la esfera es especial­
mente adecuada para este propósito. Se proyectan los puntos de la esfera desde 
el Polo Norte sobre el plano tangente a la esfera en el Polo Sur y entonces a 
cada punto del plano le corresponde un punto sobre la esfera. Con excepción 
del Polo Norte, a cada punto de la esfera le corresponde un punto sobre el plano 
y sólo uno. Esta correspondencia se denomina una proyección estereográfica. 
(Ver Fig. 1.3.) 

1.23 LA UNIDAD IMAGINARIA 

Conviene a veces considerar el número complejo (x" xo) como un vector bidi­
mensional de .componentes x, y x •. Sumar dos números comvlejos utilizando 
la definición 1.26 es lo mismo que sumar dos vectores componente a compo­
nente. El número complejo 1 = (1, O) juega el mismo papel que el vector uni­
tario de dirección horizontal. El análogo al vector unitario de dirección vertical 
vamos a introducirlo ahora. 

Definición 1.34. El número complejo (O, 1) se representa por i y se llama 
unidad imaginaria. 

Teorema 1.35. Cada número complejo X = (x" x2) puede representarse en la 
forma x = x, + ix •. 

Demostración. 

Xl = (x¡, O), ¡X2 = (O, 1)(x2 , O) = (O, x 2), 

Xl + iX2 = (XI' O) + (O, X 2) = (XI' x 2 ). 

El próximo teorema expresa que el número complejo i proporciona una solu­
ción para la ecuación Xo = - 1. 

Teorema 1.36. iO =-1. 

Demostración. 

¡2 = (O, 1)(0, 1) = (-1, O) = -1. 

1.24 VALOR ABSOLUTO DE UN NÚMERO COMPLEJO 

Vamos a extender ahora el concepto de valor absoluto al sistema de los núme­
ros complejos. 

J. 
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Definición 1.37. Si X = (x" x 2), definimos el módulo, o valor absoluto, de X 

como el número real no negativo Ixl dado por 

Ixl = ~ xi + x~ . 
Teorema 1.38. 

i) 1(0, 0)1 = 0, y Ixl > O si X =f. O. 

iii) Ix/yl = Ixl /I yl, si y =f. O. 

ii) Ixyl = Ixllyl. 

iv) I(x l , 0)1 = Ixll. 

Demostración. Las afirmaciones (i) y (iv) son inmediatas. Para demostrar (ii), 
consideremos x = X, + ixo, y = y, + iyo, entonces xy = x,y, - xoYo + i(x,yo + 
x,y,). La afirmación (ii) se sigue de la relación 

IxYl2 o¡= x~y~ + x~y~ + x~y~ + x~Yi = (xT + xD(yi + yD = Ix1 21y12. 

La ecuación (iii) puede deducirse de (ii) escribiéndola en la forma Ixl = Iyl Ix/yl. 

Geométricamente, Ixl representa la longitud del segmento que une el origen 
con el punto x. En general, Ix - yl es la distancia entre los puntos X e y. Uti­
lizando esta interpretación geométrica, el siguiente teorema establece que uno 
de los lados de un triángulo es menor que la suma de los otros dos lados. . 

Teorema 1.39. Si x e y san números complejos, entonces 

Ix + yl ::;; Ixl + Iyl (desigualdad triangular) 

La demostración se deja como ejercicio para el lector. 

1.25 IMPOSIBILIDAD DE ORDENAR LOS NúMEROS COMPLEJOS 

Todavía no hemos definido ninguna relación de la forma x < y, si x e y son 
números complejos cualesquiera, ya que es imposible dar una definición de < 
para los números complejos que satisfaga las propiedades dadas por los axio­
mas 6 al 8. Para justificarlo, supongamos que fuese posible definir una rela­
ción de orden < que satisficiera los axiomas 6, 7 Y 8. Entonces, como i,* O, 
se debiera tener i > ° o i < O, por el axioma 6. Supongamos que i > O. En­
tonces tomando x = y = i en el axioma 8, tendríamos iO > O, o -1> O. Su­
mando 1 a ambos miembros (axioma 7), obtendríamos O> 1. Por otro lado, 
aplicando el axioma 8 a - 1 > O, hallaríamos 1 > O. Tendríamos, pues, O > 1 
Y también 1 > O, que, por el axioma 6, es imposible. Así pues, suponer que 
i > ° lleva a contradicción. [¿Por qué la desigualdad - 1 > ° no era ya una 
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contradicción?] Un razonamiento análogo prueba que no es posible i < O. Por 
lo tanto, los números complejos no pueden ser ordenados de tal suerte que se 
verifiquen los axiomas 6, 7 Y 8. 

1.26. EXPONENCIALES COMPLEJAS 

La exponencial e" (x real) ha sido mencionada anteriormente. Deseamos definir 
eZ para Z complejo de tal suerte que las principales propiedades de la función 
exponencial real se conserven. Las citadas propiedades de e" para x real son 
la ley de los exponentes, e",elIJ

, = e"',+IIJ" Y la ecuación eO = 1. Daremos una 
definición de eZ para z complejo que conserve estas propiedades y que se re­
duzca · a la exponencial ordinaria cuando z sea real. 

Si escribimos z = x + iy (x, y reales), entonces para que se verifique la ley 
de los exponentes deberíamos tener e"'+iy = e"'éll • Queda entonces por definir lo 
que significa é ll• 

Definición 1.40. Si z = x + iy, definimos e" = e"'+ill como el número com­
plejo eZ = e!lJ (cos y + i sen y). 

Esta definición* coincide claramente con la función exponencial real cuan­
do z es real (esto es, y = O). Probaremos a continuación que la ley de los expo­
nentes se cumple. 

Teorema 1.41. Si ZI = Xl + iYI Y Z2 = x 2 + iY2 son dos números complejos, 
entonces tenemos 

Demostración. 

+ i(cos YI sen Y2 + sen YI cos Y2)]. 

* Es posible dar muchos argumentos para motivar la ecuación e'· = cos y + ¡sen y. Por 
ejemplo, escribamos e'· = f(v) + ig(y) e intentemos determinar las funciones de variable 
real f y g a fin de que las leyes usuales de las operaciones con exponenciales reales sean 
aplicables también a las exponenciales complejas. Diferenciando formalmente se obtiene 
e'· = g'(y) - W(y), si suponemos que (e"Y = ¡e'· . Comparando estas dos expresiones para 
e'", vemos que f y g deben satisfacer las ecuaciones l(y) = g'(y), f'(y) = - g(y). La elimi­
nación de g conduce a l(y) = - rey). Como deseamos que eO = 1, debemos tener que· 
1(0) = 1 y 1'(0) = O.Ello prueba que I(y) = cos y y g(y) = - r(y) = sen y. Por supuesto, 
este razonamiento no p'rueba nada, pero indica ostensiblemente que la definición e" = 
= cos y + i sen y es razonable. 
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Ahora bien, e",e"', = e""+z" ya que X, y X 2 son ambos reales. Además, 

COSYI COSY2 - senYI senYz = cos (YI + Y2) 

y 
COS YI senY2 + senYI cos Yz = sen(y ¡ + Y2), 

y por lo tanto 
+ [ ) ( )] __ eZ1 + Z2

• 
e

Z
!eZ 2 = eX! X2 cos (YI + Y2 + ¡sen YI + Y2 

25 

1.27 OTRAS PROPIEDADES DE LAS EXPONENCIALES COMPLEJAS 

En los teoremas siguientes z, Zl' Z2 designan números complejos. 

Teorema 1.42. e'" jamás es cero. 

Demostración. e"rZ = eO = 1. Por lo tanto, eS no puede ser cero. 

Teorema 1.43. Si x es real, entonces ¡é"'¡ = 1. 

Demostración. ¡é"¡2 = cos2 X + sen2 x = 1, y ¡e''''¡ > O. 

Teorema 1.44. eZ = 1 si, y sólo si, z es un múltiplo entero de 2ITi. 

Demostración. Si z = 2ITin, donde n es un entero, entonces 

eZ = cos (2n:n) + i sen (2n:n) = l. 

Recíprocamente, supongamos que eZ = 1. Esto significa que e'" cos y = 1 Y 
e'" sen y = O. Como que eZ * O, debe ser sen y = O, Y = k1r, donde k es un 
entero. Pero cos (kIT) = (- 1)k. Por lo tanto, elIJ = (- Ir ya que e'" cos (krr) = 1. 
Como e'" > O, k debe ser par. Por lo tanto elIJ = 1 Y entonces x = O. Esto 
prueba el teorema. 

Teorema 1.45. eZ , = eZ, si, y sólo si, Z, ~Z2 = 2ITin (donde n es un entero). 

Demostración. e'" = eH' si, y sólo si, eZ'-Z' = 1. 

1.28 EL ARGUMENTO DE UN NúMERO COMPLEJO 

Si el punto Z = (x, y) = x + iy se representa en cordenadas polares r y B, p?­
demos escribir x = r cos B e y = r sen e, es decir, z = r cos B + ir sen e = re'o. 
Los dos números r y B determinan a z de forma única. Recíprocamente, el nú-
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mero positivo r está determinado unívocamente por z; de hecho, r = !4 Sin 
embargo, z determina el ángulo O salvo múltiplos de 21T. Hay una infinidad de 
valores de O que satisfacen las ecuaciones x = !z! cos O, y = !z! sen O, pero na­
turalmente cada dos difieren en un múltiplo de 21T. Cada uno de estos va­
lores de O se llama un argumento de z pero se distingue uno de ellos y se de­
nomina argumento principal de z. 

Definición 1.46. Sea z = x + iy un número complejo no nulo. El único nú­
mero real O que satisface las condiciones 

x = Izl cos e, y=lzlsenO, -n < o ~ +n 

se llama el argumento principal de z. y se representa por O = arg (z). 

La anterior discusión origina inmediatamente el siguiente teorema: 

Teorema 1.47. Todo número complejo z =1= O puede ser representado en la 
forma z = rei°, donde r = !z! y O = arg (z) + 21Tn, siendo n un entero. 

NOTA. Este método de representar a los números complejos es particularmente 
útil en relación con la multiplicación y la división, ya que se tiene 

Teorema 1.48. 
(z¡o Z2)' donde 

( 

0, 
n(zl' Z2) = + 1, 

-1, 

y 1'l ei(O, -02). 

r 2 

si -n < arg (ZI) + arg (Z2) ~ +n, 
si -2n < arg (ZI) + arg (Z2) ~ -n, 
si n < arg (Zl) + arg (Z2) ~ 2n. 

Demostración. Si Z¡ = !z¡!·ei°" Z2 = !Z2!·eiO
" donde el = arg (Zl) y O2 = arg (Z2)' 

entonces Zl Z2 = !ZlZ2!eH O,-O, ). Como -1T<Ol < + 1T Y -1T<02< +1T, tene­
mos - 21T < 81 + O2 < 21T.Por lo tanto existe un entero n tal que -1T < 
01 + O2 + 21Tn < 1T. Este número n es, precisamente, el n(Zl' Z2) dado en el teo­
rema, y para este n tenemos arg (Z l Z2) = 01 +02 +21Tn. Esto prueba el teorema. 

1.29 POTENCIAS ENTERAS Y RAíCES 
DE NÚMEROS COMPLEJOS 

Definición 1.49. Dados un número complejo z y un número entero n, defin!'­
mos la n-ésima potencia de z como sigue: 
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Z"+1 = z"z, si n :?; 0, 

si z :f= ° Y n > O. 

El teorema 1.50 establece que se verifican las reglas usuales de los ex­
ponentes. La demostración, que se puede hacer por inducción, se deja como 

ejercicio. 

Teorema 1.50. Dadas dos enteros m y n, tenemos, para z =1= O, 

y 

Teorema 1.51. Si z =1= O, Y si n es un entero positivo, entonces existen e~ac­
tamente n números complejos distintos zo, Zl' ... , Zn-l (llamadas ralces 

n-ésimas de z), tales que 

zZ = z, para cada k = 0, 1, 2, . .. , n-l . 

Además, estas raíces son dadas por las fórmulas 

donde 

y 
cfJk = arg (z ) + 2nk (k = 0, 1,2, ... , n- 1). 

n n 

NOTA. Las n raíces n-ésimas de z están igualmente espaciadas sobre el círculo 
de radio R = !Z!l/>", con centro en el origen. 

, l' R icPk O < k < n - 1, son distintos Demostración. Los n numeros comp eJos e , 
y cada uno de ellos es una raíz n-ésima de z, ya que 

(ReicPk)" = R"ei"cPk = Izlei[ar g (z) +21tk] = z. 

e2ri/ 3 

e41ri/ 3 

Figura 1.4 

eri/ 3 

¿nri/ 3 
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Debemos pr?bar ahora que no hay otras raíces n-ésimas de z. Supongamos 
que w = Ae"ll es un número complejo tal que wn = z. Entonces Iwln = Izl, de 
donde An = Izl, A = Izl¡/n. Por lo tanto w" = z puede escribirse eian = ei[arg (sll, 

que implica nlX - arg (z) = 2trk para algún entero k. Luego IX = [arg (z) + 
2trk]fn. Pero mientras k toma todos los valores, w toma sólo los valores dis­
tintos Zo, •.. , Zn-1 • (Ver Fig. 1.4.) 

1.30 LOS LOGARITMOS COMPLEJOS 

En virtud del teorema 1.42, eZ nunca es cero. Es natural preguntarse si hay 
otros valores que eZ no puede tomar jamás. El teorema siguiente prueba que 
el cero es el único valor excepcional. 

Teorema 1.52. Si z es un número complejo -=1= O, existen números comple­
jos w tales que eW = Z. Uno de tales w es el númerO' complejo 

log Izl + i arg (z), 

y todos los demás tienen la forma 

log Izl + i arg (z) + 2nni, 

donde n es un entero. 

Demostración. Como que elOg Izl +; arg (z ) = elOg Izl ei arg (o) = Izl ei arg (z ) = z, ve­
mos que w = log \zl + i arg (z) es una solución de la ecuación eW = z. Pero 
si w¡ es otra solución, entonces eW = eW

' y, por lo tanto, w - W¡ = 2nni. 

Definición 1.53. Sea Z -=1= O un número complejo dado. Si w es un número 
complejo tal que eW = z, entonces w se denomina un logaritmo de z. El valor 
particular de w dado por 

W = log Iz I + i arg (z) 

se llama logaritmo principal de z, y para este w escribiremos 

W = Log z. 

EJEMPLOS 

1. Puesto que [il = 1 Y arg (i) = tr/2, Log (i) = itr/2. 
Z. Puesto que [-ir = 1 Y arg (-i) = --tr/2, Log (-i) = -i;r/2. 
3. Puesto que [-1[ = 1 Y arg (-1) =tr, Log (-1) = tri. 
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4. Si x > O, Log (x) = log_ (x), ya que Ixl = x y arg (x) = o. .[. /4 
5. Puesto que 11 + il = --./2 y arg (1 + i) = tr/4, Log (1 + i) = log 2 + /tr • 

Teorema 1.54. Si Z¡Z. =F O, entonces 

Log (ZlZ2) = Log Z¡ + Log Z2 + 2nin(z¡, Z2), 

donde n(zl' Z2) es el entero definido en el teorema 1.48. 

Demostración. 

Log (Z¡Z2) = log IZ¡Z21 + i arg (Z¡Z2) 
= log Iz¡1 + log IZ21 + i [arg (z¡) + arg (Z2) + 2nn(z¡, Z2)]. 

1.31 POTENCIAS COMPLEJAS 

Utilizando los logaritmos complejos, podemos dar ahora una definición de las 
potencias complejas de números complejos. 

Definición 1.55. Si z =F O Y si w es un número complejo cualquiera, defi­

nimos 

EJEMPLOS 
1. ii = e iLog i = ei(i n /2) = e- n/ 2

• 

2. (_1)i = eiLOg(-1) = ei(i n) = e- n
, 

3. Si n es un entero, entonces zn+¡ = e(n+l)Logz = e"LogzeLogZ = z"z,por lo que la 
definición 1.55 no se contradice con la definición 1.49. 

Los dos teoremas siguientes nos suministran las reglas de cálculo con po­

tencias complejas: 

Teorema 1.56. ZW, ZW, = zw,+w, si z -=1= O. 

Demostración. 

Teorema 1.57. Si Z¡Z2 -=1= 0, entonces 
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donde n(Zl' Z2) es el entero . definido en el teorema 1.48. 

Demostración. 

1.32 SENOS Y COSENOS COMPLEJOS 

Definición l.58. Dado un número complejo z, definimos 

eiz + e- iz 

cos z = -----
2 

eiz _ e-iz sen Z = ___ _ 
2i 

NOTA. Cuando z es real, estas igualdades concuerdan con la definicio'n 

Teorema 1.59. Si z = x + iy, entonces tenemos 

Demostración. 

cos z = cos x co.sh y - i sen x senh y, 
sen Z = sen x cosh y + i cos x senh y. 

2 cos z = eiz + e- iz 

= e-Y(cos x + i sen x) + ell(cos x - i sen x) 
= cos x(eV + e-V) - i sen x(ev - e-V) 
= 2 cos x cosh y-2i sen x senh y. 

La demostración para sen Z es análoga. 

Más propiedades de los senos y cosenos se dan en los ejercicios. 

1.33 INFINITO Y EL PLANO COMPLEJO AMPLIADO C* 

1.40. 

A continu~ción e~~endemos el sistema de los números complejos adjuntando 
un punto ldeal deslgnado por el símbolo oo. 

Definición 1.60. Por sistema de los números complejos ampliado C* _ 
te~deremos el. plano complejo C junto con un símbolo 00 que satisfaga las :~_ 
gU/entes propzedades: 

a) S~ z E C, entonces se tiene Z + 00 = z - 00 = 00, z/oo = O. 
b) Sz z E C, pero z =1= O, entonces z(oo) = 00 y z/O = oo. 
c) 00 + 00 = (00)(00) = oo. 
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Definición 1.61. Cada conjunto de C de la forma {z: Izl > r ~O} se deno­
mina entorno de 00, o bola con centro en oo. 

El lector puede preguntarse por qué a R le hemos adjuntado dos símbolos. 
+ 00 y - 00, mientras que a C sólo le adjuntamos un símbolo, oo. La res­
puesta radica en el hecho de que existe una relación de orden <entre nú­
meros reales, mientras que entre números complejos no sucede lo mismo. Para 
que ciertas propiedades de los números reales que involucran la relación < 
se verifiquen sin excepción, es necesario disponer de dos símbolos, + 00 y - 00, 

tales como los definidos anteriormente. Ya hemos mencionado, por ejemplo; 
que cada conjunto no vacío tiene un sup en R*. 

En C resulta más conveniente disponer de un solo punto ideal. A modo 
de ilustración, recordemos que la proyección estereográfica establece una co­
rrespondencia uno a uno entre los puntos del plano complejo y los puntos 
de la superficie de la esfera, distintos del Polo Norte. La aparente excepción del 
Polo Norte puede ser eliminada considerándolo la imagen geométrica del punto 
ideal oo. Así conseguiremos una correspondencia uno a uno entre el plano 
complejo ampliado C* y la superficie total de la esfera. Es evidente, desde un 
punto geométrico, que si el Polo Sur se coloca en el origen del plano comple­
jo, el exterior de un «amplio» círculo en el plano se colocará, por proyección 
estereográfica, en un «pequeño» casquete esférico alrededor del Polo Norte. 
Ello ilustra con claridad por qué hemos definido un entorno de 00 mediante 
una desigualdad de la forma Izl > ·r. 

EJERCICIOS 

Enteros 
1.1 Demostrar que no existe un primo máximo. (Una demostración era conocida 

por Euclides.) 
1.2 Si n es un entero po~itivo, probar la identidad algebraica 

n - I 

a" - b" = (a - b) L akb"-I-k. 
k ; Q 

1.3 Si 2/l - 1 es primo, probar que n es primo. Un primo de la forma 2P - 1, 
donde p es primo, se llama un primo de Mersenne. 

1.4. Si 2:" + 1 es primo, entonces n es una potencia de dos. Un primo de la for­
ma 22m + 1 se llama un primo de Fermat. Indicación : Utilizar el ejercicio 1.2. 
"' 1.5 Los números fÚ Fibonacci 1, 1, 2, 3, 5, 8, 13, ... , son definidos recursiva­
mente por la fórmula X II + ¡ = XII + X II _ 1, con XI = X2 = l. 
Probar que (x", xn+ ¡) = 1 Y que XII = (an - bn)¡(a - b), donde a y b son las raÍl:es 
de la ecuación x 2 - X - 1 = o. 
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1.6 Probar que cada conjunto no vaCÍo de números enteros positivos posee pri­
mer elemento. Este es el principio de buena ordenación. 

Números racionaes e irracionales 

1.7 Hallar el número racional cuya expresión decimal es 0,3344444 .. . 
1.8 Probar que la expresión decimal de x terminará en ceros (o en nueves) si, 

y sólo si, x es un número racional cuyo denominador es de la forma 21l5m, donde 
m y n son enteros ng negq!ivos. 
1.9 Probar que ~2 + ~3 es irracionaL 

1.10 Si a, b. e, d son racionales y si x es irracional, probar que (ax + b)/(ex + d) 
es, en general, irracionaL ¿Cuándo se dan las excepciones? 
1.11 Dado un número real cualquiera x > O, probar que hay un irracional entre 
O y x. 

. 1.12 Si a/b < c/d con b > O, d > O, probar que (a + e)/(b + d) está entre a/b 
y c/d. _ 
1.13 Sean a y b enteros positivos. Probar que ~2 está siempre 'entre las dos frac­
ciones a/b y (a + 2b)/(a + b). ¿Qué fracción está más próxima a ~2? 
1.14 Probar que .J n - 1 + '~ n + 1 es irracional para todo entero n > 1. 
1.15 Dado un número real x y un entero N > 1, probar que existen enteros h y k 
con O < k < N tales que Ikx - hl < l/N. Indicación. Considerar los N + 1 nú­
meros tx - [tx] para t = O, 1, 2, oo., N y probar que algún par difiere a lo más 
l/N. 
1.16 Si x es irracional, probar que existe una infinidad de números racionales h/k 
con k > O tales que Ix - h/kl < l jk 2

• Indicación. Suponer que sólo existe un nú­
mero finito h,Jkl"'" hr/k r y aplicar el ejercicio 1.15 para llegar a contradicción, 
con N> 1/8, donde 8 es el menor de los números Ix - hi/ki l. 
1.17 Sea x un número racional positivo de la forma 

n 
X = ~ ak 

ft1 k! ' 

donde cada ak es un entero no negativo con ak < k - 1 para k > 2 y an > O. 
Sea [x] el mayor entero contenido en x. Probar que a, = [x] , que ak = [k! x] -

" k [(k - l)! xl para k = 2, oo ., n. y que n es el menor entero tal que n! x es entero. 

• • 

Recíprocamente, probar que cada número racional positivo x puede ser expresado 
en esta forma de una manera y una sola. 

Cotas superiores 

1.18 Probar que el sup y el inf de un conjunto, si existen, son únicos. 
1.19 Hallar el sup y el ¡nf de cada uno de los siguientes conjuntos de números 
reales : 

a) Todos los números de la forma 2-P +3-Q +5- r ,donde p. q y r toman todos 
los valores enteros positivos. 

El sistema de los números reales y el de los complejos 
33 

b) S = {x: 3x 2 
- IOx + 3 < Oj . b e < d 

c) S = {x: (x-a) (x-b) (x-e) (x-d)<O), donde a< < . 
'ó premos (Teorema 1.16). 

1 . d d de la comparacl ' n para su 1 20 Probar a prople a . 
. .. ' sitivos acotados superiormente, Y 

1.21 Sean A y B dos conjuntos dIe n~m~ro~ P~odos los productos de la forma xy, 
sea a = sup A. b = sup B. Sea e e conJun o e 
donde x E A e y 'E B. Probar que ab = sup C. 

1 entero < x y, supuestos 
1.22 Sean x real> ° y k entero ¿ 2. Sea a o e mayor 

d ti 'd a a sea a el mayor entero tal que e ni os ao' 1" ' " n -l' n 

a + ~ + ~? + ... + all ~ x. 
o k k 2 k" 

° 
< a < k - 1 para cada i = 1, 2, . . . 1 d 1 

a) Probar que _ i - - 2 + k-n y probar que x es e sup e 
b) Sea r

n 
= ao + a1k-1 + a2k :t... a n 

conjunto de los números racIOnales r" r 2' ••• 

son los dígitos de una represen-
NOTA. Cuando k = 10 los enteros ao; a" a2 , · ·· representación en base k. 
tación decimal de x. Para un k cualqUiera obtenemos una . 

Desigualdades 

Probar la identidad de Lagrange para número reales 
1.23 

(t akbkf (t a¡) (t b¡) - 1 ~b; ~ 1I (akbj - a
j
bk

)2. 

Nótese que esta identidad implica la desigualdad de Cauchy-Schwarz. 
números reales arbitrarios ak • bk • e,< tenemos 

1.24 Probar que para 

(t akbkekf ~ (t at)(i; b¡f(i; ct). 

1 25 Probar la desigualdad de Minkowski: 

. (t, (a, +b.l')'" ~ (t, a:)'" + (t, b1r 
11 < 11 11 + Ilbll para vectores n Es la desigualdad triangular Ila +b _ , a, 

donde a = (a" ... , a,,), b =.(b" ... , b,,) y 

( 

11 )1 /2 
lIall = ~ a¡ 

1.26 Si 

Indicación . 

dimensionales, 
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Números complejos 
1.27 Expresar los siguientes números complejos en la forma a + bi. 

a) O + i)3 
c) ¡5 + jl6, 

b) (2 + 3i)/(3 - 4i), 
d) to + i)/(1 +i-8

) . 

1.28 En cada caso, determinar todos los valores reales x e y que satisfacen la rela­
ción dada. 

100 

a) x + iy = Ix - 'yl, b) x + iy = (x - iy?, c) L ¡ k = X + ¡y. 
k=O 

1.29 Si z = x + iy, x e y reales, el complejo conjugado de z es el número complejo 
Z = x - iy. Probar que : 

a) Zl + Z2 = Zl + Z2' b) Z¡Z2 = Z¡ Z 2 ' e) zZ = Iz1 2
, 

d) z + z = al doble de la parte real de z. 
e) (z - z)/i = al doble de la parte imaginaria de z. 

1.30- Describir geométricamente el conjunto de los números complejos z que satis­
facen cada una de las condiciones siguientes: 

a) Iz 1 = 1, b) Iz l < 1, c) Izl 5 l, 

d) z + Z = 1, e) Z - Z = i, f) Z + z = Iz 12
• 

1.31 Dados tres números complejos zl' Z2' Z3 tales que Iz11 = IZol = 1z31 = 1 Y 
z[ + Z2 + za = O, probar que estos tres números son los vértices de un triángulo 
equilátero inscrito en el círculo unidad y centrado en el origen. 
1.32 Si a y b son números complejos, probar que: 

a) la - W 5 (l + laI2 )(I + IW)· 
b) Si a =1=- O, entonces la + bl = laj + Ibl si, y sólo si, bla es real y no ne­

gativo. 

1.33 Si a y b son números complejos, probar que 

la - bl = /1 - abl 
si, y sólo si, lal = 1 o Ibl = 1. ¿Para qué números a y b es válida la desigualdad 
la- b l<11-abI7 
1.34 Si a y e son números reales constantes, b es complejo, probar que la ecuación 

azZ + hz + bz + e = O (a #- O, z = x + iy) 

representa un círculo en el plano xy. 
1.35 Recordemos la definición de la inversa de la tangente: dado un número 
real t, tg- 1(t) es el único número real () que satisface las dos condiciones siguientes: 

2 ? 
tg () = t. 

~'_:.-=:;;;;;;:;..-'--""==-----------------
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Si z = x + iy, probar que 

a) arg (z) = tg-
1 (~), 

b) arg ( z ) = tg- 1 (n + n, 

e) arg (z) = tg- 1 (n - n, 

si x > O, 

si x < O, Y ?: O, 

si x < O, Y < O, 

) n. O y > O,'arg(z) = - ::2 si x = O,y < O. d) arg (z = - SI X = , 
2 
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1.36. Definimos el siguiente «pseudo-orden)) de números complejos: 
diremos que 

Zl < Z2 si tenemos 

i) IZll < IZ21 o 

'Cuáles de los axiomas 6, 7, 8, 9 se satisfacen con esta relación? . '. 
(, d 1 . 6 7 8 9 se satisfacen si la pseudo-ordenacIón se define 
1.37 ¿Cuáles e os aXIOmas , , , . 

. D ' (x y) < (x y) SI tenemos como SIgue? Iremos que l' 1 . 2' 2· 

i) Xl < X2 o ii) Xl = X2 e y¡ < Y2' 

1.38 Establecer Y demostrar un teorema análogo al teorema 1.48, expresando arg 

(z / z ) en -función de arg (z J) Y arg (Z2)' do Lo 
1.39 2Establecer Y demostrar un teorema análogo al teorema 1.54, expresan g 

(z /z ) en función de Log (Z,) y Log (Z2)' " . d 1 
1 2 b las raíces n-ésimas de 1 (llamadas también ralces .n-eslmas ~ a 

1.4~ Pro ~r que 2" donde ~ = ¿roí/" , y probar que las ralces 
umdad) VIenen dadas por 0:, o: , ... , o: , 
¡i:: l satisfacen la ecuación 

1 + x + X2 + .. . + xn-l = O. 

1.41 a) probar que Izil < e" para todo complejo zO=!:?· leos zl < M cualquiera 
b) Probar que no existe una constante M> ta que 

que sea z. 
1.42 Si w = u + iv (u, v reales), probar que 

ulog Izl-vara(z) ;[vlog Izl +u arg (z)] 
ZW = e e . 

1.43 a) Probar que Log (ZW) = w Log z + 2rrin, donde n es un entero. 
b) Probar que (ZW). = ZU'" e21T,n., donde n es un entero. 

1.44 i) Si () Y a son números reales, - rr < e < + rr, probar que 

(cos e + i sen 0)1' = cos (a()) + i sen (ae) 
. , < /J < + es necesaria en (i) 

ii) Probar que, en general, la restriccIOn - rr u _rr 

haciendo () = -n' Y a = !-
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iii) Si a es un entero, probar que la fórmula d (') . . . 
de imponer restricciones a (J E e I se venfIca Sin necesidad 
Moivre. . n este caso se conoce como el teorema de 

tl.~5 Utiliza~ el teorema de Moivre (ejercicio 1.44) para 
ngonométncas obtener las identidades 

sen 3(J = 3 cos2 (J sen (J - sen 3 (J 

cos 3B = cos3 (J - 3 cos (j sen2 d 
válidas p~ r.a todo (} real. ¿Son válidas si (} es complejo? 
1.46 DefinImos tg z - ( )/( ) - sen z cos z y probar que, para z = x + iy, se tiene 

tg z = sen 2x + i senh 2y 
cos 2x + cosh 2y 

1.47 Sea w un número compl ' d d S' 
de z = x + iy q t' f ello a o . . ~ w =1=- ± 1, probar que existen dos valores 

. ue sa IS acen as condICIones cos z = w - rr < x < 
estos valores cuando - ' d . Y .. , -- ~ +rr. H¡¡I1¡¡r w - 1 Y cuan o w = 2. 
1.48 Demostrar la identidad de Lagrange para números complejos:' 

I t akbk) 2 = t /ak/
2 
kt

1 
/bk l

2 
- ¿ /aJij - a/id 2 • 

lS:k < jS:n 

Utilizarla para deducir la desi u Id d d C 
1.49 a) Probar T g a a. . e auchy-Schwarz para números complejos. 

M
. ,ut! Izando la ecuaclOn de la parte imaginaria de la fórmula de 

Olvre, que 

sen n(J = sen
n 

() ( G) cotgn
-

1 e - G) cotgn- 3 B + (;) cotgn- s e _ + ... } . 

b) Si 0< () < rr/2, probar que 

sen (2m + 1) () = sen2m+l BP m (cotg2 (J) 

donde P/JI es el polinomio de grado m dado por 

Pm(x) = Cm 1+ 1) xm - Cm 3+ 1) ?-1 + Cm 5+ 1) xm-2 _ + '" 

y-t!l.izar este resultado para demostra"r que Pm tiene ceros en los m puntos 
IS lOtos x" = cotg2 {rrkj(2m + 1)} para k = l, 2, .. . , m. 

c) Demostrar que la suma de los ceros de P,,, viene dada por 
m 

¿COtg2~ = m(2m - 1) 
k = l 2m + 1 3 ' 

Y que la Suma de sus cuadrados viene dada por 
m 

¿cotgl nk = m(2m - 1)(4m2 + 10m - 9) 
k=l 2m + I 45 
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NOTA. Estas identidades pueden utilizarse para demostrar que L~1 n- 2 = n2/6 y 
L:'=1 n- 4 = n4 /90. (Ver ejercicios 8A6 y 8.47.) 
1.50 Probar que zn - 1 = II~ = 1 (z - e21[lkln) para todo compleio z. Utilizar esto 
para deducir la fórmula 

n-l kn n 

IIsen - - = - - para n ~ 2. 
k=1 n 2n

-
1 
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CAPíTULO 2 

2.1 INTRODUCCIóN 

Algunas nociones básicas 

de la teoría de conjuntos 

Al estudiar las distintas ramas de la Matemática es útil manejar la notación 
y la terminología de la Teoría de conjuntos. Esta teoría, desarrollada por 
Boole y por Cantor a finales del siglo diecinueve, ha tenido una gran influen­
cia en el desarrollo de las matemáticas del siglo veinte. Ha unificado muchas 
ideas, aparentemente desconexas, y ha ayudado a reducir muchos conceptos 
matemáticos a sus fundamentos lógicos de una manera elegante y metódica. 

No daremos un desarrollo sistemático de la teoría de conjuntos; nos limi­
taremos a discutir algunos de sus conceptos básicos. El lector qne desee eX­
plorar este terreno más ampliamente puede consultar las referencias del final 
de este capítulo. 

Una colección de objetos, considerados como una sola entidad, se llamará 
conjunto. Los objetos de la colección se llamarán elementos o miembros del 
conjunto y diremos que pertenecen al conjunto o que están contenidos en él. 
El conjunto, a su vez se dice que, los contiene o está compuesto por sus ele­
mentos. Nuestro interés radica, principalmente, en los conjnntos de entes ma­
temáticos; esto es, conjuntos de números, puntos, funciones, curvas, etc. Sin 
embargo, como la mayor parte de la teoría de conjuntos no depende de la 
naturaleza de los objetos individuales de la colección, supone una gran eco­
nomía de imaginación estudiar conjuntos cuyos elementos puedan ser de cual­
quier tipo. Es a causa de esta cualidad de generalización por lo que la Teoría 
de conjuntos ha tenido un efecto tan grande en la mayor parte de los desa­
rrollos matemáticos. 

2.2 NOTACIONES 

Los conjuntos los designaremos, usualmente, por medio de letras mayúsculas: 

A, B, e, .. . , x, Y, Z, 

39 
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y los elementos por medio de letras minúsculas: a, b, e, ... , x, y, Z. Se escri­
be x E S para indicar que «x es un elemento de SIl, o que «x pertenece a S». 
Si x no pertenece a S, se escribe x El: S. A veces para designar un conjunto es­
cribiremos sus elementos entre llaves; por ejemplo, el conjunto de los enteros 
pares positivos menores que 10 se expresa por medio de {2, 4, 6, 8}. Se escri­
be S = {x: x satisface a P} para indicar que S es la colección de los x para 
los cuales se verifica la propiedad P. 

A partir de un conjunto dado es posible formar nuevos conjuntos, llama­
dos subconjuntos del conjunto dado. Por ejemplo, el conjunto de todos los 
enteros positivos menores que 10 que son divisibles por 4, es cecir, {4, 8}, es 
un subconjunto del conjunto de los enteros pares positivos menores que 10. 
En general, decimos que un conjunto A es subconjunto de B, y se escribe 
A ~ B, si todo elemento de A pertenece a B. La afirmación A ~ B no elimi­
na la posibilidad de que sea B ~ A. De hecho, son simultáneas A ~ B Y B ~ A 
si, y sólo si, A y B tienen los mismos elementos. En este caso, decimos que 
A y B son iguales y escribimos A = B. Si A Y B no son iguales, escribi­
mos A =1= B. Si A ~ B, pero A ~ B, entonces se dice que A es un subconjunto 
propio de B. . 

Conviene considerar la posibilidad de un conjunto sin elementos; tal con­
junto se llama conjunto vacío y se le considera, por convenio, subconjunto 
de todo conjunto. El lector puede hallar útil imaginar un conjunto como una 
caja que contiene ciertos objetos, sus elementos. El conjunto vacío es, enton­
ces, una caja vacía. El conjunto vacío se designa por el símbolo 0. 

2.3 PARES ORDENADOS 

Consideremos un conjunto de dos elementos a y b; es decir, el conjunto {a, b}. 
En virtud de nuestra definición de igualdad, este conjunto es igual al conjun­
to {b, a}, ya que no se halla involucrada la cuestión del orden. Sin embargo, 
es necesario considerar también conjuntos de dos elementos en los que el 'orden 
sea importante. Por ejemplo, en Geometría analítica plana, las coordenadas 
(x, y) de un punto representan un par ordenado de números. El punto (3, 4) 
es distinto del punto (4, 3), mientras que el conjunto {3, 4} es el mismo que 
el conjunto {4, 3}. Cuando deseemos considerar un conjunto de dos elemen­
tos a y b, ordenados, escribiremos los elementos entre paréntesis: (a, b). En­
tonces a es el primer elemento y b el segundo. Es posible dar una definición 
de par ordenado de objetos (a, b) que involucre tan sólo el lenguaje de la 
teoría de conjuntos. Tal definición es la siguiente: 

Definición 2.1. 

(a, /1) = {{a}, {a, b}}. 

41 
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( b) es un conjunto que contiene dos ele-
Esta definición establece que. a, fi" , puede demostrar el siguiente 
t {} {a b} Utilizando dIcha de mClon se men os a y , . . 

teorema: 

2 2 (a b) = (e d) si, y sólo si, a = e y b = d. 
Teorema ." ' 

fin' .• 21 es una definición «razonable» 
Este teorema muestra que la de lcl~n b:eto a se distingue del objeto b. 

de par ordenado, en el sentido de que ~ o'cio instructivo para el lector. (Ver 
La demostración del teorema 2.;2 es un eJercl 

ejercicio 2.1.) 

P
RODUCTO CARTESIANO DE DOS CONJUNTOS 

2.4 
. A B llamaremos producto cartesia-

Definición 2.3. Dados dos conJu~o~ B ~l c~njunto de todos los pares orde-
no de A Y B, Y lo representaremos , 
nados (a, b) tales que a E A Y bE B. 

1 . to de todos los números reales, entonces 
Ejemplo. Si R representa e c~nJ~n d todos los números complejos. 
a R x R le corresponde el conJun o e 

2.5 RELACIONES Y FUNCIONES 

odo ue el par ordenado (x, y) pueda ser in­
Sean x e y números reales, de m q 1 s de un punto del plano xy (o 
terpretado como las coor~enadas rectangu are n frecuencia, expresiones tales 
como un número compleJO). Encontramos, co 

como 
(a) x < y. 2 2 1 xy = 1, x + Y = , 

. d rmina un cierto conjunto de pares orde-
Cada una de estas expreSIOnes ete. 1 'unto de todos los pares ordena­
nados (x, y) de números reales; ~~ declf, : fconJ Un tal conjunto de pares orde­
dos (x, y) para los que la expreslOn se sa lS ace. 

x<y 

xy = 1 

Figura 2.1 
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nados se llama relación plana. Se llama grafo de la relación al conjunto de 
puntos del plano que le corresponde si a cada par ordenado de la relación se 
le asocia un punto del plano. Los grafos de las relaciones descritas en (a) están 
dibujados en la Fig. 2.l. 

El concepto de relación puede formularse con tal generalidad que los ob­
jetos x e y del par (x, y) no hayan de ser, necesariamente, números, sino que 
puedan ser objetos de cualquier naturaleza. 

Definición 2.4. Se llama relación a todo conjunto de par~ ordenados. 

Si S es una relación, el conjunto de todos los elementos x que aparecen 
como primeros elementos de los pares (x, y) de S se llama dominio de S 
y se designa por CO(S). El conjunto de los segundos elementos y se llama re­
dorrido de S y se designa por &teS). 

El primer ejemplo dibujado en la Fig. 2.1 es un tipo especial de relación, 
conocido con el nombre de función. 

Definición 2.5. Una función F es un conjunto de pares ordenados (x, y) 
ninguno de los cuales tienen el mismo primer elemento. Esto es, si (x, y) E F 
Y (x, Z) E F, entonces y = z. 

La definición de función requiere que, para cada x del dominio de F, exista 
exactamente un y tal que (x, y) E F. Es costumbre llamar a y el valor de F 
en x y escribir 

y = F(x) 

en vez de (x, y) E F, para indicar que el par (x, y) pertenece al conjunto F. 
En lugar de la descripción de una función F mediante la presentación de 

los pares que contiene, es de ordinario preferible describir el dominio de F 
y luego para cada x del mismo indicar la manera de obtener el valor F(x). En 
relación con esto, disponemos del siguiente teorema cuya demostración se deja 
de ejercicio para el lector. 

Teorema 2.6. Dos funciones F y G son iguales si, y sólo si, 

a) CO(F) = CO(G) (F y G tienen el mismo dominio), y 
b) F(x) =G(x) para todo x del CO(F). 

2.6 MÁS TERMINOLOGíA REFERENTE A FUNCIONES 

Cuando el CO(F) es un subconjunto de R, entonces F se denomina función de 
runa variable real. Si CO(F) es un subconjunto de C, el sistema de los números 
complejos, entonces F se denomina función de una variable compleja. 
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Si CO(F) es un subconjunto de un producto cartesiano A X B, e~tonces F 
f . , de· dM variables En este caso los valores de la funclOn se de-es una unClOn V", • , • bl 1 

signan por F(a, b) en vez de F«a, ?)). Una funClOn de dos varIa es rea es es 
a uella cuyo dominio es un subconjunto de R X R., .. 
q Si S es un subconjunto de CO(F), diremos que F esta defInida en S. En este 

caso el conjunto de los F(x) con x E S se denomina imagen de S por F y se 
desi~na por F(S). Si T es un conjunto cualquiera que contenga a ~(S), enton­
ces F se llama también aplicación de S en T. Esto se expresa, corrIentemente, 
escribiendo 

F:S~ T. 

Si F(S) = T, se dice que la aplicación es. ,sobre T. Una aplicación de S en sí 
mismo se denomina a veces transformaclOn. . .. 

Consideremos, por ejemplo, la función de una varIable compleja defimda 
1 C· 'n F(z) - Z2 Esta función aplica cada sector S de la forma por a ecua 10 -. • d 

O <arg (z) < a.: <rr/2 del plano complejo z sobre. un sector F(S) determma o 
por las desigualdades O <arg [F(z)] < 2a.:. (Ver Hg. 2.2.) 

F 

Figura 2.2 

S' dos funciones F y G satisfacen la relación de inclusión. G ~ F, s~ dice 
ue ~ es una restricdón de F o que F es, una ~xtensión de G. ~n partIcular, 

¿i S es un subconjunto de CO(F) y si Gesta defimda por la ecuaClOn 

G(x) = F(x) para todo x de S, 

entonces se dice que G es la restricción de FaS. La función G c~nsta de los 
pares de la forma (X, F(x), con x E S. Su dominio es S y su recorrIdo es F(S). 

2.7 FUNCIONES UNO A UNO E INVERSAS 

Definición 2.7. Sea F una función definida en S. Se dice que F es uno a 
uno en S si, y sólo si, para todo x e y de S, 

F(x) = F(y) implica x = y. 
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Esto equivale a decir que una función que es uno a uno en S asigna valo­
res distintos a elementos de S distintos. Estas funciones se llaman también in­
yectivas. Son importantes puesto que, como veremos en seguida, poseen inver­
sas. Sin embargo, antes de establecer la definición de inversa de una función, 
conviene introducir una noción más general, que es la de inversa de una re­
lación. 

Definición 2.8. Dada una relación S, la nueva relación S definida por 

S = {(a, b) : (b, a) E S} , 

se l/ama la inversa de S. 

Así, un par ordenado (a, b) pertenece a S si, y sólo si, el par con los ele­
mentos invertidos, (b, a), pertenece a S. Cuando S es una relación plana, esto 
significa, simplemente, que el grafo de S es el simétrico del grafo de S con res­
pecto a la recta y = x como eje de simetría. En la relación definida por x < y , 
la relación inversa se define por y < x. 

Definición 2. 9. Supongamos que la relación F es una función. Considere­
mos la relación inversa f, que puede ser o no ser una función. Si F es tam­
bién una función, entonces f se llama inversa de F y se designa por F-l. 

La Figura 2.3(a) ilustra un ejemplo de una función F para la que f no es 
función. En la Fig. 2.3(b) tanto F como su inversa son funciones. 

El siguiente teorema nos dice que toda función que sea uno a uno en su 
dominio posee, siempre, una inversa. 

(a) 

Figura 2.3 

___ F 

I 
I 

,/ 

(b) 

I 
I 

I 
I 

I 

I 

, , , , 

,/"F 
F 
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Teorema 2.10. Si la función F es uno a uno en su dominio, entonces f es 
también una función. 

Demostración. Para probar que f es una función! debemos probar que si 
(x,y)E f y (x, z) E f, entonces y = z. Pero

v 
(~, ~) E F significa que (y, x) E F; 

esto es, x = F(y). Análogamente, (x, z) E F sIgmfica que x = F(z): Po~ lo t~to 
F(y) = F(z) y, como que hemos supuesto que F es uno a uno, ello ImplIca y - z. 
Luego, f es una función. 

NOTA. El mismo argumento prueba que si F es uno a .uno en un subconjunto 
~ de 'D(F), entonces la restricción de F a S posee una Inversa. 

2.8 FUNCIONES COMPUESTAS 

Definición 2.11. Dadas dos funciones F y G tales que .\R(F) ~ 'D(?,~, se pue­
de construir una nueva función , la compuesta G o F de F y G, definida como 
sigue: para cada x del dominio de F, (G o F)(x) = G[F(x)]. 

Como que .\R(F) ~ 'D(G), el elemento F(x) está en el dominio de G, y por 
lo tanto tiene sentido considerar G[F(x)]. En general, no es verdad que G o F. = 
F o G. De hecho, F o G sólo tiene sentido si el recorrido de G está contem~o 
en el dominio de F. Sin embargo, la ley asociativa, . 

H o (G o F) = (H o G) o F, 

se verifica siempre' que ambos miembros tengan sentido. (La verificación será 
un ejercicio interesante para el lector. Ver ejercicio 2.4.) 

2.9 SUCESIONES 

Entre los ejemplos más importantes de funciones se hallan las que están defi­
nidas en subconjuntos de los enteros. 

Definición 2.12. Por sucesió~ finita de, n términos entenderemos una fun­
ción F cuyo dominio sea el conJunto de numeros {l, 2, .. . , n}. 

El recorrido de F es el conjunto {F(l), F(2), F(3), . . . , F(n~}, ordinariamen,te 
d . d {F F F F} Los elementos del recorrIdo se llaman ter-esgIna o por 1> 2' 3' · · · ' "' . . . 
minos de la sucesión y, además, pueden ser objetos arbitranos de cualqUIer 
naturaleza. 

D f · .. , 213 Por sucesión itifinita entenderemos una función F cuyo do-e InlClon . • . . .d 
minio sea el conjunto {l, 2, 3, . . . } de todos los enteros positivos. El recom o 
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de F, esto es, el conjunto {F(1), F(2), F(3), . .. }, se designa también por {F l' F
2

, 

Fa' . . . }, Y el valor F7/, se llama el término n-ésimo de la sucesión. 

Por motivos de brevedad, usaremos en ocasiones la notación {Fn} para 
designar la sucesión infinita cuyo término n-ésimo es F7/,. 

Sea s = {Sn} una sucesión infinita, y sea k una función cuyo dominio es 
el conjunto de los enteros positivos y cuyo recorrido es un subconjunto del 
conjunto de los enteros positivos. Supongamos que k ((conserva el orden» o, 
con otras palabras, «es creciente», esto es, supongamos que 

k(m) < k(n), si m < n. 

La función compuesta s o k está definida para todo entero n > 1, Y para cada 
uno de tales n se tiene 

(s o k)(n) = sk(n)' 

Una tal función compuesta se llama una subsucesión de s. De nuevo, por mo­
tivos de brevedad, utilizaremos a menudo, lo notación {Ske7/,)} o {sd para 
designar la subsucesión de {Sn} cuyo n-ésimo término es Ske7/,)' 

Ejemplo. Sea s = {J !n} y sea k definida por k(n) = 2n . Entonces s o k = {J/2n}. 

2.10 CONJUNTOS COORDINABLES (EQUIPOTENTES) 

Definición 2.14. Dos conjuntos A y Bson coordinables, o equipotentes, y se 
escribe A -..r B si, y sólo si, existe una función uno a uno F cuyo dominio es 
el conjunto A y cuyo recorrido es el conjunto B. 

Se dice también que F establece una correspondencia uno a uno entre los 
conjuntos A y B. Es claro que cada conjunto A es coordinable consigo mis­
mo (tomar como F la función ((identidad» definida por F(x) = x para todo x 
de A). Además, si A -..r B entonces B '-" A, ya que si F es una función uno 
a uno que hace a A coordinable con B, entonces F-I hará B coordinable con A. 
También, si A -..r B y si B,-", C. entonces A -..r C. (La demostración se deja al 
lector.) 

2.11 CONJUNTOS FINITOS E INFINITOS 

Se dice que un conjunto S es finito y que contiene n elementos si 

S ~ {I, 2, ... , n}. 

El entero n se llama número cardinal o simplemente cardinal de S. Es un ejer­
cicio fácil demostrar que si {l. 2, . .. , n} '-" {1, 2, ... , m} entonces m = n. Por 

. : 
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lo tanto, el cardinal de un conjunto finito está bien definido. El conjunto vacío 
se considera también finito. Su cardinal se define por O. . . . . 

Los conjuntos que no son finitos se llaman infinitos. La. dIferencIa prInCI­
pal entre ambos es que un conjunto infinito p~ede ser. semejante a al?uno de 
sus subconjuntos propios, mientras que u.n conjunto. fin~t? nunca podra. ser se­
mejante a uno de sus subconjuntos propiOS. (Ver eje~CICIo 2.13.) Po~ ejemplo, 
el conjunto z+ de todos los enteros positivos es semejante al subconjunto pro­
pio {2, 4, 8, 16, ... } formado por las potencias de 2. La función uno a+ uno F 
que los hace semejantes está definida por F(x) = 2"" para cada x de Z • 

2.12 CONJUNTOS NUMERABLES Y NO NUMERABLES 

Un conjunto S se dice que es infinito numerab~e si es coordinable con el con­
junto de todos los enteros positivos; esto es, SI 

S ~ {l, 2, 3, ... }. 

En este caso existe una función f 'que establece una correspondencia uno a uno 
entre los enteros positivos y los elementos de S; por consiguiente, el conjunto S 
puede ser descrito como sigue: 

S = {f(l),f(2),f(3), ... }. 

A menudo se utilizan subíndices y f(k) se designa por ak (o por otra notación 
semejante) y se escribe, entonces, S = {al' G2, aa, ... }. Lo. ~mportante aq~í es 
que la correspondencia nos permite utilizar los enteros pOSItIVOS c?mo «et¡~ue­
tas» de los elementos de S. Un conjunto infinito numerable se dIce que kene 
cardinal t{o (léase: á/e! subcero). 

Definición 2.15. Un conjunto S es numerable si es o bien finito o bien infi­
nito numerable. Un conjunto que no sea numerable se llama no numerable. 

Las palabras numerable y no numerable son sustituidas a veces por conta­
ble y no contable. 

Teorema 2.16. Todo subconjunto de un conjunto numerable es numerable. 

Demostración. Sea S un conjunto numerable dado y supongamos que A ~ S. 
Si A es finito, no hay nada que demostrar, por lo tanto podemos suponer 
que A es infinito (lo cual significa que S también lo es). Sea s = {s .. } una su­
cesión infinita de términos todos distintos tal que 

S = {SI' S2, .. . }. 

http://libreria-universitaria.blogspot.com



48 Algunas nociones básicas de la teoría de conjuntos 

Se define una función en el conjunto de los enteros positivos como sigue: 
Sea k(l) el menor entero positivo m tal que Sm E A. Suponiendo que k(I), 

k(2), ... , k(n - 1) han sido definidas, sea k(n) el menor entero positivo m> 
k(n -1) tal que $,", E A. Entonces k conserva el orden: m> n implica k(m) 
> k(n). Se forma entonces la función compuesta s o k. El dominio de s o k 
es el conjunto de los enteros positivos y el recorrido de s o k es A. Además, 
s o k es uno a uno, ya que 

s[k(n)] = s[k(m)], 

implica 

que significa k(n) = k(m), y esto implica n = m. Esto prueba el teorema. 

2.13 EL CONJUNTO DE LOS NÚMEROS REALES 

NO ES NUMERABLE 

El siguiente teorema demuestra que existen conjuntos infinitos no numerables. 

Teorema 2.17. El conjunto de todos los números reales no es numerable. 

Demostración. Es suficiente demostrar que el conjunto de los x que satisfa­
cen O < x < 1 es no numerable. Si los números reales de este intervalo fuesen 
numerables, existiría una sucesión s = {SI>} cuyos términos constituirían todo 
el intervalo. Probaremos que esto es imposible construyendo, dentro del inter­
valo, un número real que no sea término de esta sucesión. Una vez escritos 
los s'n como decimales infinitos: 

donde cada Un,i es O, 1, ... , o 9, consideramos el número real y cuya expresión 
decimal es 

donde 
y = O,v l V2 V 3 .•. , 

v = {l, 
n 2, 

siun,n t= 1, 

si un,. = l. 

Entonces ningún término de la sucesión {sn} puede ser igual a y, ya que y di­
fiere de ~l en el primer decimal, de S2 en el segundo decimal, ... , de Sn en el 
n-ésimo decimal. (Una situación como Sn = 0,1999 ... e y = 0,2000 ... no puede 
darse por la manera como han sido elegidas las un') Como O < Y < 1, el teo­
rema queda demostrado. 
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Teorema 2.18. Si Z+ designa al conjunto de todos los enteros positivos, en­
tonces el producto cartesiano Z+ X Z+ es numerable. 

Demostración. Se define la función f en Z+ X Z+ como sigue: 

si (m, n) E Z + x Z +. 

Entonces f es uno a uno en z+ X z+ y el recorrido de f es un subconjunto 
de Z+. 

2.14 ÁLGEBRA DE CONJUNTOS 

A d fi . u o conJ'unto, llamado reunión Dados dos conjuntos A 1 Y 2' e mmos un n ev 
de A 1 Y A 2' designado A 1 U A 2' como sigue: 

Definición 2.19. La reunión Al U A 2 es el conjunto cuyos elementos son los 
elementos que pertenecen a Aloa A 2 o a flmbos. -

Esto es lo mismo que decir que A 1 U A 2 consta de los 'elementos que. ~~r­
tenecen por lo menos a uno de los conjuntos Al' A 2 • Como en esta defin~clOn 
no se hallan involucradas cuestiones de orden, la reunión Al :-' A 2 'es la m~sn,ta 
que A 2 U Al; esto es, la reunión de conjunto~ es conmutatI.va: La defimcion 
está dada de tal manera que la reunión de conjuntos es asocIatIva: 

Al u (A 2 U A 3) = (Al u A 2 ) U A3' 

La definición de reunión puede extenderse a colecciones finitas o infinitas 
de conjuntos: 

Definición 2.20. Si F es una colección arbitraria de co~juntos, entonces la 
reunión de todos los elementos de F se define como el conJunta de los elem~n-

lo menos, de los con¡'untos de F, y se deslg­tos que pertenecen a uno, par 
na por 

Si F es una colección finita de conjuntos, F = {Al' ... , Arn.}, se escribe 
n 

U A = U Ak = Al U A 2 U .•• u An' 
AeF k= 1 

Si F es una colección numerable, F = {A 1> A 2' ... }, se escribe 
00 

U A = U Ak = Al U A 2 U ... 
AeF k= 1 
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D f' '" 2 . . ~ ":;cl
F
on .21. Sz F es una colección arbitraria de conjuntos la intersec-

Clon e se define como el conjunto cuyos elementos SOn ' 
pertenecen a todos los conjuntos de F y se d . los elementos que , eSlgna por 

nA. 
AeF 

La, intersección de dos conjuntos A A . 
de los ' elementos comunes a ambos c l, Y t 2 Ss e . desgma por Al n A 2 Y consta 

onjun os 1 A Y A t' 1 comunes. entonces A n Al' : 1 2 no lenen e ementos 
. 1 2 es e conjunto vacIO y A Y A 11 .. 

SI F es una colección finita (como ' 'b ) l. 2 se aman diSJuntos. mas arrI a. se eSCrIbe 

n n A = n Ak = Al n A 2 n ' .. n A 
AeF k=l n' 

y si F es una colección numerable. se escribe 

O') 

n A = n Ak = Al n A 2 n '" 
Ae F k= 1 

Si los co~juntos d~ la colección carecen de elementos comunes. su intersecció 
es , el CO~JU~~O vacIO. Nuestras definiciones de reunión e intersección son ade~ 
mas. ap ,lca es cuando F no es numerable. Por el modo como se han • . 

::~e:e:~~n~~trc~:e~~~~rsecciones. las leyes conmutativas y asociativas !e~~~~~ 

Definición 2.22. El complemento de A relativamente 
B - A, se define como el conjunto a B, designado por 

B - A = {x: x E B , pero x ~ A} . 

~óBtesse, qBu~ B
A

- (B ~ A) = A siempre que A ~ B. Nótese también que B _ A 
- 1 " es vacIO. 

la ~;~ ;~~iones de reunión. intersección, y complementario están ilustradas en 

.1 un 
Figura 2.4 

.1 n JJ B - A 
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Teorema 2.23. Sea F una colección de conjuntos. Entonces para cada con­
junto B, se tiene 

B - U A =n (B - A), 
AeF AeF 

y 

B - n A = U (B - A), 
AeF AeF 

Demostración. Sea S = U A,F A, T = n A,F (B - A). Si x E B - S, entonces 
x E B, pero x El:. S. Por lo tanto. no es cierto que x pertenezca a uno. por lo 
menos. de los A de F; por lo tanto x no pertenece a ninguno de los A de F. 
Luego. para cada A de F, x E B - A. Pero esto implica que x E T, luego 
B - S ~ T. Deshaciendo los pasos. se obtiene que T ~ B - S, Y esto demues­
tra que B - S = T. Para demostrar la segunda afirmación. utilizar un argu­
mento semejante. 

2.15 COLECCIONES NUMERABLES DE CONJUNTOS 
NUMERABLES 

Definición 2.24. Si F es una colección de conjuntos tal que, cada dos con­
juntos de F distintos, son disjuntos, se dice entonces que F es una colecc./ón 
de conjuntos disjuntos. 

Teorema 2.25. Si F es una colección numerable de conjuntos disjuntos, tal 
como F = {Al' A 2, ••• }. en la que cada conjunto Ag, es numerable, entonces 
la reunión U~l Ak es también numerable. 

Demostración. Sea A" = {a l .m a2.n, a3.n ... }. n = 1,2", . , y sea S = 'U~1 Ak 
Entonces todo elemento x de S está en uno de los conjuntos de F y, por lo 
tanto, x = am,n para un cierto par de enteros (m, n). El par (m, n) está uní­
vocamente determinado por x , ya que F es una colección de conjuntos dis­
juntos. Por lo tanto la función f definida por f(x) = (m, n) si x = am,n, x E S. 
tiene dominio S. El recorrido feS) es un subconjunto de Z +x Z + (donde Z +es el 
conjunto de los enteros positivos) y por lo tanto es numerable. Pero f es uno 
a uno y por consiguiente S'-./' feS). que equivale a decir que S es numerable. 

Teorema 2.26. Si F = {Al' A 2, ••• } es una colección numerable de conjun­
tos, sea G = {Bl> B2 , ••• }, donde B l = Al y, para n> 1, 

,,-1 

B" = An - U Ak' 
k=1 
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Entonces G es una colección de conjuntos disjuntos, y se tiene que 

Demostración. Cada conjunto B'n se ha construido de forma que carezca de 
elementos comunes con los conjuntos anteriores B

" 
B 2 , ••• , Bn - 1 • Por lo tan­

to G es una colección de conjuntos disjuntos. Sea A = U~ I Ak Y B= U:,= I Bk' 

Probaremos que A = B. Ante todo, si x E A, entonces x E Ak para un cierto k. 
Si n es el menor de estos k, entonces x E A", pero x El: UZ:: Ak> lo cual signi-

fica que x E Bn , Y entonces x E B. Por consigueinte A ~ B. Recíprocamente, 
si x E B, entonces x E B", para algún n, y entonces x E An para este mismo n. 
Luego x E A Y esto prueba que B ~ A. 

Utilizando los teoremas 2.25 y 2.26, se obtiene inmediata1nente el 

Teorema 2.27. Si F es una colección numerable de conjuntos numerables, 
entonces la reunión de todos los conjuntos de F es un conjunto numerable. 

Ejemplo 1. El conjunto Q de todos los números racionales es un conjunto numerable. 

Demostración. Sea A" el conjunto de todos los números racionales positivos 
que tienen denominador n. El conjunto de todos los números racionales posi­
tivos es igual a U':: I Ak' De aquí se sigue que Q es numerable, ya que cada 
A.,. lo es. 

Ejemplo 2. El conjunto S de intervalos con extremos racionales es numerable. 

Demostración. Sea {x" x2 , oo.} el conjunto de números racionales y sea An el 
conjunto de todos los intervalos cuyo extremo izquierdo es x.,. y cuyo extremo 
derecho es un número racional. Entonces An es numerable y lo es S = U:,= I Ak' 

EJERCICIOS 

2.1 Demostrar el teorema 2.2. Indicación. (a, b) = (e, d) significa {{a}, {a, b}} = 
{{e}, {e, d}}. Recuérdese ahora la definición de conjuntos iguales. 
2.2 Sea S una relación y sea 'D(S) su dominio. La relación S se llama 

i) reflexiva si a E 'D(S) implica (a, a) E S, 
ii) simétrica si (a. h) E S implica (b. a) E S. 

iii) transitiva si (a. h) E S Y (h, e) E S implica (a. e) E S. 

1 b d la teoría de conjuntos 
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. simétrica Y transitiva se llama relación de equiva-
Una relación que sea refleXiva, . d d satisface S si S es el conjunto de todos 
lencia. Determinar cuál de estas prople a es . 
los pares de números reales {x, y) tales que 

a) x ::; y, 
b) x < y, c) x < Iyl, 

2 2 O f) X2 + X = y2 + y. 
d) X2 + y2 = 1, e) x + Y < , 

. t' definidas para todo número real x por 
2 3 Las siguientes funCIOnes F y G es an que la función compuesta G o F 

. d E ada uno de los casos en F){ ) 
las ecuaciones da as. n c. . o F una fórmula (o fórmulas) para (G o x . 
pueda definirse, dar el domilllo de G Y 

G(x) = X2 + 2x. 
a) F(x) = I - x, . 

b) F(x) = x + 5, 
G(x) = Ix ll x, SI X =F O, G(O) = 1. 

{

2X, si O ::; x ::; 1, 
c) F(x) = 1, en los casos restantes, {

X 2 si O ::; x ::; 1, 
G(x) = O,' en los casoS restantes. 

G[F(x)] vienen dados por: . Hallar F(x) si G(x) y 

d) G(x) = x 3
, 

2 
e) G(x) = 3 + x + x , 

G[F(x») = x 3 - 3x2 + 3x - 1. 

G[F(x)] = X2 - 3x + 5. 

. . ué restricciones deben imponerse a sus domi-
2.4 Dadas tres funCIOnes F, G. H, (,q . estén definidas? 

nios para que las cuatro funciones compuestas que siguen 
H o (G o F), (H o G) a F. 

G a F, H a G, 

. d fi . H O (G O F) Y (H O G) O F, probar la ley asociativa 
Suponiendo que sea pOSible e fllr 

H a (G a F) = (H a G) a F. 

Pr
obar las siguientes identidades de la teoría de conjuntos para reuniones e in-

2.5 
tersecciones: 

cAn (B n C) = (A n B) n C. 
a) A U (B U C) = (A U B) U , 

b) A n (B U C) = (A (l B) U (A (l C). 

c) (A U B) (l (A U e) = A U (B (l C). 

d) (A U B) (l (B U e) n (e U A) = (A (l B) U (A n C) u (B n C). 

e) A (l (B - C) = (A (l B) - (A (l e). 

f) (A - C) (l (B - e) = (A (l B) - C. 

g) (A _ B) u B = A si, y sólo si, B ~ A. 

S' A y B son subconjuntos arbitrarios de S, pro-
2.6 Sea f: S - T una función . I 

bar que 
feA (l B) ~ feA) n f(B). 

feA u B) = feA) u f(B) Y 
. . 'ones arbitrarias. 

Generalizar este resultado al caso de reUfllones e mterseccl 
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conjuntos 
.2.7 Sea f; S ~ T una función. Si Yc T se 
junto de S que f aplica en Y. Esto es,-' designa por f-I(Y) al mayor subcon-

f-I(y) = {X;XES y f(x) E n. 
El. conjunto f-I(Y) se llama la antiima en de 
gUJentes para subconjuntos arbitrarios; de S e Yyp~r i Probar las propiedades si-

a) X s: f-l [f(X)] e . 
) -1' b) l[f-I(y)] e Y, 

c f [Y1 V Y2] = f-l(yl ) V f- I(Y2), -

d) f-l(y¡ n Y2 ) = f-l(yl ) nf-I(yz), 

e) f-I(T - Y) = S _ f-l(y) . 

f) Generalizar (c) y (d) . . 
2.8 Aludimos al ejercicio 2 iap

ra 
rbeunlOnes e mtersecciones arbitrarias. 

I T . " ro ar que f[f-I(Y)] - Y d 
le . SI, Y sólo si, T = feS). - para ca a subconjunto y 
2.9 Sea f' S ~ T un f . , L . 

) f . a unclOn. as sIguientes proposiciones son equivalentes. 
a es uno a uno en S. 
b) feA n B) = feA) n f(B) od ' 
c) f-I[f(A)] = A para t ?S los subconjuntos A, B de S 

para cada subconjunto A de S ' 
d) Para todos los subconjuntosdis'unto A ' " 

son disjuntas, j s y B de S, las Imagenes feA) y f(B) 

e) Para todos los subconiuntos A y B d S B 
.' e con ~ A, tenemos 
feA -B) = f(A)- feB)o 

2.10 Probar que si A '" B y B '" e, entonces A '" e 
2.11 Si (J, 2, ... , nJ ..., {1 2 J . 
2.12 Si S es un c . t ' · ' fi"" m , entonces n = m. 

onjun o ID nito probar . 
numerable. Indicación Elíj'ase u ' l que S contiene un subconjunto infinito 
2 13 P b . n e emento a de S y 'd ' 
. . ro ar que cada con 'unto . fi . 1 • con SI erese S - {a] J. 

tente a S. j ID mto S contJene un subconjunto propio equipo-

2.14 Si A es un conjunto numerable y B es un . 
B - A es equipotente a B. conjunto no numerable, probar que 
2.15 Un número real se llama al b' . 
f(x) = O, donde f(x) = a + a x + .ge +rarco SI es raíz ~e una ecuación algebraica 
t r P bOl ... a."xn es un pollDom' fi e os. ro ar que el conjunto de todos los . '. 10 con. cae cien tes en-
numerable y deducir que el con 'unto d pohn0m.lOs con coeficIentes enteros es 
numerable. J e todos los numeros algebraicos es asimismo 

2.16 Sea S un conjunto finito de n elem 
conjuntos de S. Probar que T e.ntos y s~a T la colección de todos los sub­
tos de T. es un conjunto fimto y hallar el número de e1emen-

2:17 Sea R el conjunto de los números reales . 
clOnes a valores reales cuyo dominio R P Yb sea S el conjunto de todas las fun-
I d · ., S es . ro ar que S y R n 
n ¡caG/on. upongamos que S'" R sea f . , o son coordinables. 

Si a E R, sea g" = j(a) la función / valoresu~:a{un~lOn uno a uno tal que f(R) = S. 
real a. Definimos ahora h por medio de 1 .es e S que corresponde al número 
bar que h tt S. a ecuacIón h(x) = 1 + gJ:(x) si x E R, y pro-
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2.18 Sea S la colección de todas las sucesiones cuyos términos sean los enteros O y 1. 
Probar que S es no numerable. 
2.19 Probar que los siguientes conjuntos son numerables: 

a) el conjunto de todos los círculos del plano complejo de radio racional y de 
centro de coordenadas racionales, 

b) toda colección de intervalos disjuntos de longitud positiva. 
2.20 Sea f una función a valores reales definida para todo x del intervalo O ~ x ~ l. 
Supongamos que existe un número positivo M que verifica la siguiente propiedad: 
para cada elección, con un número finito de puntos x" x 2 , .• • , x'/l. del intervalo 
O ~ x ~ 1, la suma 

Sea S el conjunto de los x de O ~ x ~ 1 para los que f(x) =1= O. Probar que S es 
numerable. 
2.21 Hallar la falacia de la siguiente «demostración)) de que el conjunto de todos 
los intervalos de longitud positiva es numerable. 

Sea {xl' X 2' ... } el conjunto numerable de todos los números racionales y sea 1 
un intervalo de longitud positiva. Entonces 1 contiene una infinidad de puntos ra­
cionales x'n' pero de entre estos habrá uno que tendrá un índicen mínimo. Definimos 
una función F por medio de la ecuación F(T) = n, si x,. es el número racional de 
menor índice que pertenece al intervalo l. Esta función establece una correspon­
dencia uno a uno entre el conjunto de todos los intervalos y un subconjunto de los 
enteros positivos. Por lo tanto el conjunto de todos los intervalos es numerable. 
2.22 Sea S la colección de todos los subconjuntos de un conjunto dado T. Sea 
f: S ....... R una función a valores reales de,finida en S. Se dice que la función f es 
aditiva si feA U B) = feA) + f(B) siempre que A y B sean subconjuntos disjuntos 
de T. Si f es aditiva, probar que, para todo par de subconjuntos A y B, se tiene 

feA V B) = feA) + f(B - A) y feA v B) = feA) + f(B) - feA n B). 

2.23 Aludimos al ejercicio 2.22. Suponemos que f es aditiva y suponemos además 
que las siguientes relaciones se verifican para dos subconjuntos particulares A y 
B de T: 

feA v B) = feA') + f(B ' ) - f(A ' )f(B' ) 

feA n B) = f(A)f(B), feA) + f(B) #- f(T), 

donde A' = T-A, B' = T-B. Probar que estas relaciones determinan fCT), y 
calcular el valor de f(D. 
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CAPíTULO 3 

Elementos de topología 

en conjuntos de puntos 

3.1 INTRODUCCIóN 

La mayor parte del capítulo anterior trata de conjuntos «abstractos», esto es, 
conjuntos de objetos cualesquiera. En este capítulo consideraremos conjuntos 
de números reales, conjuntos de números complejos y, en general, conjuntos en 
espacios de más dimensiones. 

En este estudio es conveniente y útil utilizar la terminología geométrica. 
Así, hablaremos de conjuntos de puntos de la recta real, conjuntos de puntos 
del plano, o conjuntos de puntos de espacios de mayor número de dimensio­
nes. Más adelante estudiaremos funciones definidas en conjuntos de puntos, y 
es conveniente poseer un cierto conocimiento acerca de algunos tipos fu~da­
mentales de conjuntos de puntos, tales como conjuntos abiertos, conjuntos' ce­
rrados y conjuntos compactos, antes de abordar el estudio de las funciones. 
El estudio de estos conjuntos se llama topología en conjuntos de puntos. 

3.2 EL ESPACIO EUCLíDEO Rn 

Un punto del espacio bidimensional es un par ordenado de números reales 
(x H x 2 ). Análogamente, un punto en un espacio tridimensional es una terna or-
denada de números reales: (Xl ' X 2, x 3). Es, pues, adecuado considerar una 
n-pla ordenada de números reales y referirnos a él como a un punto del espa­
cio n-dimensional. 

Definición 3.1. Sea n > O un entero. Un conjunto ordenado de n números 
reales (x" x , ... , xn ) se llama punto n dimensional o vector con n compo­
nentes. Los puntos o vectores se designarán por medio de una sola letra en 
negrita; por ejemplo, 

o 
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El número X¡, se llama k-ésima coordenada del punto x o k-ésima componente 
del vector x. El conjunto de todos los puntos n-dimensionales se llama espa­
cio euclídeo n-dimensional o simplemente n-espacio, y se designa por R". 

Puede ocurrir que el lector se pregunte qué ventajas presenta trabajar en 
espacios de más de tres dimensiones. En realidad, el lenguaje de los n-espa­
cios hace fácilmente comprensibles cuestiones más complicadas. El lector qui­
zás esté lo suficientemente familiarizado con análisis vectorial de tres dimen­
siones, para percatarse de la ventaja que representa el poder escribir las ecua­
ciones de un movimiento que posee tres grados de libertad por medio de una 
sola ecuación vectorial en vez de tener que utilizar tres ecuaciones escalares. 
Existe una ventaja análoga , cuando el sistema posee n grados de libertad. 

Otra ventaja que se obtiene estudiando n-espacios para un n cualquiera es 
que, de una vez, se estudian todas las propiedades que son comunes a los l-es­
pacios, 2-espacios, 3-espacios, etc., esto es, propiedades independientes de la 
dimensión del espacio 

Los espacios de más dimensiones se presentan como algo totalmente natu­
ral en campos tales como la Relatividad, y la Mecánica estadística y cuántica. 
Incluso espacios de infinitas dimensiones son corrientes en Mecánica cuántica. 

Definiremos ahora las operaciones algebraicas con puntos n-dimensionales: 

lJefinición 3.2. Sean x = (Xl' ... , X .. ) e y = (yI> ... , Yn) elementos de R". 
Definimos: 

a) Igualdad: 

x = y si, y sólo si, Xl = YI> .. , , Xn = Yn' 

b) Suma: 
x + y = (Xl + Yl, ... , X n + Yn)' 

c) Multpilicación por números reales (escalares): 

ax = (ax 1 , • • • , axn) (a real). 
d) Diferencia: 

x - y = x + (- J)y. 
e) Vector nulo u origen: 

o = (O, ... , O). 

f) Producto interior o producto escalar: 

n 

x·y = ¿ XkYk' 

k=l 

1 Elementos de topología en conjuntos de puntos 
59 

g) Norma o longitud: 

(

n )1/2 
Ilxll = (X·XY /2 = ~ xi 

La norma Ilx - yll se llama distancia entre x e y. 

NOTA. Usando la terminología del Álgebra lineal, R" es un ejemplo de espacio 

vectorial (o lineal). 

. dos puntos de Rn. Entonces se tiene: 
Teorema 3.3. DeSignemos por x e y 

a) Ilxll > O, Y IIxll = O si, y sól~ si, x = o. 
b) lIaxll = lal ¡¡xII para todo numero real a. 

c) Ilx - yll = IlY - xll· (desigualdad de Cauchy-~chwarz). 
(desigualdad trlOngular) d) Ix·yl::; IIxllllyll 

e) Ilx + yll ::;; IIxll + IIYII 

. () (b) (c) se deducen inmediatamente de 
Demostración. Las afi~maclOnes d a e : -Schwarz se demostró en el teore-
la definición, Y la desIgualdad. e auc y e 
ma 1.23. La afirmación (e) se SIgue de (d) ya qu 

Ilx + yll2 = t (Xk + Yk)2 = t (xi + 2XkYk + ii) 
k=l k=l 2 

NOTA. 

Ilxll2 + 2x.y + llyll2 S Ilxll 2 + 21lxll lIyll + llyll2 = (Ilxll + lIyll) . 

A veces la desigualdad triangular se escribe en la forma 

IIx - zll ::;; IIx - yll + Ily - zll· 

. , se deduce de (e) reemplazando x por x - y e y por y - z. 
Esta expreslOn 

Illxll - lIylll ::;; IIx - yll· 

d d d R" es el vector cuya 
3 4 El vector coordenado uní a Uk e . 

Definición •• A . 
1 Y todas las restantes son cero. SI, 

k-ésima componente es 

u
1 

= (1, O, ... , O), 
_ (O 1 O O) . .. u = (O, 0, .. . , 0, 1). 

U2 - ", .. . , , '" 

+ + Y'L Y x = X'U" Xz = X'Uz' . _ ( ) entonces x = Xl U 1 ••• .......... 1 
SI X - Xl' ... , X n e llaman también vectores base . 

. .. , x", = X· u". Los vectores U l ' ... , Un s 

http://libreria-universitaria.blogspot.com
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3.3 BOLAS ABIERTAS Y CONJUNTOS ABIERTOS DE R" 

Sea a un punto de Rn y sea r un número positivo dado. El conjunto de todos 
los puntos x de Rn tales que 

IIx - all < r, 

se denomina n-bola abierta de radio r y centro a. Designamos este conjunto 
por B(a) o por B(a; r). 

La bola B(a; r) consta de todos los puntos cuya distancia a a es menor 
que r. En R I este conjunto es un intervalo abierto con centro en a. En R2 es 
un disco circular, y en R3 es una esfera sólida con centro en a y radio r. 

3.5. Definición de punto interior. Sea S un subconjunto de Rn, y supon­
gamos que a E S. Entonces a se denomina punto interior de S si existe una 
n-bola abierta con centro en a, contenida en S. 

En otras palabras, cada uno de los puntos interiores a de S puede ser ro­
deado por una n-bola B(a) ~ S. El conjunto de todos los puntos interiores de S 
-se llama interior de S y se designa por int S. Cada conjunto que contiene una 
bola con centro en ase denomina entorno de a. 

3.6. Definición de conjunto abierto. Un conjunto S de R" es abierto si 
todos sus puntos son interiores. En otras palabras, S es abierto si, y sólo si, 
S = int S. (Véase ejercicio 3.9.) 
Ejemplos. En Rl el tipo más simple de conjunto abierto es un intervalo abierto. La 
unión de dos o más intervalos abiertos es también abierta. Un intervalo cerrado 
[a, b] no es un conjunto abierto ya que sus extremos a y b no son puntos interiores 
del intervalo. 

Ejemplos de conjuntos abiertos en el plano son: el interior de un disco; el pro­
ducto cartesiano de dos intervalos abiertos unidimensionales. El lector debe tener 
en cuenta que un intervalo abierto de Rl, considerado como subconjunto del plano, 
no es un conjunto abierto. De hecho, ningún subconjunto de Rl (salvo el conjunto 
vacío) puede ser abierto en R2, ya que tales conjuntos no pueden contener una 
2-esfera. 

En R"', tanto el conjunto vacío (¿Por qué?) como el mismo espacio Rn, 
son conjuntos abiertos. El producto cartesiano 

(a 1 , bJ ) x ... x (ano bn) 

de intervalos abiertos unidimensionales (al' b¡), ... , (a", b",) es un conjunto 
abierto de R" llamado intervalo abierto n-dimensional. Lo designaremos 
por (a, b), donde a = (a" .... o,n) Y b = (b" ... , bn)· 
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Los dos teoremas siguientes demuestran cómo a partir de conjuntos abier­
tos de Rn es posible obtener nuevos conjuntos abiertos. 

Teorema 3.7. La reunión de una colección arbitraria de conjuntos abiertos 

es abierta. 

Demostración. Sea F una colección de conjuntos abiertos y sea S su reunión, 
S = U A, ¡;, A. Supongamos que x E S. Entonces x debe esta~ en uno; por lo 
menos, de los conjuntos de F. Sea x E A. Como A es abIerto, eXIste una 
n-bola abierta B(x) ~ A. Pero A ~ S, luego B(x) ~ S Y por lo tanto x es un 
punto interior de S. Dado que cada punto de S es un punto "interior, S es 

abierto. 

8 La intersección de una colección finita de conjuntos abiertos Teorema 3 .. 
es abierta. " 

Demostración. Sea S = n ~l Al<, donde cada Al< es abierto. Supongamos que 

x E S. (Si S es vacío, no hay nada que demostrar.) E.ntonces x E Ak para todo 
k = l. 2 •...• m, y por lo tanto existe una n-bola abIerta B(x; rk) ~ Ak. Sea r 
el menor de los números positivos rl • r2 • •••• rm• Entonces x E B(x ;r) ~ S. Esto 
es. x es un punto interior y por lo tanto S es abie~o. 

Vemos entonces que. a partir de conjuntos abIertos da~os, s~ pueden. for­
mar nuevos conjuntos abiertos haciendo reuniones arbitranas o mtersecclOnes 
finitas. Las intersecciones arbitrarias. en cambio, no siempre producirán. con­
juntos abiertos. Por ejemplo. la intersección de todos los. intervalos .able~~s 
de la forma (- l./n, l/n), donde n = 1, 2, 3, ... , es el conjunto redUCIdo um-

camente a O. 

3.4 LA ESTRUCTURA DE LOS CONJUNTOS ABIERTOS DE Rl 

En R i la reunión de una colección numerable de intervalos abiertos disjuntos 
es un conjunto abierto y, sorprendentemente, cada con~unto .abierto de Rl no 
vacío se puede obtener de esta manera. Esta sección está destmada a demostrar 

esta afirmación. 
Ante todo introduciremos el concepto de intervalo componente. 

3.9. Definición de intervalo componente •. ~ea S. u~ .subconjunto ~~ierto 
de Rl. Un intervalo abierto 1 (que puede ser fmlto o mfmlto) se llamara ¡~ter­
valo componente de S si 1 ~ S Y si no existe ningún otro intervalo abierto 

J =1= 1 tal que 1 ~ J ~ S. 
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. En otras palabras, un intervalo componente de S no puede ser un subcon­
junto propio de ningún otro intervalo abierto contenido en S. 

Teorema 3.10. Cada punto de un conjunto abierto no vacío S pertenece 
a un intervalo componente de S y a uno solo. 

~emostraci~n. Supongamos que x E S. Entonces x está contenido en algún 
mtervalo abIerto 1 con 1 ~ S. Existen muchos de tales intervalos pero el «ma­
yon) de e~l?s será el intervalo componente deseado. Dejamos para el lector la 
demostraclOn de que este intervalo es I z = (a(x), b(x», donde 

a(x ) = ¡nf {a: (a, x) s.; S}, b(x) = sup {b: (x, b) s.; S}. 

Pued~ ocur~ir ~u~ a(x) sea -~ y puede ocurrir que b(x) sea +00. Es claro que 
no eXiste mngun mtervalo abIerto J tal que Ix ~ J ~ S, luego 1:. es un intervalo 
compo~ente de S que contiene a x. Si J" fuese otro intervalo componente de S 
contemendo ~ x, entonces la reunión l :c U J" sería un intervalo 'contenido en S y 
que cont,endna a 1:. y a JIt • Por lo tanto, por definición de intervalo componente, 
se tendna l a; U J" = Ix e 1" U J" = J." luego LJI = J". 

T('orema 3.11 (Teorema de representación para los conjuntos abiertos 
de la recta real). Cada conjunto abierto no vacío S de Rl es la reunión de 
una colección numerable de intervalos componentes de S, disjuntos. 

Dcmostración. Si x E S, sea 1" el intervalo componente de S que contiene a x. 
La reunión de todos los intervalos I z es, evidentemente, S. Si dos de ellos, 
1 .. e Iy, tienen un punto en común, entonces su reunión Ix U Iy es un intervalo 
abierto contenido en S y que contiene a l re Y a Iy. Por lo tanto, lre U Iy = la: 
e l~ U I y = Iy, luego 1", = Iy. Por lo tanto los intervalos la: forman una colec­
ción disjunta. 

Resta demostrar que forman una colección numerable. A este fin, supon­
gamos que {X I> x2 , x 3 , ... } designa el conjunto numerable de los números racio­
nales. En cada intervalo componente 1", habrá una infinidad de X n , pero entre 
ellos uno sólo con el menor índice n. Definiremos entonces una aplicación F por 
medio de la ecuación F(I",) = n, si x .. es el número racional de 1:. con el menor 
índice n: Esta función F es uno a uno ya que F(l",) = F(ly) = n implica que 
111' e Iy tienen en común a Xn y ello implica que 1" = I y. Por tanto F establece 
una correspondencia uno a uno entre los intervalos 1" y un cierto subconjunto 
de los números naturales. Esto termina la demostración. 

NOTA. Esta representación de S es única. De hecho, si S es reunión de in­
tervalos abiertos disjuntos, entonces estos intervalos serán necesariamente los 
intervalos componentes de S. Es una consecuencia inmediata del teorema 3.10. 

! 
'¡ 

1 
i, :,: 
1 
l' 
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Si S es un intervalo abierto, entonces la representación contiene sól~ un 
intervalo componente, a saber, S mismo. Por lo tanto, ningú~ interv.a~o abIerto 
de Rl puede expresarse como reunión de , dos conjuntos abIe~tos dlSjUnto~ no 
vacíos. Esta propiedad se designa también diciendo que un m~erva~o able~to 
es conexo. El concepto de conexión en conjuntos de Rn se estudIa mas ampha-

mente en la sección 4.16. 

3.5 CONJUNTOS CERRADOS 

3.12 Definición de conjunto cerrado. Un conjunto S de Rn es cerrado si 

su complementario Rn - S es abierto. 

Ejemplos. Un intervalo cerrado [a, b] de Rl es un conjunto cerrado. El pro­

ducto cartesiano 

[al . b l l x .. ' x [a .. bn ] 

de n intervalos cerrados unidimensionales es un conjunto cerrado de Rn, lla­
mado intervalo cerrado [a, b] n-dimensional. 

El siguiente teorema, consecuencia inmediata de los t~oremas ~.7 Y 3.8, 
muestra cómo construir nuevos conjuntos cerrados a partIr de conjuntos c~-
rrados dados. 

Teorema 3.13. La reunión de una colección finita de conjuntos cerrados es 
cerrada, y la intersección de una colección arbl'traria de conjuntos cerrados 

es cerrada. 

Otra relación entre conjuntos abiertos y cerrados es la que expresa el SI­

guiente teorema. 

Teorema 3.14. Si A es abierto y B cerrado, entonces A - B es abierto y 

B - A es cerrado. 

Demostración. Basta observar que A - B = A n (Rn - B) es la intersección 
de dos conjuntos abiertos, y que B - A = B n (Rn - A) es la intersección de 

dos conjuntos cerrados. 

3.6 PUNTOS ADHERENTES. PUNTOS DE ACUMULACIÓN 

Los conjuntos cerrados pueden definirse por medio de los puntos adherentes 
y por medio de los puntos de acumulación. 
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3.15 Definición de punto adheren . . 
Un punto de Rn, no necesariamente d:~ Sea S un subc~nJunto de Rn, y sea x 

a S si toda n-bola B(x) contiene un pu t' Edntosnces se dlce que x es adherente 
n o e ,por lo menos. 

Ejemplos 

1. Si x E S, entonces x es adherente a S a 
2. Si S es un subconjunto de R acotad ,y ~ue cada n-esfera B(x) contiene a x. 

rente a S. o supenormente, entonces el sup S es adhe-

Ciertos puntos son adherentes a S or 
de S distintos de x. Estos puntos 11 P que cada bola B(x) contiene puntos 

se amarán puntos de acumulación. 

3.16. Definición de punto de acumulación Si e n 

ces x se llama punto de acumulación d S.' S - R y x E Rn, enton­
menos Un punto de S distinto de x . e Sl cada n-bola B(x) contiene por lo 

En otras palabras, x es un punto d . 
adherente a S - {x} Si E S e acumulacIón de S ·si, y sólo si x es 

d' . x pero x no es un punt d ' 
se Ice que x es un punto aislado de S. o e acumulación de S, 

Ejemplos 

J. El conjunto de los números de la forma 1/n _ . 
punto de acumulación. ' n - 1, 2, 3, '" tIenen al cero como 

2. El conjunto de los números racionale . . 
acumulación. s tiene a cada raCIOnal como punto de 

3. Cada punto del intervalo cerrado Ca, bJ es u " 
de los números del intervalo abiert ( b)n punto de acumu]aclOn del conjunto o a, . 

Teorema 3.17. Si x es Un punto de acu l ., 
B(x) contiene infinitos puntos de S. mu aClOn de S, entonces toda n-bola 

Demostración. Supongamos lo contrario' . . 
/3(x) que contenga sólo un núme o fi't d' es decIr, que eXIsta una n-bola 
mémosles a a .. S· r

l 
OI o e puntos de S distintos de X' 1Ia-

l' 2 '"'' "'m' 1 r es e menor de l' . . ' os numeras pOSIÍlVOS 

l/x - adl, l/x - a2 11, 
' " , 

entonces B(x; r/2) será una n-bola de centro 
de S distinto de x. Contradicción. x que no contendrá ningún punto 

. ~ste teorema implica, en particular ue . 
mfimdad de puntos carece dé t d q un c~~Junto que no posea una 
bargo, es falso. Por ejemplo' ef~~no.s te a

d
cum

1 
ulaclOn. El recíproco, sin em-

e . t . fi . 'Jun o e os enteros {1 2 3 } onJun o ID DIto que carece de t d ' , , . .. es un 
terior demostraremos que los ca P.t

m 
tOS . efi a~umulación. En una sección pos­

nJun os ID mtos contenidos en una esfera po-
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seen siempre un punto de acumulación. Éste es un resultado importante cono­
cido como teorema de Bolzano-Weierstrass. 

3.7. CONJUNTOS CERRADOS Y PUNTOS ADHERENTES 

Un conjunto cerrado se ha definido como el complementario de un conjunto 
abierto. El teorema siguiente presenta otra definición de conjunto cerrado. 

Teorema 3.18. Un conjunto S de R" es cerrado si, y sólo si, contiene todos 
sus puntos adherentes. 

Demostración. Supongamos que S es cerrado y que x es adherente a S. De­
seamos probar que x E S. Supongamos que x Et S Y llegaremos a una contra­
dicción. Si x Et S, entonces x E Rn - S y, como que Rn - S es abierto, alguna 
n-bola B(x) está contenida en Rn - S. Entonces B(x) no contiene puntos de S, 
en contradicción con el hecho de que x es adherente a S. 

Para probar el recíproco, supongamos que S contiene todos sus puntos 
adherentes y demostraremos entonces que S es cerrado. Sea x E R" - S. En­
tonces x Et S, luego x no es adherente a S. Por lo tanto, existe una bola B(x) 
que no corta a S. por consiguiente B(x) ~ Rn - S. Así pues, Rn - S es abierto 
y, entonces, S es cerrado. 

3.19. Definición de adherencia. El conjunto de todos los puntos adherentes 
de un conjunto dado S se llama adherencia de S y se designa por S. 

Para todo conjunto se tiene que S ~ S ya que todo punto de S es adherente 
a S. El teorema 3.18 prueba que la inclusión opuesta S'~ S se verifica si, y sólo 
si, S es cerrado. Por lo tanto se tiene: 

Teorema 3.20. Un conjunto S es cerrado si, y sólo si, S = S. 

3.21. Definición de conjunto derivado. El conjunto de todos los puntos 
de acumulación de un conjunto S se llama conjunto derivado de S y se desig­
na por 8'. 

Es claro que, para todo conjunto S, S = S u S'. Por lo tanto, el teore­
ma 3.20 implica que S es cerrado si, y sólo si, S' ~ S. En otras palabras, se 
tiene: 

Teorema 3.22. Un conjunto S de Rn es cerrªdo si, y sólo si, contiene todos 
sus puntos de acumulación. 
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3.8 TEOREMA DE BOLZANO-WEIERSTRASS 

3.23. Definición de conjunto acotado. Se dice que un conjunto S de R" 
está acotado si está contenido totalmente en una n-bola B(a; r) para algún 
r > O Y algún a de Rn. 

Teorema 3.24 (Bolzano-W eierstrass). Si un conjunto acotado S de R" 
contiene una infínidad de puntos, entonces existe por lo menos un punto de 
R'" que es un punto de acumulación de S. 

Demostración. Para fijar ideas daremos primero la demostración en el caso Rl. 
Como S es un conjunto acotado, está contenido en Un cierto intervalo [-a, aJo 
Uno, por 10 menos, de los subintervalos [-a, OJ, [O, aJ contiene un subcon­
junto infinito de S. Llamemos a este subintervalo [al ' b¡]. Dividamos [a" b¡J en 
dos partes iguales y obtendremos un subintervalo [a

j
, b

2
] que contendrá un sub­

conjunto de S, infinito; y continuemos este proceso. De esta mánera hemos obte­
nido una colección numerable de intervalos tales que el n-ésimo intervalo Can, b

n
] 

liene longitud bOl - a,. = a/2n-l . Es claro que el sup de los puntos extremos de 
la izquierda Un y el inf. de los puntos extremos de la derecha b

n 
coinciden; lla­

mémosle X. [¿Por qué son iguales?] El punto x será de acumulación de S ya 
que, si r es un número positivo, el intervalo [a", bu] estará contenido en B(x; r) 
siempre que n sea suficientemente grande para que b" _ a,. < r/2. El inter­
valo B(x; r) contiene un punto de S distinto de x y, por 10 tanto, x es un punto 
de acumulación de S. Esto prueba el teorema para Rl. (Obsérvese que el pun­
to de acumulación x puede pertenecer o no a S.) 

Ahora daremos una demostración para R", n> 1, extendiendo las ideas 
seguidas al tratar el caso R 1. (El lector podrá seguir la demostración en el caso 
R" recurriendo a la Fig. 3.l.) 

8t= 
: ¡(3): 
, I I 

j ~~ 
I I 
I , 

f+-- ¡ (2)---.J 
I I I 

--
I , 
I , , , 
I , 

I I 
,"'~o---__ ¡~I)-------,,: 

I 

Figura 3.1 

, 
f 
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d ' ser incluido en una cierta n-bola B(O; a), 
Como S está acotado, ~ po r~ d' nsional J definido por las desigual-a > O, Y por 10 tanto en el mterva o n- Ime 1 

dades 

(k 1, 2, ... , n). 

A 'J desI'gna el producto cartesiano qm 1 

1 - 1(1) X 1(1) x ... X 1~1); I - 1 2 

) donde Xk E Ik(l) Y donde cada Ik(l) 
esto es, el conjunto.d~ pun.tos (x" . . <xrn ,< Cada intervalo h(l) se puede 
es un intervalo uDIdI~enslOlnal 1-::)a -1~~) d:finidos por las desigualdades 
subdividir en dos submterva os k.l e k . 2 

1 (1 l. - a < X k ~ O; k,1 • - / (1) • O < Xk ~ a. 
k.2· -

todos los productos cartesianos de la forma Ahora, consideramos 

/ (1) X /(1) X ... x 1 (kll , 
J,kl 2,k2 n, 11 

(a) 

exactamente 2" productos de este tipo y, ade­
donde cada k

i = 1 o 2. Hay,. 1 . ~-dimensional. La reunión de estos 
más, cada uno de . ellos es u~ .mter;a o ue contiene a S; Y por lo tanto, UfIo 
2Jn intervalos es el mtervalo ongmal l' q . . fi 'dad de puntos de S. 

d i 2'" tervalos (a) contIene una m DI 
por lo menos e os m. . dad y lIamémosle J

2
; podrá ex-Elijamos uno de los que venfican esta propIe 

presarse también 

. 1 d 1 (1) de longitud a" Proce-d d da 1 (2) es uno de los submterva os e k d ' . 
on e ca k hemos procedido con JI' IVI-h J de la misma manera como . 1 

damos a ora con 2 . • les y obteniendo un mte. rva o d . t 1 1 (2) en dos partes Igua 
diendo ca a m erva o k • fi . d d d puntos de S. Si continuamos 
n-dimensional J3 que contenga una l~, 01 a e ble de intervalos n-dimensio-

bt d mos una colecclon numera 
este proceso, o en re . 1 ,. o J verifica la propiedad de J t les que el mterva o m-eSlm m 
nales J" J

2
, 3' .. ·' . a . fi ' d S Y se puede expresar en la forma contener un subconjunto m mto e 

(m) donde 1
k
(m l 5; 1~1) . 1m = l¡m) X 11m) X ..• X 1" , 

Escribiendo 

tenemos 

(k 1, 2, ... , n). 
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Para cada k fijo. el sup de todos los extremos de la izquierda i1k (m). (m = 1, 
2, ... ), deberá ser igual al inf de todos los extremos de la derecha bk(ml, (m = 
= 1. 2, ... ). Y este valor común lo designaremos por h. Afirmamos ahora que 
el punto t = (tI' t., ... , t,,,) es un punto de acumulación de S. Para verlo, basta 
tomar una n-bola B(t; r). El punto t pertenece a cada uno de los intervalos 
JI' J., ... , construidos anteriormente, y cuando m es tal que a/2m -

2 < r/2, el 
entorno incluirá a Jm • Pero como Jm contiene una infinidad de puntos de S, 
también los contendrá B(t; r), lo que demuestra que t es, realmente, un punto 
de acumulación de S. 

3.9 TEOREMA DE ENCAJE DE CANTOR 

Como aplicación del teorema de Bolzano-Weierstrass. demostraremos el teo­
rema de encaje de Cantor. 

Teorema 3.25. Sea {Q" Q2 • ... } una colección numerable de conjuntos, no 
vacíos, de R'n tales que: 

i) Qk+l ~ Qk (k = 1, 2, 3, ... ). 
ii) Cada uno de los conjuntos Qk es cerrado y Ql está acotado. 

Entonces la intersección nr; I Qk' es cerrada y no vacía. 

Demostración. Sea S = nr; I Qk Entonces S es cerrado en virtud del teore­
ma 3.13. Para probar que S es no vacío. bastará encontrar un punto x que 
pertenzca a S. Podemos suponer que cada uno de los Qk contiene una infi­
nidad de puntos de S; en otro caso la demostración es trivial. Formemos en­
tonces una colección de puntos distintos A = {Xl' x 2, ••. }. donde Xk E Qk. 
Como A es un conjunto infinito contenido en el conjunto acotado Ql' poseerá 
un punto de acumulación; llamémosle x. Probaremos que X E S verificando 
que. para cada k, X E Qk. Es suficiente probar que x es un punto de acumu­
lación de cada uno de los Qk, ya que todos ellos son conjuntos cerrados. Pero 
cada entorno de x contiene una infinidad de puntos de A, y como todos ex­
cepto (quizás) un número finito de los puntos de. A pertenecen a Qk, este en­
torno contiene una infinidad de puntos de Qk. Por lo tanto, x es un punto de 
acumulación de Qk y el teorema queda demostrado. 

3.10 TEOREMA DEL RECUBRIMIENTO DE LINDELoF 

En esta sección introducimos el concepto de recubrimiento de un conjunto y 
demostramos el teorema del recubrimjento de Linde/oj. La utilidad de este 
concepto se hará patente en algunos trabajos posteriores. 
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3.26. Definición de recubrimiento. Una col:cci6n de conjuntos.F se de~~-
. b' . t de un conjunto dado S SI S ~ U AeF A. Se dIce tamblen 

mma recu rzmlen o'. 'd . t b 'ertos 
que la colección F recubre a ~. ~i F es ~na coleccion e con]un os al, 
entonces F se denomina recubrImIento abIerto de S. 

Ejemplos 1/ < < 2/ (n - 2 3 4 ) 
1 La colección de todos los intervalos de la forma n x ~, 1 d ' 'b··' 

. es un recubrimiento abierto del intervalo O < x < 1. Es un eJemp o e recu n-

miento numerable. l ' 1 b'er 
La recta real Rl está recubierta por la colección de todos os mt~rva os a I -

2. . bl SI'n embargo contIene un recu-t ( b) Este recubrimiento es no numera e. , 
o~~,. bl de Rl a saber todos los intervalos de la forma (n, n + 2), bnmlento numera e , , 

donde n recorre los valores enteros. . . 
Sea S = {(x. y): x > O, Y > O}. La colección F de ~odos los diSCOS clrcula~es. con 

3. () d' x> O es un recubrimiento de S. Este recubnmlento 
centros en x, x y ra lOS X" • • S--

erable SI'n embargo contiene un recubnmlento numerable de ,a sa 
no es num . . .. 3 18 ) 
ber, todos los círculos para los que x es racional. (Ver eJerCICIO . . 

El teorema del recubrimiento de LindelOf establece que todo recubrimiento 
abierto de un conjunto S de R'" contiene una ~ub.colección numerabl~ ~ue ~am­
bién recubre a S. La demostración utiliza el SIgUIente resultado prehmIDar. 

3 27 S G - {A A } la colección numerable de todas las 
Teorema • . ea - l' 2· .. · d . 1 
n-bolas de radio racional y con centro en puntos de coordena as racIOna es. 
Supongamos que x E R'n y sea S un conjunto abierto de Rn que co~tenga a. x. 
Entonces una, por lo menos, de las n-bolas de G contiene a x y esta contenida 

en S. Esto es, se tiene 

x E Ak ~ S para algún Ak de G. 

D t · , La colección G es numerable en virtud del teorema 2.27. Si emoS raclOn. .' 
x E Rn y si S es un conjunto abierto que contIene a x, entonces eXiste. una 
n-bola B(x; r) ~ S. Encontramos un punto y de S, de coordenadas raCIOna­
les. «próximo» a x y, tomándolo como centro. ?allaremos entonces un entorno 
en G interior a B(x; r) y que contenga a x. SI 

sea Yk un número racional tal que IYk - xkl < r/(4n) para cada k = 1. 2 ..... n. 

Entonces 
r 

lIy - xII ~ IYI - xd + ... + IYn - xnl < ¡. 



70 Elementos de topología en conjuntos de puntos 

B (y ; q) 

~ 
~ 

B(x; r) 

Figura 3.2 

¡\ continuación consideremos un número racional q tal que r/4 < q < r/2. 
Enlonces x E B(y; q) y B(y; q) ~ B(x; r) ~ S. Pero B(y; q) E G Y por lo 
lunlo el teorema queda demostrado. (Ver Fig. 3.2 para el caso R 2.) 

Tf>orema 3.28 (teorema del recubrimiento de LindelOf). Supongamos 
(/U(' A ~ Ron y que F es un recubrimiento abierto de A. Entonces existe una 
.\·ul>colección numerable de F que también recubre a A. 

Demostración. Sea G = {A" A 2' .•• } la colección numerable de todas las 
,,·bolas de centros y radios racionales. Este conjunto G se utilizará para ex­
traer de F una subcolección numerable que recubra a A. 

Supongamos que x E A. Entonces existe un conjunto abierto S de F tal 
que x E S. Por ~l teorema 3.27, existe una n-bola Ak de G tal que x E Ak ~ S. 
Pura cada S eXiste una infinidad numerable de tales A k , pero sólo elegiremos 
111111 de entre todas, por ejemplo la de índice más pequeño; llamémosle m = 
= II/{x). Tenemos entonces que x E A .", (x ) C;; S. El conjunto de todas las n-bo­
IlIs A II , ( x ) obtenidas cuando x recorre todos los elementos de A es una colec­
ción num.erable de conjuntos abiertos que recubre a A. A fin de lograr una 
sllb~olecclón numerable de F que recubra a A, hacemos corresponder a cada 
conJunlo A k( x) uno de los conjuntos S de F que contenga a A k(x )' Esto acaba 
111 demostración. 

:J. 1 1 TEOREMA DEL RECUBRIMIENTO DE HEINE-BOREL 

El. teorema del recubrimiento de LindelOf establece que de un recubrimiento 
ablcrto de un conjunto arbitrario A de R" se puede extraer un recubrimiento 
numcrable. El teorema de Heine-Borel nos dice que si, además, A es cerrado 
y acotado, entonces podemos reducir el recubrimiento a un recubrimiento fini­
to. La demostración requiere el teorema de encaje de Cantor. 

T,'orema 3.29 (Reine-Borel). Sea F un recubrimiento abierto de un con­
;Ul1lo A de R", cerrado y acotado. Entonces existe una subcolección finita de F 
ql/t' también recubre a A. 
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Demostración. Una subcolección numerable de F, llamémosla {fl' 12 , • • • }, 

recubre a A, en virtud del teorema 3.28. Consideremos, para m > 1, la reunión 
finita 

Es abierta, ya que es reunión de conjuntos abiertos. Probaremos que, para al­
gún valor de m, la reunión S.", recubre a A. 

A este fin consideremos el complementario R" - Sm, que es cerrado. Defi­
nimos una colección numerable de conjuntos {Q" Q2' .. . } de la siguiente ma­
nera : Ql = A, Y para m> 1, 

Qm = A n (R" - Sm) ' 

Esto es, Q"" consta de todos los puntos de A que están fuera de s.m. Si pode­
mos probar que, para algún valor de m, el conjunto Qm es vacío, habremos 
demostrado que, para este valor de m, ningún punto de A está fuera de S.", ; 
en otras palabras, habremos probado que existe un Sm que recubre a A. 

Observemos las siguientes propiedades de los conjuntos Qm: Cada conjunto 
Qm es cerrado, ya que es intersección del conjunto cerrado A y el conjunto ce­
rrado R"' - Sm. Los conjuntos Qm son decrecientes, ya que los conjuntos S.". 
son crecientes; esto es, Qm+l C;; Qm' Los conjuntos Qm, por ser subconjuntos 
de A, están acotados. Por 10 tanto, si ninguno de los conjuntos Qm es vacíb, 
podemos aplicar el teorema de encaje de Cantor para concluir que la inter­
sección nk"= 1 Qk tampoco es vacía. Ello implica la existencia de un cierto 
punto de A que pertenezca a todos los conjuntos Qm, o, lo que es equivalente, 
la existencia de un punto de A que esté fuera de todos los conjuntos Sm. Pero 
esto es imposible, ya que A <;; Uk"= 1 Sk' Por lo tanto algún Q"" debe ser vacío, 
y esto termina la demostración. 

3.12 COMPACIDAD EN R" 

Acabamos de ver que, si un conjunto S de R" es cerrado y acotado, entonces 
todo recubrimiento abierto de S puede reducirse a un recubrimiento finito. Es na­
tural preguntarse si podrían existir conjuntos distintos de los cerrados y acotados 
que verificasen también esta propiedad. Tales conjuntos se llamarán compactos. 

3.30. Definición de conjunto compacto. Un conjunto S de Rn se llama 
compacto si, y sólo si, cada recubrimiento abierto de S contiene un subrecu­
brimiento finito; esto es, una subcolección finita que también recubra a S. 

El teorema de Heine-Borel establece que todo conjunto de R", cerrado y 
acotado, es compacto. Probaremos ahora el recíproco. 



72 Elementos de topología en conjuntos de puntos 

~eo~ema 3.31. Sea S un subconjunto de Rn. EntO'nces las tres afirmaciones 
slgUlentes son equivalentes: 

a) S es compacto. 
b) S es cerrado y acotado. 

c) Todo subconjunto infinito de S tiene un punto de acumulación en S. 

D:mostración. Co~o s.e indicó antes, (b) implica (a). Si probamos que (a) im­
phc~ (b), ~ue (b) ImplIca (c) y que (c) implica (b), habremos establecido la 
eqUIvalencIa de las tres afirmaciones. 

.. Supongamos que se verifica (a). Probaremos primero que S está acotado. 
ElIjamos ~n. punto ~ de S. La colección de n-bolas B(p; k), k = 1, 2, ... , es 
u~ recubnmIento abIerto de S. Por compacidad, una subcolección finita tam­
bIén recubre a S y, por lo tanto, S está acotado. 

.A. ~ontinuación probaremos que S es cerrado. Supongamos· que no lo fuese. 
~xIstIfIa un punto y que sería un punto de acumulación de S y tal que y $. S. 
SI X E S, sea rx = Ilx - yll/2. Cada rx es positivo ya que y $. S Y la colección 
(B(x; r~): x E S} es un recubrimiento abierto de S. Por compacidad, un nú­
mero fimto de estos entornos recubre a S, por lo que es 

Designemos por r al. menor de los radios r l , r2 , ••• , rp. Es fácil comprobar que 
la bola B(y;. r) no tIene puntos en común con ninguna de las bolas B(Xk; rk). 
D~ hecho, SI x E B(y; r), entonces /Ix - yll < r < rk, y por la desigualdad 
tnangular tenemos que /ly-xkll < Ily-x/l + /lx-xkll, luego 

IIx - xkll ~ lIy - xkll - Ilx - yll = 2rk - Ilx - yll > rk. 

Por. lo. ~anto, x $. B(Xk; rk). Resulta, pues, que B(y; r) n S es vacío, en con­
t~ad~~clOn con el hecho de que y es un punto de acumulación de S. Esta contra­
dicclOn prueba que S es cerrado y, por lo tanto, que (a) implica (b). 

~upongamos q~e se verifica (b). En este caso la demostración de (c) es in­
medIata, ya que SI T es un subconjunto infinito de S, entonces T está acotado 
(puesto que S lo e~~á), y por el teorema de Bolzano-Weierstrass T posee un 
punto de. ~cumulaclOn que llamaremos x. Ahora bien, x es también punto de 
acumula~lOn .de S y por lo tanto x E S, dado que S es cerrado. Por todo lo 
cual (b) ImplIca (c). 

Supongamos que se verifica (c). Probaremos (b). Si S no estuviese acotado 
enton~~s para cada m> O existiría un punto x", de S tal que Ilx",11 > m. L~ 
colecclOn T ~ {Xl> x2 , ... } constituiría un subconjunto infinito de S y entonces, 
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por (c), T admitiría un punto de acumulación en S. Pero para m > 1 + Ilyl! 
tenemos 

Ilxm - yll ~ Ilxmll - Ilyll > m - Ilyll > 1, 

en contradicción con el hecho de que y sea un punto de acumulación de T. 
Todo ello prueba que S está acotado. 

Para terminar la demostración tenemos que probar que S es un conjunto 
cerrado. Sea x un punto de acumulación de S. Como cada entorno de x con­
tiene infinitos puntos de S, podemos considerar los entornos B(x; l/k), donde 
k = 1, 2, oo., obteniendo así un conjunto numerable de puntos distintos, que 
llamaremos T= {X l ,X2 , oo.}, contenido en S,tal que xkEB(x; l/k). El pun­
to x también es un punto de acumulación de T. Como T es un subconjunto 
infinito de S, la parte (c) del teorema nos dice que T debe poseer un punto 
de acumulación en S. Si podemos demostrar que x es el único punto de acu­
mulación de T habremos terminado la demostración del teorema. 

Para ello supongamos que y =1= x. Entonces, por la desigualdad triangular 
tendremos que 

si Xk E T. 

Si k o se toma suficientemente grande para que l/k < llly - xII siempre que 
k >ko, la última desigualdad conduce a la siguiente: ! Ily - xii < Ily - xkll· 
Esto prueba que Xk Et. B(y; r) donde k > ko, si r = !lly - xii. Por lo tanto y no 
puede ser un punto de acumulación de T, con lo cual queda demostrado 
que (c) implica (b). 

3.13 ESPACIOS MÉTRICOS 

Las demostraciones de algunos de los teoremas de este capítulo dependen tan 
sólo de unas pocas propiedades de la distancia entre puntos y no dependen en 
absoluto del hecho de que los puntos sean de Rn. Cuando estas propiedades de 
la distancia se estudian en abstracto conducen al concepto de espacio métrico. 

3.32. Definición de espacio métrico.; Un espacio métricO' es un conjun­
to M, no vacíO', de objetos (que llamaremos puntos) dotado de una función d 
de M X M en R (que llamaremos la métrica del espacio) que satisface las cua­
tro propiedades siguientes, cualesquiera que sean 100s puntos x, y, Z de M: 
1. d(x, x) = O. 
2. d(x, y) > O si x -=1= y. 
3. d(x, y) = d(y, x). 
4. d(x, y) ~ d(x, z) + d(z, y). 
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El número no negativo d(x, y) puede considerarse como la distancia entre x 
e y. En estos términos el significado intuitivo de las propiedades 1 a 4 es claro. 
La propiedad 4 se llama la desigualdad triangular. 

Un espacio métrico se designa, a menudo, por medio de (M, d) a fin de re­
calcar que en la definición de espacio métrico tanto el conjunto M como la 
métrica d juegan su papel. 

Ejemplos 
1. M = R"; d(x, y) = IIx - yll. Esta métrica se llama métrica euclídea. Cuando nos 

refiramos al espacio euclídeo R", se sobreentenderá que su métrica es la euclídea 
si no se especifica alguna otra. 

2. M = e, el plano complejo; d(z" Ze) = Iz, - Z2!' Como espacio métrico, e no se 
distingue del espacio euclídeo Re puesto que consta de los mismos puntos y de 
la misma métrica. 

3. M es un conjunto no vacío ; d(x, y) = O si x = y, d(x, y) = 1 si x =1= y. Esta 
métrica se llama métrica discreta, y (M, d) se llama espacio métrico discreto. 

4. Si CM, d) es un espacio métrico y si S es un subconjunto no ~acío de M, enton­
ces (S, d) es también un espacio métrico con la misma métrica o, mejor aún, con 
la métrica resultante de restringir d a S X S. Se llama a menudo la métrica rela­
tiva inducida por d sobre S, y S es un subespacio métrico de M. Por ejem­
plo, los números racionales Q con la métrica d(x, y) = Ix - yl constituyen un 
subespacio métrico de R. 

5. M = R2; d(x, y) = ..j(x~ - y,)2 + 4(x2 - y;)2, donde x = (xl' x 2 ) e y = (.vI' Y2)' 

El espacio métrico (M, d) no es un subespacio del espacio euclídeo R2 ya que 
la métrica es distinta. 

6. M = {(Xl' X2): xi + x~ = l}, la circunferencia unidad de R2; d(x, y) = la lon­
gitud del inenor de los arcos que sobre la circunferencia unidad unen a los pun­
tos x e y. 

7. M = {(Xl, X2, X3): X¡ + X~ + X~ = l}, es la superficie esférica unidad en R'; 
d{x, y} = la menor de las longitudes de los arcos que, sobre la superficie esfé­
Tica unidad, une a Jos puntos x e y. 

8. M = R " ; d(x, y) = IXI -y,1 + ... + IXn-Ynl . 
9. M = R"; d(x, y) = max {lx,-y,l, ... , Ix,.-Ynl}. 

3.14 TOPOLOGÍA EN ESPACIOS MÉTRICOS 

Las nociones básicas de la topología en conjuntos de puntos se pueden exten­
der a un espacio métrico arbitrario (M, d). 

Si a E M, la bola B(a; r) de centro en a y radio r > O es el conjunto de 
todos los puntos x de M tales que 

d(x, a) < r. 

Algunas veces designaremos a esta bola por medio de B M(a; r) a fin de 
recalcar que sus puntos pertenecen a M. Si S es un subespacio métrico de M, 
la bola Bs(a; r) es la intersección de S con la bola BM(a; r). 
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Ejemplos. En el espacio euclídeo R' la bola B(O; 1) es e~ intervalo ab.ier~o (- 1, 1). 
En el subespacio métrico S = [O, 11 la bola Bs(O; 1) es el mtervalo semmblerto [O, 1). 

NOTA. La apariencia geométrica de una bola de R" no. es .n~cesariamente «es­
férica» si la métrica no es la métrica euclídea. (Ver eJerCIcIo 3.27.) 

Si S ~ M, un punto a de S se llama punto interior de S si algun~ de las 
bolas B(a' r) está contenida en S. El interior de S, int S, es el conjunto de 

JI. M'd t los puntos interiores a S. Un conjunto S es abierto en SI to os sus pun os 
son interiores; es cerrado en M si M - S es abierto en M. 

Ejemplos . 
1 Cada bola B. (a' r) de un espacio métrico M es abierta en M. . 
2: En un espaci~ ~étrico discreto M cada subconjunto S es abie,rto. De. hecho, SI 

x E S, la bola B(x ; t ) consta sólo de puntos de S (ya que solo c~~tlene a x); 
luego S es abierto. ¡·Por lo tanto cada subconjunto de M es tamblen cer~ado. 
En el subespacio métrico S = [O, 1] del espacio métrico euc\í~eo Rt, ~ada mter-

3. valo de la forma [O, .x) o (x, 1], donde O < x < 1, es un conjunto abIerto en S. 

Estos conjuntos no son abiertos en Rl. 

El ejemplo 3 muestra que, si S es un subespacio métrico. de. M, los con­
juntos abiertos en S no son necesariamente ab~ertos en ':1' El SIgUIente teorem~ 
describe la relación que existe entre los conjuntos abIertos en M y los con-

juntos abiertos en S. 

Teorema 3.33. Sea (S, d) un sub espacio métrico de (M. d). y sea X un sub­
conjunto de S. Entonces X es abierto en S si. y sólo si, 

X=AnS 

para algún conjunto A abierto en M . 

Demostración. Supongamos que A es abierto en M y sea X = A n S. Si x E X, 
entonces x E A Y por lo tanto BM(X; r) ~ A para alg~n r> O. Por lo tanto 
Bs(x; r) = BM(x; R) n S ~ A n S = X, luego X es abIerto en S. 

Recíprocamente, supongamos que X es abierto en S. Probaremos ~ue 
X = A n S para un conjunto A, abierto en. M. Para todo x de X eXlst~ 
una bola Bs(x; r

x
) contenida en X. Ahora bIen, Bs(x; rx) = BJ[(x; rx) n S. SI 

hacemos 

A = U BM(X; rx ), 
xeX 

entonces A es abierto en M y es fácil verificar que A n S = X. 
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Teorema 3.34. Sea (S d) . 
con{unto de S. Entonces' y e:::"~!;S::~o "'.étric~ de ~M, d) Y sea Y Un sub­
conJunto B cerrado en M. . S SI, Y solo SI, y = B n S para algún 

Demostración. Si Y = B n S d d 
donde A es abierto en M, lu~gO°;' e!se~ ce~ado en M, entonces B = M - A 
que y sea cerrado en S. B - S n (M - A) = S - A; de ahí 

RecÍprocament . y 
b· e, SI es cerrado en S 

a Ierto en S, luego X = A n S d dA' s~ X = S-Y. Entonces X es 

Y = S - X = S - (A 

, on e es abIerto en M y 

n S) = S - A = S n (M - A) = S n B 

donde B = M - A es cerrado en M. ' 

Si SCM u B -, n punto x de M se llama 
M(X; r) contiene un punto de S, or 10 punto ~dherente de S si cada bola 

entonces se dice que x es u P menos. SI x es adh~rente de S - {x} 
es el conjunto de todos los p~:r~;tod~e acumulación de S. La clausura S de S· 
el conjunto de todos los puntos · dae a~~ntes d.e, S, y el conjunto derivado S' es 

Los teoremas que se dan . ~~laclOn de S. Entonces, S = S l.J S' 
t . a contmuaClOn T . 
nco (M, d) Y se demuestran exactame t . son va Idos en cada espacio mé-

el caso del espacio euclídeo Rn E 1 ~ e Igual a como se demostraron en 
Ilx - YII deberá ser reemplazada' pon 1 as ,e~ostraciones, la distancia euclídea 

r a metnca d(x, y). 

Teorema 3 35 () L . , . . a a reunton de una colecci ' b' . 
tos es abierta, y la intersección de u l o~, ar ~t~ana de conjuntos abier­
es abierta. na co ecClOn fmlta de conjuntos abiertos 

b) ~a reunión de una colección finita de con' 
mtersección de Una colecci' b . . Junto~ cerrados es cerrada, y la 

on ar ltrana de conjuntos cerrados es cerrada. 

Teorema 3.36. Si A es abierto B 
y B - A es cerrado. y es cerrado, entonces A - B es abierto 

Teorema 3.37. Para cad 
afirmaciones Son eqUivalen~s~no de los subconjuntos S de M las siguientes 
a) S es cerrado en M . 
b) . 
c) ~ cont~ene a todos sus puntos adherentes 
d) S :S~lene a todos sus puntos de acumul~ción. 

Ejemplo. Sea M - Q 1 . 
d R 1 S - e conjunto de números . l 
e . ea S el conjunto de todos los núme .raclOna es c?n la métrica euclídea 

donde tanto a como b son irracionales. E~~~ racIOnales en el mt~rvalo abierto (a, b), 
ces S es un subconjunto cerrado de Q. 
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En nuestras demostraciones del teorema de Bolzano-Weierstrass, del teore­
ma de encaje de Cantor, y de los teoremas del recubrimiento de Lindelof 
y de Reine-Borel hemos utilizado no sólo las propiedades métricas del es­
pacio euclídeo Rn, sino también propiedades especiales de Rn que, en gene­
ral, no son válidas en un espacio métrico arbitrario (M, d). Para poder exten­
der estos teoremas a los espacios métricos habrá que imponer a M ciertas res­
tricciones posteriores. Una de estas extensiones se esboza en el ejercicio 3.34. 

La sección siguiente describe la compacidad en un espacio métrico arbi­
trario. 

3.15 SUBCONJUNTOS COMPACTOS DE UN ESPACIO MÉTRICO 

Sea CjM, d) un espacio métrico y sea S un subconjunto de M. Una colección F 
de subconjuntos abiertos de M se llama recubrimiento abierto de S SI 
S ~ U ,MA. 

Un subconjunto S de M se llama compacto si cada recubrimiento abierto 
de S contiene un subrecubrimiento finito. S se dice que está acotado si 
S s;::; B(a; r) para algún r > O Y algún a de M. 

Teorema 3.38. Sea S un subconjunto compacto de un espacio métrico M. 
Entonces: 
i) S es cerrado y acotado. 

ii) Cada subconjunto infinito de S posee un punto de acumulación en S. 

Demostración. Para demostrar (i) reharemos la demostración del teorema 3.31 
y usaremos la parte de la argumentación que demostraba que (a) implica (b). 
El único cambio que debemos realizar consiste en reemplazar la distancia euclí­
dea Ilx - yll por la métrica d(x, y) a lo largo de toda la demostración. 

Para probar (ii) se procede por contradicción. Sea T un subconjunto infi­
nito de S y supongamos que S no contiene ningún punto de acumulación de T. 
Entonces, para cada punto x de S,existirá una bola B(x) que no contendrá 
ningún punto de T (si x$. n o un punto de T solamente (el mismo x, cuando 
x E n. Cuando x recorre S, la reunión de estas bolas B(x) es un recubri­
miento abierto de S. Como S es compacto, una subcolección finita recubre 
a ~ y por 10 tanto también recubre a T. Pero esto contradice el hecho de que T 
sea infinito y cada una de las bolas contenga a lo sumo un punto de T. 

'NOTA. En el espacio euclídeo Ron, cada una de las propiedades (i) y (ii) es equi­
valente a la compacidad (teorema 3.31). En un espacio métrico general, la 
propiedad (ii) es equivalente a la compacidad (para una demostración, ver 
la referencia 3.4), pero en cambio la propiedad (i) no lo es. El ejercicio 3.42 
nos suministra un ejemplo de un espacio métrico M en el que ciertos subcon­
juntos cerrados y acotados no son compactos. 

APOSTOL, análisis 4 
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Teorema 3.39. Sea X un subconjunto cerrado de un espado métrico com­
pacto M. Entonces X es compacto. 

Demostración. Sea F un recubrimiento abierto de X, es decir X S; UAEF A. 
Probaremos que un número finito de los conjuntos A recubre a X. Como que 
X es cerrado su complementario M -X es abierto, luego F U {(M -X)} es 
un recubrimiento abierto de M. Pero M es compacto, luego este recubrimiento 
contiene un subrecubrimiento finito que podemos suponer que incluye M-X. 
Por 10 tanto 

M S; Al U ... u Ap u (M - X). 

Este subrecubrimiento recubre también a X y, como que M - X no contiene 
puntos de X, podemos suprimir el conjunto M - X del subrecubrimiento y. 
a pesar de todo, sigue recubriendo a X. Entonces X <;: Al U ... U A p , luego 
IX es compacto. 

3.16 FRONTERA DE UN CONJUNTO 

Definición 3.40. Sea S un subconjunto de un espacio métrico M. Un punto x 
de M se llama punto frontera de S si cada bola BM(X; r) contiene, por lo me­
nos, un punto de S y, por lo menos, un punto de M-S. El conjunto de todos 
los puntos frontera de S se llama frontera de S y se designa por as. 

El lector puede verificar fácilmente que 

as = S n M-S. 

Esta fórmula prueba que as es cerrado en M. 

Ejemplo. En R", la frontera de una bola B(a; r) es el conjunto de puntos x tal 
que Ilx - a ll = r. En Rt, la frontera del conjunto de los números racionaJes es 
todo en Rl. 

En los ejercicios y también en el capítulo 4 se desarrollan otras propieda­
des de los espacios métricos. 

EJERCICIOS 

Conjuntos abiertos y cerrados en Rl y R2 

3.1 Probar que un intervalo abierto de R J es un conjunto abierto y que un inter­
valo cerrado es un conjunto cerrado. 
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ulación de los siguientes conjuntos de R
1 

3.2 Determinar todos lo~ puntos de ~~u~ o cerrados (o cuándo no lo son). 
y decidir cuándo los conjuntos son a ler os 

a) Todos los enteros. 
b) El intervalo (a, b] (n = 1, 2, 3, ... ). 
c) Todos los números de ~a forma l /n, 
d) Todos los números raCIOnales. -n -m (m, n = 1, 2, .. . ). 
e) Todos los números de la forma 2 + 5, m n = 1, 2, .. . ). 
f) Todos los números de la forma (-1)" + (l /m), (m' n = 1, 2, .. . ). 
) Todos los números de la forma (l/n) +{l/m), (,_ 1 2 ) 

~) Todos los números de la forma (_l)nl[~ + ~ lln)], (n.- , d" R2. 
. 1 . .' o 3 2 para los sIgUIentes conjuntos e . 

3.3 Lo mIsmo que en e ejerCICI . ' I I > 1 
a) Todos los números complej.os z tales que z > l' 

b» TT0oddOS 110s
s 
~~::~~: ~~::i:~~: ~et~~Sf!~alz~l/n) + (ilm), (m, n = 1, 2, .. . ). 

c os o 2 2 < 1 
d) Todos los puntos (x, y) tales que x - y . 
e) Todos los puntos (x, y) tales que x> O. 
f) Todos los puntos .(x, y) t~les que x 2: ,0. S de R1 contiene números racio-

3.4 Probar que cada conjunto abIerto no vaclO 

nales e irracionales. . d R1 que son a la vez abiertos Y cerrados 
3.5 Probar que los únicos cEon~utntos a eafirmación análoga para R 2? 

. t cío y Rl ¿, XIS e un . 1 'ó son el conjun o va: R 1 s la intersección de una ca eccl n 
3.6 Probar que cada conj~nto cerrado en e 

numerable de conjuntos abIertos. d vacío S de R 1 o bien es ~n 
'unto cerrado y acota o, no , . . 

3.7 Probar que un conj b partir de un intervalo cerrado supn-
I d bien S podrá o tenerse a t os interva o cerra o o . . bl d intervalos abiertos cuyos ex rem 

miendo una colección dISjunta numera e e 

pertenecen a S. 

Conjuntos abiertos Y cerrados de Rn 

intervalos abiertos n-dimensionales son 
3.8 Probar que las n-bolas abiertas Y los 

conjuntos abiertos e~ R~. . to de Rn es abierto en Rn. 
3 9 Probar que el InterIor de un COll)un . , d todos los subconjuntos abiertos 

. b int S es la reumon e d 
3.10 Si S <;; Rn, pro aro que E d scribe diciendo que int S es el mayor e 
de Rn que están contemdos en S. sto se e 
los subconjuntos abiertos de S. 
3.11 Si S Y T son subconjuntos de R n, probar que 

y (int S) u (int T) s int (S u T). 
(int S) n (int T) = ¡nt (S n T), 

3.12 Sean S' Y S, respectivamente, el conjunto derivado Y la clausura de un con-

junto S de Rn. Probar que: (S' )' c_ S'. 
a) S' es cerrado en Rn; esto, es, 
b) Si S <;; T, entonces S' <;; T . 
e) (S un' = S' U r. 
d) (S)' = S'. 

. -- -- - - - - - ---' 
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e) S es cerrado en R n. 
f) S es la intersección de todos los subconjuntos cerrados de Rn que contienen 

a S. Esto es, S es el menor conjunto cerrado que contiene a S. 
3.13 Sean S y T subconjuntos de Rn. Probar que S (') T s: S (') Ty que S (') T s: 
S (') T si S es abierto. 
NOTA. Las afirmaciones de los ejercicios 3.9 hasta 3.13 son verdaderas en cualquier 
espacio métrico. 
3.14 Un conjunto S de R " se llama convexo si, para cada par de puntos x e y 
de S y cada número real e que satisfaga ° < e < ], se verifica que ex + (1 - e)y ES. 
Dar una interpretación geométrica de esta definición (en R 2 y R 3) Y probar que : 

a) Cada n-bola de Rn es convexa. 
b) Cada intervalo abierto n-dimensional es convexo. 
c) El interior de un conjunto convexo es convexo. 
d) La clausura de un conjunto convexo es convexa. 

3.15 Sea F una colección de conjuntos de Rn, y sea S = UA EF A y T = nAeF A. 
Para cada una de las siguientes afirmaciones dar una demostración o un contra-
ejemplo. " 

a) Si x es un punto de acumulación de T, entonces x es un punto de acumu­
lación de cada uno de los conjuntos A de F. 

b) Si x es un punto de acumulación de S, entonces x es un punto de acumula-
ción de uno, por lo menos, de los conjuntos A de F. 

3.16 Probar que el conjunto S de los números racionales del intervalo (0, 1) no 
puede expresarse como la intersección de una colección numerable de conjuntos 
abiertos. Indicación. Expresemos S = {Xl' x 2 ' ... } , supongamos que S = n f =l Sk' 
donde cada uno de los Sk es abierto, y construyamos una sucesión {Q • .} de inter­
valos cerrados tales que Q.n+l ~ Qn ¡:;;; S n y tales que X .. f$ Q ... Entonces , utilizar el 
teorema de la intersección de Cantor para obtener una contradicción. 

Teoremas acerca de los recubrimientos en Rn 

3.17 Si S ¡:;;; R n, probar que la colección de puntos aislados de S es numerable. 
3.18 Probar que el conjunto de los discos abiertos del plano xy con centro en (x, x) 
y radio x> 0, x racional, es un recubrimiento numerable del conjunto {(x, y): x> 0, 
y> O}. 
3.19 La colección F de los intervalos abiertos de la forma (l/n, 2/n), donde n = 
2, 3, .. . , es un recubrimiento abierto del intervalo (0, 1). Probar (sin utilizar el teo­
rema 3.31) que ninguna subcolección finita de F recubre a (0, 1). 
3.20 Dar un ejemplo de un conjunto S que sea cerrado pero no acotado y encon­
trar un recubrimiento abierto numerable F tal que ningún subconjunto finito de F 
recubra a S. 
3.21 Dar un conjunto S de R" que verifique la siguiente propiedad : para cada x 
de S, existe una n-bola B(x) tal que B(x) (') S es numerable. Probar que S es nu­
merable. 
3.22 Probar que toda colección de conjuntos abiertos disjuntos de R n es necesaria­
mente numerable. Dar un ejemplo de colección de conjúntos cerrados disjuntos 
que no sea numerable. 
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., de S 

d R " es un punto de condensaclOn 
3.23 Supongamos que S ¡:;;; R". D.n punt~; B ex (') S no es numerable . Probar que si 
si toda n-bola B(x) tiene la pro~ledad q () S de modo que x es un punto de 
S no es numerable, entonces eXIste un punto x en 

condensación de S. S e's numerable Sea T el conjunto de pun-
S e R " y que no . 

3.24 Supongamos que - . 
tos de condensación de S. Probar que. 

a) S - T es numerable, 
b) S n T no es numerable, 

) T es un conjunto cerrado, 
~) T no posee puntos aislados. . (b) 

. . . 3 23 un caso especIal de . . t 
Nótese que el eJercIcIO . es . S _ S' esto es si S es un conJun o 

. d R " llama perfecto SI -, ' . d no 325 Un conJunto e se . F es un conJunto cerra o 
c~rrado que carece de puntos aislados. P~ob;~r~~e'Fsl= A U B, donde A es perfecto 

ble de R " puede expresarse en a 
numera' d' ) 
Y B es numerable (teoren~a ~e. Cantor-Ben non . 

1 d · 'o'n Utilizar el eJercIcIO 3.24. n IcaC!· 

Espacios métricos 
. " (M d) tanto el conjunto vacío 0 como 

en todo espacIO metnco , , 
3.26 Probar que, 1 vez abiertos Y cerrados. 
el espacio ~dntero M ;~ia: :os ~étricas siguientes : 
3.27 Cons! erar en n 

d (x y) = max \Xi - y¡\ , dz(x, y) = I: \Xi - yJ 
l ' J '5 i :s n i== 1 

1 bola B(a; r) tiene 

d 
de los espacios métricos siguientes, probar que a 

En ca a uno . d ' . 
la apariencia geométrica que se ID ~cal~dosparalelos a los ejes de co.orde~adas. 

a) en (R2
, d,), un cuadra~o . e diagonales son paralelas a los eJes. 

b) en (R2 , d
2
), un cuadra o cuyas 

c) Un cubo en (Ro, d,). 
d) Un octaedro en (R3, d2 ) · • • • 3.27 Y sea \\x-y!! la mé-

S d Y d las métricas definidas en el eJerclcISO!'guientes desigualdades, cua-
3.28 ean, 2 b que se verifican las 
trica euclídea usual. Compro ar d Rn' 
lesquiera que sean los puntos x e y e . 

d¡(x, y) ~ \\x - y\\ ~ dz(x, y) y 
. métrico, se define 

3.29 Si (M. d) es un espacIo 
d(x, y) 

d '(x, y) = 1 +d(x, y) 

M Obsérvese que 0 < d'(x , y) < J para 
Probar que d' también es una métrica para . -

todo x, y de M. . 'to de un espacio métrico es cerrado. 
3 30 Probar que cada subconJunto fiD! . B-( . .) = (x ' d(x a) -:::; r} se Jlama 
• . " (M el) el conjunto a, I . , 

331 En unespacJO metnco , , d M 
. . d d' . > ° V centro en el punto a e . 
/Jola cerrada e ra la I 
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a) Probar que B(a; r) es un conjunto cerrado. 
b) Dar un ejemplo de un espacio métrico en el que B(a; r ) no sea la adheren-

cia de la bola abierta B{a; r). 

3.32 En un espacio métrico M , si ciertos subconjuntos verifican A ~ S ~ A, donde 
A es la adherencia de A. entonces se dice que A es denso en S. Por ejemplo. el con­
junto Q de los números racionales es denso en R. Si A es denso en S y S es denso 
en T, probar que A es denso en T. 
3.33 Con referencia al ejercicio 3.32, diremos que un espacio métrico M es sepa­
rable si posee un subconjunto numerable A que sea denso en M. Por ejemplo, R es 
separable ya que el conjunto Q de los números racionales es un subconjunto denso 
numerable. Probar que cada espacio euclídeo Rk es separable. 
3.34 Con referencia al ejercicio 3.33, probar que el teorema del recubrimiento de 
Lindeléif (teorema 3.28) es válido en todo espacio métrico separable. 
3.35 Con referencia al ejercicio 3.32, si A es denso en S y si B es abierto en S, 
probar que B ~ A (\ B. Indicación. Ejercicio 3.13. 
3.36 Con referencia al ejercicio 3.32, probar que A (\ B es denso en S en el supuesto 
de que A y B sean densos en S y de que B sea abierto en S. • 
3.37 Dados dos espacios métricos (SI' di) Y (S2' d 2 ) , es posible construir una mé­
trica p en el producto cartesiano S} X S2' a partir de di y de d2 , de varias maneras. 
Por ejemplo, si x = (x l' X2! e Y = (Yl' Yo) son elementos de SI X S2' sea p(x. y) = 
d,(x J' yJ + d z(xz, yz)· Probar que p es una métrica para SI X S2 y construir otras. 

Subconjuntos compactos de un espacio métrico 

Probar cada una de las afirmaciones siguientes, concernientes a un espacio métrico 
arbitrario (M, d) Y a subconjuntos S. T de M . 
3.38 Supongamos que S ~ T ~ M. Entonces S es compacto en (M, d) si, y sólo si, 
S es compacto en el subespacio métrico (T. d). 
3.39 Si S es cerrado y T es compacto, entonces S (\ T es compacto. 
3.40 La intersección de una colección arbitraria de subconjuntos compactos de M, 
es compacta. 
3.41 La reunión de un número finito de subconjuntos compactos de M es compacta. 
3.42 Consideremos el espacio métrico Q de los números racionales con la métrica 
euclídea de R. Sea S el conjunto de todos los números racionales del intervalo abier­
to (a. b), donde a y b son irracionales. Entonces S es un subconjunto de Q. cerrado 
y acotado, que no es compacto. 

MigceJánea de propiedades del interior y de la frontera 

Si A Y B designan subconjuntos cualesquiera de un espacio métrico M, probar que: 
3.43 int A = M - M - A. 

3.44 int (M - A) = M - A. 
3.45 int (int A) = int A. 
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. nn A) - nn (int A;),donde cadaA; S M . 
3.46 a) mt ( ; = 1 ; - nl=1 (' t A) si F es una colección infinita de subconjun-

b) int (nAEF A) S AEF m , 

tDos de M:emplo en el que la igualdad de (b) no se verifique. 
c) ar un eJ 

3.47 a) UAEF (int A) S int (UAEF A) . . , fi 't F que no satisfaga la igualdad en (a) . 
b) D ar un ejemplo de una colecclOn . TIl a d M 
a) int (oA) = 0 si A es abierto ~ SI A es_ce;;a o en . 

3.48 b) Dar un ejemplo para . el que mt d(oA) -M ~ntonces int (A u B) = 0. 
. A . t B - 0 y SI A es cerra o en , B) - M 

3.49 Si mt = m - . A-' t B=0 pero para el que int(A u - . 
3 50 Dar un ejemplo en el que mt - m , 

. cA = A (\ M - A Y cA = c(M - A). 
3.51 Si A (\ B = 0, entonces o(A U B) = oA U aB. 
3.52 
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CAPíTULO 4 

Límites y continuidad 

4.1 INTRODUCCIóN 

Suponemos al lector ya familiarizado con el concepto de límites tal como es 
introducido en el Cálculo elemental donde es corriente presentar varios tipos 
de límites. Por ejemplo, el límite de una sucesión de números reales {X'll} , que 
simbolizamos cuando escribimos 

lim x" = A, 
""'00 

significa que para cada número é > O existe un entero N tal que 

siempre que n > N. 

Este límite pretende transmitir la idea intuitiva de que x'" puede estar suficien­
temente próximo a A en el supuesto de que n sea suficientemente grande. Tam­
bién se da el límite de una función, indicado por medio de la notación 

lim f(x) = A, 

que significa que para cada é > O existe otro número o > O tal que 

If(x) - Al < e siempre que O < Ix - pi < b. 

Esta definición expresa la idea de que f(x) puede conseguirse tan próxima a A 
como queramos, siempre que x se tome lo suficientemente próximo a p. 

Las aplicaciones del Cálculo a los problemas geométricos y físicos del es­
pacio tridimensional y a las funciones de varias variables nos obligan a exten­
der estos conceptos a R'''. Es tan necesario como fácil dar un paso más e intro­
ducir límites en el marco más general de los espacios métricos. Esto simplifica 
la teoría puesto que elimina restricciones innecesarias y al mismo tiempo cubre 
casi todos los aspectos necesarios del Análisis. 

Primeramente discutiremos los límites de las sucesiones de puntos de un 
espacio métrico y después discutiremos los límites de funciones y el concepto 
de continuidad. 
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4.2 SUCESIONES CONVERGENTES EN UN ESPACIO MÉTRICO 

Definición 4.1. Una sucesión {X,.} de puntos de un espado métrico (S, á) es 
convergente si existe un punto p de S que satisfaga la siguiente propiedad: 

Para todo E > O existe un entero N tal que 

d(x,., p) < E siempre que n > N. 

Diremos también que {x",} converge hacia p y escribiremos x .. _ p cuando 
n - 00, o simplemente x", - p. Si no existe un tal número p de S, se dice que 
la sucesión {x,,} es divergente. 

NOTA. La definición de convergencia implica que 

x .. - p si, y sólo si, d(x,., p) _ O. 

La convergencia de la sucesión {d(x,., p)} hacia O se realiza en el espacio 
euclídeo RI. 

Ejemplos 

1. En un espacio euclídeo Rl, una sucesión {x,,} se llama creciente si x" ~ xn+l 
para todo n . Si una sucesión creciente está acotada superiormente (esto es, si 
x" ~ M para un M > O Y para todo n), entonces {x,,} converge hacia el su­
premo de su recorrido, sup {xl' x 2' . . . }. Análogamente, {x,,} se llama decreciente 
si x:.+ I :s; x"" para todo n. Cada sucesión decreciente acotada inferiormente con­
verge hacia el ínfimo de su recorrido. Por ejemplo, {l /n} converge hacia O. 

2. Si {a,,} y {b_,,) son sucesiones reales que convergen hacia 0, entonces {a" + bn } 

también converge hacia O. Si O ~ Cn < an para todo n y si {a,.} converge ha­
cia O, entonces {c.n} también converge hacia O. Estas propiedades elementales de 
las sucesiones de RI pueden ser útiles para simplificar algunas de las demostra­
ciones concernientes a límites de un espacio métrico general. 

3. En el plano complejo C. sea z" = 1 + n--2 + (2 - l f n)i. Entonces {z..} converge 
hacia 1 + 2i puesto que 

d(zm 1 + 2ii = IZn - (1 + 2i)12 = 14 + ~ .... O cuando n .... 00, 
n n 

luego d(z". 1 + 2i) ~ O. 

Teorema 4.2. Una sucesión {X,.} de un espacio métrico (S. d) puede conver­
ger hacia un punto de S. a lo sumo. 

Demostración. Supongamos que x", - p y que x" - q. Probaremos que p = q. 
En virtud de la desigualdad triangular se tiene 

Límites y continuidad 87 

O ~ d(p, q) ~ d(p, xn) + d(xn, q). 

Como d(p. x'n) - O Y d(x ... q) - O se tiene que d(p. q) = O, luego p = q. 
Si una sucesión {x,.} converge, el ún*co punto hacia el que converge se 

llama límite de la sucesión y se designa por medio de lim Xn o por medio 
de limn .... ", X n • 

Ejemplo. En el espacio euclídeo RI tenemos que limn -+ oo l/n = O. La misma sucesión 
en el subespacio métrico T = (0, 1 J no converge puesto que el único candidato para 
el límite es O y O f/'. T. Este ejemplo muestra que la convergencia o divergencia de 
una sucesión depende tanto del espacio elegido como de la métrica. 

Teorema 4.3. En un espacio métrico (S, á), suponemos que x" - p y que 
T = {Xl' x2 ' ... } es el recorrido de {x .. }. Entonces: 
a) T está acotado. 
b) p es un punto de adherencia de T. 

Demostración. a) Sea N el entero que corresponde a E = 1 en la definición 
de convergencia. Entonces todo x" con n::> N está en la esfera B(p; 1), luego 
cada punto de T está en la esfera B(p; r), donde 

r = 1 + max {d(p, Xl)' •. • , d(p, X N - I )}. 

Por lo tanto, T está acotado. 
b) Como cada esfera B(p; E) contiene un punto de T, p es adherente a T. 

NOTA. Si T es infinito, cada bola B(p; E) contendrá una infinidad de puntos 
de T, luego p será punto de acumulación de T. 

El teorema siguiente prueba el recíproco de la parte (b). 

Teorema 4.4. Dado un espacio métrico (S, d) y un subconjunto T ~ S, si 
p es un punto de S adherente de T. entonces existe una sucesión {x,,} de pun­
tos de T que converge hacia p. 

Demostración. Para cada entero n > 1 existe un punto x" de T tal que 
d(p, X,.) < lino Por lo tanto d(p, x,,) - O, luego x" - p. 

Teorema 4.5. En un espacio métrico (S, d) una sucesión {x .. } converge ha­
cia p sI', y sólo si, cada subsucesión {Xk(n)} converge hacia p. 

Demostración. Supongamos que x" - P y consideremos una subsucesión 
{Xk(n) }' Para cada E> O existe un N tal que n ¿ N implica d(x... p) < E. Como 
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{Xk( nl} es una subsucesión. existe un entero M tal que k(n) > N para 
n > M. Por lo tanto. n ~ M implica d(xk(nl. p) < e. que prueba que Xk(nl 0....)0 p. 
El recíproco se verifica trivialmente. ya que {xn} es una sub sucesión de sí 
misma. 

4.3 SUCESIONES DE CAUCHY 

Si una sucesión {x..} converge hacia el límite P. sus términos avanzados deben 
aproximarse a p y por 10 tanto aproximarse entre sí. Esta propiedad está 
enunciada más formalmente en el siguiente teorema. 

Teorema 4.6. Supongamos que {Xn} converge en un espacio métrico (S. d). 
Entonces para cada " > O existe un entero N tal que 

d(xn • x'm) < " siempre que n > N y m > lf. 
Demostración. Sea p = lim Xn . Dado o > O. sea N tal que d(xn , p) < 0/2 siem­
pre que n > N. Entoncesd(xm, p) < 0/2 si m > N. Si tanto n como m son ma­
yores o iguales que N por la desigualdad triangular tenemos 

4.7. Definición de la sucesión de Cauchy. Una sucesión {Xn} de un espa­
cio métrico se llama sucesión de Cauchy si satisface la siguiente condición 
(llamada la condición de Cauchy): 

Para cada E > O existe un entero N tal que 

d(xn , x",) < E siempre que n > N y m > N. 

El teorema 4.6 establece que toda sucesión convergente es una sucesión 
de Cauchy. El recíproco. en general. es falso en un espacio métrico general. 
Por ejemplo. la sucesión {l/n} es una sucesión de Cauchy en el subespacio 
euclídeo T = (O, 1] de RI, pero en cambio dicha sucesión no converge en T . 
Sin embargo. el recíproco del teorema 4.6 es cierto en cada espacio euclídeo Rk. 

Teorema 4.8. En el espacio euclídeo Rk toda sucesión de Cauchy es con­
vergente. 

Demostración. Sea {x",} una sucesión de Cauchy de Rk y sea T = {x" x2 •••• } 

el recorrido de la sucesión. Si T es finito. entonces todos los términos de {Xn} 
excepto un número finito son iguales y por lo tanto {Xn} converge hacia este 
valor común. 

, 
.¡, 
f 
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Supongamos ahora que T es infinito. Utilizaremos el teorema de Bolzano­
Weierstrass para demostrar que T posee un punto de acumulación p. y a con­
tinuación probaremos que {x .. } converge hacia p. Debemos probar. ante todo. 
que T está acotado. Esto se sigue de la condición de Cauchy. En efecto. cuan­
do e = 1 existe un N tal que n > N implica Ilx .. - xN11 < 1. Esto significa 
que todos los puntos Xn con n > N pertenecen a la bola de radio 1 y centro XN. 

luego T está contenido en una bola de radio 1 + M y centro O, si M designa 
al mayor de los números IIXnII •...• IlxNII. De donde. al ser T un conjunto in­
finito acotado. admitirá un punto de acumulación p en Rk (en virtud del teo­
rema de Bolzano-Weierstrass). Probaremos ahora que {x .. } converge hacia p. 

Dado e > O existe un N tal que IIxn - x.,,1I < <:/2 siempre que n > N Y 
m > N . La bola B(p; <:/2) contiene un punto x."" con m > N. Luego. si n > N. 
se tiene 

luego lim Xn = p. Esto termina la demostración. 

Ejemplos 
l. El teorema 4.8 es, a veces, útil para probar la convergencia de una sucesión cuyo 

límite no se conoce de antemano. Por ejemplo, consideremos la sucesión de Rl 
definida por 

1 1 1 (_1).-1 
X =1--+---+" ' + --- · 

• 234 n 

Si m > n > N, obtenemos (agrupando los términos sucesivos en pares) que 

IX
m 

- XIII = \_1 ___ 1_ + ... ± !\ < ! ::; !. 
n+1 n+2 m n N 

luego IIxm -x .. 1I < e siempre que N.> l/e. Por lo tanto la sucesión {xn } es una 
sucesión de Cauchy y por consiguiente converge hacia un cierto límite. Puede 
probarse (ver el ejercicio 8.18) que este límite es log 2, lo cual no es obvio a 
simple vista. 

2. Dada una sucesión real {an } tal que la.+2 - a.+ 1 1 ::; !Ia.+l - a.1 para todo 
n ¿ 1. podemos probar que {a,.} converge sin necesidad de conocer su límite. 
Sea b. = lall+l - a"l . Entonces O::; bn+ 1 ::; bn/2 luego, por inducción, bn+1 S 
b,/2n• Por lo tanto b .. - O. Así pues, si m > n tenemos 

m-l 

am - an = L (aH 1 - ak); 
k=n 

luego 
m-l (1 1 ) lam - anl ::; "" bk ::; b. 1 + - + ... + --1- < 2bn• f;;:. 2 2m - -n 

Ello implica que {a,.} es una sucesión de Cauchy. luego {an } es convergente. 
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4.4 ESPACIOS MÉTRICOS COMPLETOS 

Definición 4.9. Un espcio métrico (S, d) se llama completo si toda sucesión 
de Cauchy de S converge en S. Un subconjunto T de S se llama completo si 
el subespacio métrico (T, d) es completo. 

E.iemplo 1. Cada uno de los espacios euclídeos Rk es completo (teorema 4.8). En 
particular, R' es completo, pero el subespacio T = (O, 1] no es completo. 
Ejemplo 2. El espacio Rn con la métrica d(x. y) = max 1 ';¡';n ¡Xi - y¡¡ es completo. 

El teorema que damos a continuación relaciona la completitud con la com­
pacidad. 

Teorema 4.10. En todo espacio métrico (S, d), cada subconjunto compac­
to T es completo. 

Demostración. Sea {x,,} una sucesión de Cauchy en T y sea A = {x" X
2

' ••• } 

el recorrido de {x,,}. Si A es finito, entonces {xn } converge hacia uno de los 
puntos de A, luego {X.,J converge en T. 

Si A es infinito, el teorema 3.38 nos asegura que A admite un punto de 
acumulación p en T puesto que T es compacto. Probaremos ahora que X n ~ p. 
Dado e > 0, elijamos N tal que n > N Y m > N implique d(xn, x",) < s/2. La 
bola B(p; 0/2) contiene un punto Xm con m >N. Por lo tanto si n > N la 
desigualdad triangular nos conduce a 

luego x" ~ p. De lo cual se deduce que toda sucesión de Cauchy en T admite 
límite en T, luego Tes completo. 

4.5 LíMITE DE UNA FUNCIóN' 

En esta sección consideraremos dos espacios métricos (S, ds) Y (T, dT ), donde 
ds Y dT designan las métricas respectivas. Sea A un subconjunto de S y sea 
f: A ~ T una función de A en T. 

Definición 4.11. Si p es un punto de acumulación de A y si bE T, la no­
tación 

limf(x) = b, (1) 
x->p 
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significa lo siguiente: 
Para cada o > ° existe un 1) > ° tal que 

dT(f(x), b) < E siempre que x E A,x i' P. Y ds(x, p) < 1). 

El símbolo dado en (1) se lee «el límite de f(x) , cuando x tiende hacia p, 
es b», o «f(x) es próximo a b cuando x es próximo a P». A menudo indica­
remos esto escribiendo f(x) ~ b cuando x ~ p. 

La definición formaliza la idea intuitiva de que f(x) puede hacerse tan próxi­
mo a b como se desee siempre que se elija x suficientemente próximo a p 

(ver Fig. 4.1). Se requiere que p sea un punto de acumulación de A a fin de 

.1 
f 

7' 
.. 

Figura 4.1 

que tenga sentido considerar puntos x de A suficientemente próximos a p, ¿un 
~"t" -=1= p. Sin embargo, no es necesario que p pertenezca al dominio de f, y tam­
poco lo es que b deba pertenecer al recorrido de f. 

NOTA. La definición puede ser formulada en términos de bolas. Así, (1) se 
verifica si, y sólo si, para toda bola BT(b) existe una bola BsCp) tal que Bs(p) n A 
sea no vacío y, además, 

f(x) E BT(b) siempre que x E Bs(p) n A, xi' p . 

Formulando de esta manera, la definición tiene sentido cuando p o b (o am­
bos) pertenecen al sistema ampliado de los números reales R* o al sistema 
ampliado de los números complejos C*. Sin embargo, en lo venidero, enten­
deremos que p y b son finitos salvo que se indique explícitamente que pueden 
ser infinitos. 

El teorema que sigue a continuación relaciona los límites de funciones con 
los límites de sucesiones convergentes. 

Teorema 4.12. Supongamos que p es un punto de acumulación de A y que 
b E T. Entonces 

limf(x) = b, (2) 
x->p 
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sí, y sólo si, 

lim /(xn) = b, 
n~oo (3) 

para toda sucesión {xn } de puntos de A - {p} que sea convergente hacia p. 

Demostración. Si se verifica (2), entonces para cada E > O existe un 8 > O 
tal que 

dT(f(x), b) < E siempre que x E A Y O < ds(x, p) < ó. (4) 

Como p es adherente a A - {p}, por el teorema 4.4, existe una sucesión 
{Ix,,} en A - {p} convergente hacia p. Para el 8 que interviene en (4), existe 
un entero N tal que n > N implica ds(xn , p) < 8. Entonces (4) implica que 
tl7'(f~x.n), .b) < e para n > N, Y por lo tanto {/(x,.)} converge hacia b. Así pues, 
(2) ImplIca (3). 

Para probar el reCÍproco supondremos que se verifica (3) y que (2) es falso 
1,legando .a una contradicción. Si (2) es falso" entonces para algún E > O Y tod; 
~ > O eXIste un punto x de A (donde x puede depender de 8) tal que 

O < ds(x, p) < () pero dr(f(x) , b) :2: e. 

Tomando () = I/n, n = 1, 2, ",' esto significa que existe una sucesión 
puntos de A - {p} tal que 

O < dsCx., p) < l /n pero 

(5) 

~s evidente entonces que hemos obtenido una sucesión {xon} que converge ha­
cIa ? pero en cambio la sucesión {/(xn )} no converge hacia b, lo cual con­
tradIce a (3). 

NOTA, Los teoremas 4.12 y 4.2 prueban que una función no puede tener dos 
límites diferentes cuando x-p. 

1.6 LíMITES DE FUNCIONES CON VALORES COMPLEJOS 

Sea ~S, d) un espacio. métrico, sea A un subconjunto de S, y consideremos dos 
funCIOnes f y g defimdas sobre A y con valores complejos, 

f: A - C, g: A _ C 

La s~ma f + R se. define como la función cuyo valor en cada punto x de A es 
e~ numero complejO f(x) + g(x). La diferencia f - g, el producto f.g, y el co­
ciente f/g se definen análogamente. Es sabido que el cociente sólo está definido 
en aquellos puntos x en los que g(x) =;1= O. 
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Las reglas usuales para el cálculo con límites vienen dadas en el teorema 
que sigue. 

Teorema 4.13. Sean f y g dos funciones con valores complejos definidas 
en un subconjunto A de un espacio métrico (S, d). Sea p un punto de acumu­
lación de A, y supongamos que 

lim/(x) = a , Iim g(x) = b. 
X"p x~p 

Entonces tendremos también: 

a) limx~ p [J(x) ± g(x)] = a ± b, 

b) Iim x .. p f(x)g(x) = ab, 

c) limx .. pf(x)/g(x) = a/b si b =;1= O. 

Demostración. Probaremos (b), dejando las otras partes como ejercicio. Dado E 

con O < e < 1, sea e' un segundo número que satisfaga O < e' < 1, que de­
penderá de e en la forma que precisaremos más adelante. Existe un () > O tal 
que si x E A Y d(x, p) < 8, entonces 

If(x) - al < e' y Ig(x) - bl < e'. 

Entonces 
I/(x) I = la + (f(x) - a)1 < lal + e' < lal + l. 

Haciendo f(x)g(x) - ab = f(x)g(x) - bf(x) + bf(x) - ab, tenemos 

If(x)g(x) - abl :$ 1/(x)llg(x) - bl + Ibl I/(x) - al 

< (Ial + I)e' + Ible' = e'(lal + Ibl + 1). 

Si elegimos e' = e/(Ial + Ibl + 1), veremos que If(x)g(x) - abl < E siempre que 
x E A Y d(x, p) < 8, Y esto demuestra (b). 

4.7 LíMITES DE FUNCIONES CON VALORES VECTORIALES 

De nuevo, sea (S, d) un espacio métrico y sea A un subconjunto de S. Consi­
deremos dos funciones f y g, definidas sobre A, con valores vectoriales toma­
dos en Rk, 

f: A -+ Rk, 

El cociente de funciones con valores vectoriales no está definido (si k 5> 2), 
pero es posible definir la suma f + g, el producto Al (si ,\ es real) y el pro­
ducto escalar f· g por medio de las fórmulas 
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(f + g)(x) = f(x) + g(x), (Af)(x ) = A f(x) , (f'g)(x) = f(x )'g(x) 

para todo x de A Se tie ti" 
de funciones co~ valor~:~:~t~~~~:s .as sIgUIentes reglas para calcular los límites 

Teorema 4.14. 
Sea p un punto de acumulación de A Y 'supongamos que 

lim f(x ) = a , lim g(x) = b. 
x- p 

Entonces se tiene también: 

a) limx_p [f(x) + g(x)] = a + b, 
b) r Imx_ p Af(x) = Aa para cada escalar A 
c) limx_ p f(x)' g(x) = a' b, ' 

d) limx_p 11 f(x) 11 = Ila ll. 

Demostración. Probaremos sólo las partes (c) y (d). Para probar (c) hagamos 

f(x)' g(x) - a' b - [f(x) ] [ ( 
- - a . g x) - b] + a'[g(x) - b] + b'[f(x) _ aJ. 

La desigualdad de Cauchy-Schwarz y la desigualdad triangular nos dan 

O :$ If(x)'g(x) - a'bl 

:$ Ilf(x) - allllg(x) - bll + lIallllg(x) - bll + Ilbll llf(x) _ all . 

Cada uno de los términos de la derecha tiende a O cuando x-? 
f(x)·g(:U)-?3·b. Esto prueba (c). Para demostrar (d), obsérvese que p, luego 

/ I/ f(x) /I - Ilal/ 1 < // f(x) - all. 
NOTA. Sean f f · f . 
f. n 10" ". ,n n unCIOnes con valores reales definidas sobre A sea 

. A -? R la funclOn con valores vectoriales definida por ' y 

f(x) = (fr(x), f2(X), ... , fn(x» si x EA. 

Entonces fl' . . . , fn se llaman componentes de f y se '. 
para indicar dicha relación. . , escn e f = (fl' ... , fn) 

Si 3 = (al' ... , a..), entonces para cada r = 1 2 , ,.. n tenemos 

If,(x) - a,1 :$ IIf(x) - all :$ t If/x) - a,l. 
r=1 

Estas desigualdades demuestran que lim f{x) - . 'l ' l' 
para cada r . "' -+p \ - 3 SI, Y so o SI, Imx-+ p!f,(x) = a, 

, 
} 
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4.8 FUNCIONES CONTINUAS 

La definición de continuidad que se . da en Cálculo elemental puede extenderse 
a funciones definidas de un espacio métrico a otro. 

Definición 4.15. Sean (S, ds) Y (T, dT) espacios métricos y sea f: S -? T una 
función de S en T. La función f se llama continua en un punto p de S si para 
cada € > O existe un ~ > O tal que 

dT(f(x), f(p» < € siempre que ds (x, p) < 8. 

Si f es continua en todos los puntos del subconjunto A de S, se dice que f es 
continua en A. 

Esta definición refleja la idea intuitiva de que puntos cercanos a p se apli­
can, por medio de f, en puntos cercanos a f(p). Puede expresarse, también. 
en términos de bolas: una función f es continua en p sí, y sólo si, para cada 
€ > O, existe un 8 > O tal que 

Aquí Bip; 8) designa una bola de S; su imagen, por medio de f, debe estar 
contenida en la bola BT(f(p); €) de T . (Ver Fig. 4.2.) 

Si p es un punto de acumulación de S, la definición de continuidad im­
plica que 

Iim f(x) = f(p)· 

Si p es un punto aislado de S (un punto de S que no es de acumulación de S), 
entonces toda f definida en p será continua en p ya que para a suficiente­
mente pequeño existe un único x que satisface ds(x, p) < ~, a saber x = p, y 
dT(f(p), f(p» = O. 

Teorema 4.16. Sea f: S ~ T una función de un espacio métrico (S, ds) en 
otro espacio métrico (T, dT), y supongamos que pES. Entonces f es continua 

BS(p ; ó) BT(f( P); E) 

Imagen de Bs(p; ó) 

f • 

Figura 4.2 
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en p si, y sólo si, para cada sucesión { } 
{t(x.,)} de T converge hacia j(p)' e ,Xn

b 
lde S convergente en p, la sucesión 

, n Sim oos, 

n-o:) n 
lim f(xn) = f(lim x) . 

n-"" 
. La demostración de este teorema es a ' 

deja de ejercicio para el lector (El 1 dnaloga a la del teorema 4.12 y se 
rema 4.12 pero el hecho de q~e al r~~~:a o pued~ d~ducirse también del teo­
p~edan ser iguales a P presenta u g d'fi dIe los termIno s de la sucesión (x } 
mIento.) na 1 cu tad de orden menor en el r In 

E azona-
1 teorema se enuncia a veces d" d 

el sÍI~bolo de límite y el símbolo d lIclen o. que para funciones continuas 
estos mtercambios es preciso un c· te a 'dfunClón pueden intercambiarse En 
co .. ler o CUI ado ya 1 . nverge a pesar de que {"'} d' · ,que a gunas veces (j(x)} 

~ es lvergente. In 

Ejemplo. Si x -> X 
d(x ) (E ' . n e y" -... y en un espacio m't' f • 

, y . JercIcio 4.7.) El lector puede 'fi e nco ~S, d), entonces d(x y) 
métrico (SXS, p), donde p es la m~tricaV~~1 c~r q.u~ d es continua sobre et~sp:c: 

. eJerCIcIO 3.37 con SI = So = S 

NOTA La t' . - . 
: d con mUldad de una función f en u . 

~ropi~ a~ local de f, puesto que de end ' n punto p recIbe el nombre de 
mmedlacIOnes del punto p Un p. de solo del comportamiento de f en las 
de f se d' . apropIe ad de f refe t 1 

enomma propiedad global Así 1 '. ren e a dominio entero 
es una propiedad global. " a contInUIdad de f en su dominio 

4.9 LA CONTINUIDAD DE LAS 
FUNCIONES COMPUESTAS 

Teorema 4.17. Sean (S, ds), (T, dT " 
y g: feS) -... U funciones, y sea h 1;; (U: ,du) espaclOS metricos. Sean f: S -... T 
medio de la ecuación unClOn compuesta definida sobre S por 

. h(x) = g(J(x» para todo x de S. 

Si f es continua e . 
n p y Si g es continua en f(p), entonces h . . 

. es continua en p 
Demostración. Sea b = f() D d . 

p . aOe>O 't du(g(y) b .' eXlS e Un Ó > O tal 
Para este 8 existe un ~: tg(J » < e SIempre que dT(y, b) < ~ que 

o a que . 

Combinando est:(~~~' ~~?g) u:I!ad siemPhre . que ds(x, p) < 8'. 
d es yacIendo - f( ) 

1 u(h(x), h(p» < e sie y - x, obtenemos 
uego h es continua en p. mpre que ds(x, p) < 8', 

, Límites y continuidad 

4.10 FUNCIONES COMPLEJAS Y FUNCIONES VECTORIALES, 
CONTINUAS 
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Teorema 4.18. Sean f y g dos funciones con valores complejos, continuas en 
un punto p de un espacio métrico (S, d). Entonces f + g, f - g y f· g son tadas 
ellas continuas en p. El cociente fJg también es continuo en p si g(P) =1= O. 

Demostración. El resultado es trivial si p es un punto aislado de S. Si p es 
un punto de acumulación de S, el resultado se sigue del teorema 4.13. 

Existe, además, un teorema análogo para las funciones con valores vecto­
riales, que se demuestra de la misma manera, utilizando el teorema 4.14. 

Teorema 4.19. Sean f y g dos funciones contlnuas en un punta p de un 
espacio métrico (S, d), Y supongamos que f y g toman sus valores en Rn. En­
tonces cada una de las siguientes funciones es continua en p: la suma f + g, 
ei producto Af para cada número real A, el producto escalar f·g, y la norma IIfll. 

Teorema 4.20. Sean f1' .oo, fn' n funciones reales definidas sobre un subcon­
junto A de un espacio métrico (S, ds) Y sea f = (fI> . oo , fn)' Entonces f es con­
tinua en un punto p de A si, y sólo si, cada una de las funciones fI' . oo, f .. es 
continua en p. 

{ 

Demostración. Si p es un punto aislado de A no _ hay nada que demostrar. 
Si p es un punto de acumulación, obsérvese que f(x) - f(p) cuando x - psi, 
y sólo si, Mx~ -... Mp) para cada k = 1; 2, . oo, n. 

4.11 EJEMPLOS DE FUNCIONES CONTINUAS 

Sea S = C, el plano complejo. Es un ejercicio trivial demostrar que las siguien­
tes funciones con valores complejos son continuas en C: 

a) las funciones constantes, definidas por fez) = c para todo Z de C; 
b) la función identidad, definida por fez) = z para todo z de C. 

Aplicando repetidamente el teorema 4.18 se establece la continuidad de los 
polinomios 

donde los ai son números complejos. 
Si S es un subconjunto de C en el que el polinomio f no se anula, enton­

ces l /f es continua en S. Por 10 tanto una función racional gi f, donde g y f son 
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polinomios, es continua en cada uno de los puntos de e en los que el deno­
minador sea no nulo. 

Las funciones reales del Cálculo elemental, tales como la función expo­
nencial, trigonométrica, logarítmica, son continuas en todos los puntos en que 
están definidas. La continuidad de estas funciones elementales justifica la prác­
tica común de calcular ciertos límites substituyendo la ({variable independien­
te» por el valor límite; por ejemplo, 

lim eX = eO = 1. 
x-+O 

La continuidad de las funciones exponencial y trigonométrica complejas 
es una consecuencia de la continuidad de las funciones reales correspondientes 
y del teorema 4.20. 

4.12 CONTINUIDAD Y ANTIIMÁGENES DE CONJUNTOS 
ABIERTOS Y CERRADOS 

El concepto de antiimagen es útil p¡;tra dar dos importantes caracterizaciones 
globales de las funciones continuas. 

4.21. Definición de imagen inversa. Sea f: S~ T una función de un cierto 
conjunto S en otro conjunto T. Si Y es un subconjunto de T, la antNmagen 
de Y por f, designada por f-l(Y), se define como el mayor de los subconjun­
tos de S que se aplica en Y por medio de f; esto es, 

f-l(Y) = {x: x E S Y f(x) E Y}. 

NOTA. Si f admite función inversa f-l, la antiimagen de Y por medio de f 
coincide con la imagen directa de Y por medio de f-l, Y en este caso no hay 
ambigüedad en la notación f-l(Y). Nótese también que ¡ - 1 (A) ~ ¡ -1 (B) si 
A~B~T. 

Teorema 4.22. Sea f: S ~ T una función de S en T. Si X ~ S e Y ~ 1', 
tenemos: 

a) X= f-l(Y) implica f(X) ~ Y. 
b) Y = f(X) implica X ~ f-l(Y). 

La demostración del teorema 4.22 es inmediata por cuanto no es más que 
una traducción directa de la definición de los símbolos f-l(Y) y f(X), y se deja 
al lector. Obsérvese que, en general, no es posible concluir que Y = f(X) im­
plice X = f-l(Y). (Ver el ejemplo en la Fig. 4.3.) 

Límites Y continuidad 

Figura 4.3 

---
f _. 

--------
...­...­...-
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del teorema 4.22 pueden expresarse también 
Nótese que las afirmaciones 

de la siguiente manera: 
x ~ ¡-l[!(X)]. 

f l(B) a todos los subcon­
Obsérvese aSImIsmo que f-l(A U B) = f-l(A) U - par 

juntos A Y B de T. 

. ~ T una función de un espacio m¿trz'co (S, ds) en 
Teorema 4.23. Sea f· S . S si y sólo si para cada conjunto 
otro (T, dT). Entonces f es contznua en ." ~ 
'abierto Y de T, la antiimagen f- l(Y) es abIerta en S. 

, b S sea y un abierto de T, y sea P un 
Demostración. Sea f contmua so re ',. -1 Y) Sea = f(p). Como 

t d f-l(Y) Probaremos que p es mtenor a f (. y. O 
pun o e . B (y' o) e y para un cIerto o> . 
que Y es abierto entonces tenem?s que T , 1 - f(B ( . 3)) e BT(y; o). 
Como que f es continua en p, eXIste un 3 > O ta que s P , -

Por lo tanto, 

Bs(p; 15) ~ ¡-I[!(BsCp; 15))] ~ ¡-I[BT(y; 8)] ~ ¡-ley), 

l es un punto interior a f-l(Y). b 
uego P f-l(Y) es abierto en S para todo su con-

Recíprocamente, supongamos que _ f( ) Probaremos que f es 
. , y d T El'jamos p en S y sea y - p. 
Junto abIerto e. 1 O la bola B (Y' E) es abierta en T, luego 
continua en p. Para cada valor o > 'b' . ~ f~l(B (Y' o)) entonces existe 
f- l(B (y' E)) es abierto en S. Ahora len, SI p T' 3)) 

T' 1 B ( . ~) e f-l(B (y' o)), Por consiguiente, f(Bs(p; ~ un 3 > O ta que s p, o _ T' 

~ BT(y; o), luego f es continua en p. 

. ,. (S d) en 
4 24 S a f' S ~ T una función de un espacIO metrzco , s 

Teorema . . e . . '[ ' ra cada conjunto ce-
otro (T, d

T
). Entonces f es continua en S SI, Y so o SI, pa 

rrado Y de T, la antiimagen f-l(Y) es cerrada en S. 

http://libreria-universitaria.blogspot.com



100 

Demostración. 

Límites y continuidad 

Si y es cerrado en T, entonces T - Y es abierto en T y 

f-I(T - Y) = S - f-l(y) . 

Aplíquese ahora el teorema 4.23. 

Ejemplos. La imagen de un conjunto abierto por medio de una aplicación continua 
no es necesariame~te abierta. Un contraejemplo muy simple es el de las funciones 
constantes .que aplIcan todo S en un único punto de R l. Análogamente, la imagen 
de un. conjunto cerr~~oen una aplicación continua no tiene por qué ser cerrada. 
Por ejemplo, la funClOn real ¡(x) = arctg x aplica R 1 en el intervalo (_ rr/2, rr/2). 

4.13 FUNCIONES CONTINUAS SOBRE CONJUNTOS COMPACTOS 

El t~orema ~ue sigue prueba que la imagen de un conjunto .compacto en una 
funcIón contmua es un conjunto compacto. Es otra de las propiedades glo­
bales de las funciones continuas. 

Teorema 4.25. Sea f:. S ~ T una función de un espacio métrico (S, d
s
) en 

~/ro (T, dT). Si f es continua en un subconjunto compacto X de S, entonces la 
~magen f(X) es un subconjunto compacto de T; en particular, f(X) es un con­
¡unto cerrado y acotado de T. 

Demostración. Sea F u~ recubrimiento abierto de f{X), es decir f(X) ~ U.j"p A. 
Probarem.os que un numero finito de conjuntos A recubre a f(X). Como 
f es contmua sobre ~l sub espacio métrico (X, ds) podemos aplicar el teore­
ma 4.23 para c~ncIUlr que cada uno de los conjuntos f-l(A) es abierto en 
(X, ds). Los conjuntos f-l(A) forman un recubrimiento abierto de X y, como 
X es co~pacto, un número finito de ellos recubre a X; sea X ~ ¡-l(A

l
) 

U '" U f- (A p). Entonces 

f(X) S; f[J-I(Al) U ... u f-I(A p )] = f[J-I(Al)] u ". u f[J-I(A
p
)] 

S; Al u··· u A p , 

luego f(X) es compacto. Como corolario del teorema 3.38, vemos que f(X) es 
cerrado y acotado. 

Definición 4.26. Una función f: S ~ Rk está acotada en S si existe un nú­
mero positivo M tal que Ilf(x)1I < M para todo x de S. 

Como f está acotada en S si y sólo si f(S) es un subconjunto acotado 
de Rk, tendremos el siguiente corolario del teorema 4.25. 
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Teorema 4.27. Sea f: S ~ Rk una función de un espacio métrico S en el 
espacio euclídeo Rk. Si f es continua en un subconjunto X, compacto en S, 
entonces f está acotada en X. 

Este teorema posee importantes implicaciones en el caso de funciones rea­
les. Si f es una función real, acotada sobre X, entonces f(X) es un subcon­
junto de R, acotado, luego posee supremo, sup f(X), e ínfimo, inf f(X). Además, 

inf f(X) < f(X) < sup f(X) para cada x de X. 

El próximo teorema prueba que una función continua f alcanza efectivamente 
los valores sup f(X) e inf f(X) si X es compacto. 

Teorema 4.28. Sea f: S ~ R una función real de un espacio métrico S en 
el espacio euclídeo R. Supongamos que f es continua en un subconjunto X, 
compacto en S. Entonces existen puntos p y q de X tales que 

f(p) = inf f(X) 

y 

f(q) = sup f(X). 

NOTA. Como que f(p) < f(x) < f(q) para todo x de X, los números f(p) y 
f(q) se llaman, respectivamente, los valores mínimo y máximo globales o ab­
solutos de f en X. 

Demostración. El teorema 4.25 demuestra que f(X) es un subconjunto cerrado 
y acotado de R. Sea m = inf f(X). Entonces m es adherente a f(X) y, por ser 
f(X) cerrado, m E f(X). Por lo tanto, m = f(p) para un cierto p de X. Análo­
gamente, f(q) = sup f(X) para un cierto q de X. 

Teorema 4.29. Sea f: S ~ T una función de un espacio métrico (S, ds) en 
otro (T, dTJ. Supongamos que f es uno a uno sobre S, de modo que la función 
inversa f- l existe. Si S es compacto y si f es continua en S, entonces f- l es con­
tinua en /(S). 

Demostración. Por el teorema 4.23 (aplicado a f-1) bastará probar solamente 
que para cada conjunto cerrado X de S la imagen f(X) es cerrada en T. (Ob­
sérvese que f(X) es la imagen inversa de X por medio de f-l.) Como X es ce­
rrado y S es compacto, X es compacto (por el teorema 3.39), luego f(X) es 
compacto (por el teorema 4.25) y por lo tanto f(X) es cerrado (por el teore­
ma 3.38). Esto acaba la demostración. 
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Ejemplo. Este ejemplo muestra que la compacidad de S es esencial en el teore­
ma 4.29. Sea p = [O, 1) con la métrica usual de R1 y consideremos la función 1 con 
valores complejos definida por 

[(x) = e27[ix para O ::; x < 1. 

Ésta es una aplicación continua uno a uno del semi-intervalo abierto [O, 1) en el 
CÍrculo unidad Izl = 1 del plano complejo. Sin embargo, 1-1 no es continua en el pun­
to feO). Por ejemplo, si X n = 1 - l/n, la sucesión {f(x,,)} converge hacia feO) pero 
{x,,} no converge en S. 

4.14 APLICACIONES TOPOLóGICAS (HOMEOMORFISMOS) 

Definición 4.30. Sea f: S -4 T una función de un espacio métrico (S, ds) en 
otro (T, d1.). Supongamos también que f es uno a uno en S, de modo que la 
función inversa f-1 existe. Si f es continua sobre S y j-1 es continua sobre f(S), 
entonces diremos que f es una aplieadón topológica o un homeomorfismo, y los 
espacios métricos (S, ds) Y (f(S), dT) se llaman homeomorfos. 

Si f es un homeomorfismo, entonces f-1 también lo es. El teorema 4.23 
prueba que un homeomorfismo aplica subconjuntos abiertos de S en subcon­
juntos abiertos de feS). Aplica asimismo subconjuntos cerrados de S en sub­
conjuntos cerrados de feS). 

Una propiedad de un conjunto que permanezca invariante frente a las dis­
tintas aplicaciones topológicas, se llama una propiedad topológica. Así pues, 
las propiedades de ser abierto, cerrado, compacto son propiedades topológicas. 

Un ejemplo importante de homeomorfismo lo constituyen las isometrías. 
Se trata de una aplicación f: S -4 T que es uno a uno sobre S y que conserva 
la métrica; es decir, 

dT(J(x),f(y)) = ds(x, y) 

para todos los puntos x e y de S. Si existe una isometría de (S, ds) en (f(S), dT ), 

los dos espacios métricos se llaman isométrieos. 
Las aplicaciones topológicas son particularmente interesantes en la teoría 

de curvas. Por ejemplo, un arco simple es la imagen topológica de un intervalo, 
y una curva cerrada simple es la imagen topológica de una circunferencia. 

4.15 TEOREMA DE BOLZANO 

Esta sección está dedicada al famoso teorema de Bolzano que concierne a una 
propiedad global de las funciones reales continuas en intervalos compactos 
[a, b] de R. Si la gráfica de f está por encima del eje de las x en a y por 
debajo·del eje de las x en b, el teorema de Bolzano afirma que la gráfica debe 

I 
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cruzar, por lo menos una vez, a dicho eje entre a y b. Nuestra demostración 
se basará en una propiedad local de las funciones continuas conocida con el 
nombre de propiedad de la conservación del signo. 

Teorema 4.31. Sea f definida en un intervalo S de R. Supongamos que f es 
continua en un punto e de S y que f(e) =1= O. Entonces existe una bola unidi­
mensional B(e; 8) tal que f(x) tiene el mismo signo que f(e) en B(c; 8) n S. 

Demostración. Supongamos que f(e) > O. Para cada o > O existe un 8 > O 
tal que 

f(e) - o < f(x) < f(e) + o siempre que x E B(e; 8) n S. 

Elijamos el 8 que corresponde a o = f(e)/2 (este o es positivo). Entonces se tiene 

1 f(e) < f(x) < ! f(e) siempre que xE B(e; o) n S, 

luego f(x) tiene el mismo signo que f(e) en B(e; 8) n S. La demostración es 
análoga en el caso f(e) < O, excepto en el hecho de que hay que elegir 
0= -1 f(e). 

Teorema 4.32 (Bolzano). Sea f real y continua en un intervalo eompaetp 
[a, b] de R, y supongamos que fea) y f(b) tienen signos opuestos; esto es, su­
pongamos que f(a)f(b) < O. Entonces existe, por lo menos, un punto e del 
intervalo abierto (a, b) tal que f(e) = O. 

Demostración. Por definición, supongamos que fea) > O y f(b) < O. Sea 

A = {x: x E [a, b] y f(x) > O}. 

A es no vacío, puesto que a E A, y A está acotado por b. Sea e = sup A. En­
tonces a < e< b. Probaremos que f(e) = O. 

Si f(e) =1= O, existe una bola unidimensional B(e ;8) en la que f tiene el mis­
mo signo que f(e). Si f(e) > O, entonces habrá puntos x > e en los que f(x) > O, 
en contradicción con la definición de e. Si f(e) < O, entonces e - 8/2 es una 
cota superior para A, contradiciéndose, de nuevo, la definición de e. Por con­
siguiente debemos tener f(e) = O. 

Del teorema de Bolzano se deduce fácilmente el teorema del valor interme­
dio para funciones continuas. 

Teorema 4.33. Supongamos que f es real y continua en un intervalo com­
pacto S de R. Supongamos que existen dos puntos I~ < f3 de S tales que 



104 Límites y continuidad 

f(a) =1= f({3) . Entonces f toma todos los valores comprendidos entre fea) y f(f3) 
en el intervalo (a, f3). 

Demostración. Sea k un número comprendido entre fea) y f(f3) y apliquemos 
el teorema de Bolzano a la función g definida en [et, f3] por medio de la ecua­
ción g(x) = f(x) - k. . 

El teorema del valor intermedio, juntamente con el teorema 4.29, implican 
que la imagen cotinua de un intervalo compacto S por medio de una función 
real es otro intervalo compacto; a saber 

[inf feS), sup fes)]. 

(Si t es constante en S, entonces el intervalo sería degenerado.) La sección 
siguiente extiende esta propiedad a escenarios más amplios de espacios mé­
tricos. 

4.16 CONEXIóN 

En esta sección se describe el concepto de conexión y su relación con la con­
tinuidad. 

Definición 4.34.Un espacio métrico S se dice que es no conexo si S = A U B, 
donde A y B son conjuntos abiertos disjuntos de S, no vacíos. Diremos que S 
es conexo si no es no conexo. 

NOTA. Un subconjunto X de un espacio métrico S se llama conexo si, consi­
derado como subespacio métrico de S. es un espacio métrico conexo. 

Ejemplos 
1. El espacio métrico S = R - {O} con la métrica usual euclídea es no conexo, ya 

que es unión de dos conjuntos abiertos disjuntos no vacíos, los números positivos 
y los números reales negativos. 

2. Cada intervalo abierto de Res conexo. Esto se demostró en la sección 3.4 como 
consecuencia del teorema 3.11. 

3. El conjunto Q de los números racionales, consÍderado como subespacio del es­
pacio euclídeo Rt, es no conexo. En efecto, Q = A U B. donde A consta de todos 
los números racionales < h y B de todos los números racionales > h. Aná­
logamente, cada bola de Q es no conexa. 

4. Cada espacio métrico S contiene subconjuntos no vacíos conexos. En efecto, para 
cada p de Sel conjunto {p} es conexo. 

Para relacionar la conexión con la continuidad introduciremos el concepto 
de función a dos valores. 
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Definición 4.35. Una función real f que es continua en un espacio métrico S 
se llama función a dos valores sobre S si f(S) ~ {O, 1}. 

En otras palabras, una función a dos valores es una función continua cuyos 
únicos valores posibles son O y 1. Puede ser considerada como una función con­
tinua de S en el espacio métrico T = {O, 1}, donde T está dotado de la métrica 
discreta. Recuérdese que cada subconjunto de un espacio métrico discreto T 
es a la vez abierto y cerrado en T. 

Teorema 4.36. Un espacio métrico S es conexo si, y sólo si, cada una de las 
funciones a dos valores definidas en S es constante. 

Demostración. Supongamos que S es conexo y sea f una función a dos valores 
definida sobre S. Queremos probar que f es constante. Sean A = f-1({O}) y 
B = f-1({I}) las antiimágenes de los subconjunos {O} y {1}. Como {O} y 
{l} son subconjuntos abiertos del espacio métrico discreto {O, 1}, tanto A 
como B son abiertos en S. Por lo tanto, S = A U B. donde A y B son con­
juntos abiertos disjuntos. Pero, al ser S conexo, o A es vacío y B = S, o bien 
B es vacío y A = S. Tanto en un caso como en el otro, f es constante en S. 

Recíprocamente, supongamos que S es no conexo, luego S = A U B, don­
de A y B son subconjuntos de S abiertos disjuntos y no vacíos. Presentaremos 
ahora una función a dos valores definida sobre S que no será constante. Se~ 

f(x) = { ~ si x E A. 
si x EB. 

\ 

Como que A y B son no vacíos, f toma los valores O y 1 Y por tanto no es 
constante. Además, f es continua sobre S ya que la imagen inversa de cada 
subconjunto abierto de {O, 1} es abierto en S. 

A continuación demostramos que la imagen continua de un conjunto co­
nexo es conexa. 

Teorema 4.37. Sea f: S ~ M una función de un espacio métrico S en otro M. 
Sea X un subconjunto conexo de S. Si t es continua en X, entonces f(X) es un 
subconjunto conexo de M. 

Demostración. Sea g una función a dos valores definida sobre f(X). Probare­
mos que g es constante. Consideremos la función compuesta h definida en X 
por medio de la ecuación h(x) = g(f(x»). Entonces h es continua en X y puede 
tomar solamente los valores O y 1, luego h es una función a dos valores en X. 
Como que X es conexo, h es constante en X y esto implica que g es constante 
en f(X). Por consiguiente f(X) es conexo. 
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Ejemplo. Como un intervalo X de Rl es conexo, cada imagen continua f(X) es co­
nexa. Si f toma valores reales, la imagen f(X) es otro intervalo. Si f toma valores 
en R n, la imagen f(X) se llama curva de Rn. Entonces, cada curva de Rn es conexa. 

Como corolario al Teorema 4.37, tenemos el teorema siguiente que es una 
extensión del de Bolzano. 

Teorema 4.38 (Teorema del valor intermedio para funciones reales 
continuas). Sea f una función real continua definida en un subconjunto co­
nexo S de Rn. Si f alcanza dos valores distintos sobre S, tales como a y b, en­
tonces para cada c comprendido entre a y b existe por lo menos un punto x 
de S en el que f(x) = c. 

Demostración. La imagen feS) es un subconjunto conexo de Rl. Por lo tanto, 
feS) es un intervalo que contiene a a y a b (ver ejercicio 4.38). Si algún valor c 
comprendido entre a y b no estuviese en feS), entonces feS) 'no sería conexo. 

4.17 COMPONENTES DE UN ESPACIO MÉTRICO 

Esta sección demuestra que todo espacio métrico S puede expresarse de forma 
única como reunión de «trozos» conexos, llamados componentes. Ante todo de­
mostraremos el siguiente. 

Teorema 4.39. Sea F una colección de suhconjuntos conexos de un espacio 
métrico S tal que la intersección T = nAeF A es no vacía. Entonces, la reunión 
U = U AeF A es conexa. 

Demostradón. Como T =1= 0, existe un t de T. Sea f una función a dos 
valores definida sobre U. Probaremos que f es constante en U probando que 
f(x) = f(t) para todo x de U. Si xE U, entonces x E A para un cierto A de F. 
Corno A es conexo, f es constante sobre A y, como t E A, f(x) = f(t). 

Todo punto x de un espacio métrico S pertenece, por lo menos, a un sub­
conjunto conexo de S, a saber {x}. Por el teorema 4.39, la reunión de todos 
los subconjuntos conexos que contienen a x es también conexo. A esta reunión 
la llamaremos componente de S, y la designaremos por U(x). Así, U(x) es el 
subconjunto de S conexo maximal que contiene a x. 

Teorema 4.40. Todo punto de un espacio métrico S pertenece a una única 
y determinada componente de S. En otras palabras, las componentes de S for­
man una colección de conjuntos disjuntos cuya reunión es S. 

t 
j 

I ! 

t 
{ 

I 
l 
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Demostración. Dos componentes distintas no pueden tener ningún punto x en 
común; en otro caso (por el teorema 4.39) su reunión sería un conjunto conexo 
más grande que contendría a x. 

4.18 CONEXIóN POR ARCOS 

En esta sección se describe una propiedad especial, llamada conexión por arcos, 
que poseen algunos (pero no todos) los conjuntos conexos de un espacio 
euclídeo Rn. 

Definición 4.41. Un conjunto S de Rn se llama arco-conexo si, para cada 
par de puntos a y b de S, existe una función f: [O, 1] ~ S tal que 

feO) = a y f(l) = b. 

NOTA. Una tal función se llama un camino de a a b. Si feO) =1= f(1), la imagen 
de [O, 1] por medio de f se denomina arco, que une a con b. Entonces, S es 
arco-conexo si cada dos puntos distintos de S pueden unirse por medio de 
un arco contenido en S. Los conjuntos arco-conexos se llaman también co­
nexos por caminos. Si f(l) = tb + (1 - t)a para O < t < 1, la curva que une 
a y b se llama segmento rectilíneo. 

Ejemplos 
1. Cada conjunto convexo de Rn es arco-conexo, ya que el segmento rectilíneo que 

une dos puntos del conjunto está en el conjunto. En particular, las bolas n-di­
mensionales abiertas y las cerradas son arco conexas. 

l. El conjunto de la figura 4.4 (reunión de dos discos cerrados tangentes) es arco 
conexo. 

Figura 4.4 
Figura 4.5 

3. El conjunto de la figura 4.5 consiste en todos los puntos de la curva descrita por 
y = sen (l/x), O < x ::; 1, Y los del segmento horizontal -1::; x ::; O. Este con­
junto es conexo pero no arco conexo (ejercicio 4.46). 

El teorema que sigue relaciona la conexión por arcos con la conexión. 
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Teorema 4.42. Todo conjunto S de Rn arco-conexo es conexo. 

Demostración. Sea g una función a dos valores definida sobre S. Probaremos 
que g es constante sobre S. Elijamos un punto a de S. Si x E S, unamos a con x 
por medio de un arco r contenido en S. Como que r es conexo, g es cons­
tante sobre r luego g(x) = g(a). Pero, al ser x un punto arbitrario de S, queda 
demostrado que g es constante sobre S, y que S es conexo. 

Hemos visto anteriormente que hay conjuntos conexos que no son arco 
conexos. Sin embargo, ambos conceptos son equivalentes en el caso de con­
juntos abiertos. 

Teorema 4.43. Un conjunto abierto conexo de R" es arco-conexo. 

Demostración. Sea S un conjunto abierto y conexo de Rn y supongamos que 
x E S. Probaremos que x puede unirse con cualquier otro punto y de S por 
medio de un arco contenido en S. Designemos por A el subconjunto de S for­
mado por los puntos que pueden: unirse con x, y sea B = S-A. Entonces 
S = A u B, donde A y B son disjuntos. Ahora demostraremos que tanto A 
como B son abiertos en Rn. 

Sea a E A Y unamos a con x por medio de un arco r contenido en S. 
Como que a E S Y S es abierto, existe una bola n-dimensional B(a) ~ S. Cada y 
de B(a) puede unirse con a por medio de un segmento rectilíneo (contenido 
en S) y por lo tanto con x por medio de r. Así pues, si y E B(a), entonces 
y E A. Esto implica que B(a) ~ A, Y por lo tanto A es abierto. 

Para ver que B también es abierto, supongamos que bE B. Entonces existe 
una bola n-dimensional B(b) ~ S, ya que S es abierto. Ahora bien, si un pun­
to y de B(b) pudiese unirse con x por medio de un arco P, contenido en S, 
el punto b también podría unirse con x, uniendo primeramente b con y (por 
medio de un segmento rectilíneo contenido en B(b») y utilizando después P. 
Pero como b El: A, ningún punto de B(b) deberá pertenecer a A. Así, B(b) ~ B, 
luego B es abierto. 

Hemos obtenido, por lo tanto, una descomposición S = A u B, donde A 
y B son conjuntos de Rn abiertos y disjuntos. Pero, A es no vacío ya que 
x E A. Como que S es conexo, B deberá ser vacío, con lo cual S = A. Ahora 
bien, es evidente que A es arco-conexo ya que cualquier par de puntos de A 
pueden unirse por medio de un arco conveniente, uniendo primeramente cada 
uno de ellos con x. Por consiguiente, S es arco-conexo y la demostración está 
terminada. 

NOTA. Un camino f: [O, 1] ~ S se llama poligonal si la, imagen de [O, 1] por 
medio de f es la reunión de un número finito de segmentos rectilíneos. El mis-
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mo argumento utilizado para demostrar el teorema 4.43 prueba además que 
cada conjunto conexo de Rn es conexo por poligonales; es decir, cada par de 
puntos del conjunto puede unirse con un arco poligonal contenido en el con­
junto. 

Teorema 4.44. Todo conjunto abierto S de Rn puede expresarse de forma 
única como reunión de una familia disjunta numerable de conjuntos conexos 
y abiertos. 

Demostración. Por el teorema 4.40, las componentes de S constituyen una 
colección de conjuntos disjuntos cuya reunión es S. Cada componente T de S 
es abierta, puesto que si x E T existe una bola n-dimensional B(x) contenida 
en S. Como B(x) es conexo, B(x) ~ T, luego T es abierto. Por el teorema de 
Lindelof (teorema 3.28), las componentes de S constituyen una colección nu­
merable, y por el teorema 4.40 la descomposición en componentes es única. 

Definición 4.45. Un conjunto de Rn se llama región si es la reunión de un 
conjunto conexo abierto con alguno, ninguno, o todos sus puntos frontera. Si 
ninguno de sus puntos frontera está incluido en la región, se dice que ésta 
es una región abierta. Si todos los puntos frontera están incluidos, se dice que 
la región es una región cerrada. 

NOTA. Algunos autores utilizan la palabra dominio en vez de región abierta, 
especialmente en el plano complejo. 

4.19 CONTINUIDAD UNIFORME 

Supongamos que f está definida en un cierto espacio métrico (S, ds) y tiene 
sus valores en otro espacio métrico (T, dT), y supongamos que f es continua 
en un subconjunto A de S. Entonces, dado un punto p de A y un e> O, existe 
un o> O (que depende de p y de e) tal que, si x E A, entonces 

dT(f(x), f(p») < e siempre que ds(x, p) < o. 

En general no se debe esperar que, fijado e, el mismo valor de 8 sirva para 
cada punto p de A. Sin embargo, puede ocurrir. Cuando ocurre, se dice que la 
función es uniformemente continua en A. 

Definición 4.46. Sea f: S ~ T una función de un espacio métrico (S, ds) en 
otro espacio métrico (T, dT). Entonces se dice que f es uniformemente con­
tinua en un subconjunto A de S si verí'fica la siguiente condición: 

APOSTOL. análisis - 5 
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Para cada • > ° existe un o > ° (que depende exclusivamente de .) tal 
que si x E A Y P E A entonces 

dr(f(x), f(p» < E siempre que ds(x, p) < o. (6) 

A fin de insistir en la diferencia entre continuidad sobr~ A y contlnuidad 
uniforme sobre A consideraremos los siguientes ejemplos de funciones reales. 

Ejemplos 
1. Sea f(x) = l/x para x > O Y consideremos A = (0, 1]. Esta función es continua 

en A pero no es uniformemente continua en A. Para demostrarlo, sea. = 10, 
Y supongamos que encontrásemos un O, O < o < 1, que satisficiese la condición 
de la definición . Haciendo ¡ = o, p = 8/11, tendríamos [x - p[ < o y 

[¡(x) - ¡(p)1 = !..!- - ! = 10 > 10. 
c5 c5 c5 

Luego para esos dos puntos tendríamos siempre If(x ) - f(p)1 ::> 10, en contra de 
la definición de continuidad uniforme. 

2. Sea f(x) = X2 si x E R l Y tornemos A = (0, 1] corno antes. La función es uni­
formemente continua sobre A . Para demostrarlo, observemos que 

l/ex) - /(p) [ = [X2 - p2[ = [(x - p)(x + p)[ < 21x - pi. 

Si Ix - p i < o, entonces If(x) - f(p)1 < 2,). Luego, si • está dado, basta tornar 
o = ./2 para garantizar que [f(x) - f(p)1 < E para cada par x, p con Ix - p[ < o. 
Esto prueba que f es uniformemente continua sobre A. 

Un ejercicio instructivo consiste en demostrar que la función del ejemplo 2 
no es uniformemente continua sobre Rl. 

4.20 CONTINUIDAD UMFORME y CONJUNTOS COMPACTOS 

La continuidad uniforme en un conjunto A implica la continuidad en A . (El 
lector puede comprobarlo.) El recíproco también es cierto si A es compacto. 

Teorema 4.47 (Reine). Sea f:S ~ T una función definida entre dos espa­
cios métn'cos (S, ds) Y (T, dT). Sea A un subconjunto compacto de S y supon­
gamos que f es continua en A. Entonces f es uniformemente continua en A. 

Demostración. Dado que s > 0, a cada punto a de A se le puede asociar una 
bola Bs(a; r), con r dependiendo de a, tal que 

siempre que x E Bs(a; r) (\ A. 
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Consideremos la colección de las bolas Bs(a; r/2) de radio r/2. Recubr~n a A 
y, como A es compacto, basta un número finito de ellas para recubnr a A, 

o sea 

En cualquiera de las bolas de doble radio, Bs(a,,; r,,) se tiene 

siempre que x E Bs(~; ,,,) (\ A. 

Sea o el menor de los números r 1/2, .. . , r m/2. Probaremos que este o satisface 
la definición de continuidad uniforme. 

En efecto, consideremos dos puntos de A, por ejemplo x y p, con 
ds(x, p) < o. En virtud de la anterior discusión existirá una bola Bs(a,,; r,,/2) 

que contenga a x, luego 

Por la desigualdad triangular tenemos que 
rk rk rk 

ds(p, ak ) ::s: ds(p, x) + ds(x , ak ) < (j + 2 ::s: 2 + 2 = rk • 

Por 10 tanto, pE Bs(a,,; rk) n S, y entonces tenemos también que 

dx(f(p), f(ak» < ·/2. 

Utilizando, una vez más, la desigualdad triangular obtenemos 

Esto termina la demostración. 

4.21 TEOREMA DEL PUNTO FIJO PARA CONTRACCIONES 

Sea f: S ~ S una función de un espacio métrico (S,. d) en sí mismo .. Un punto p 
de S es un punto fijo de f si f(p) = p. La funCIón f se denomma contr~~­
ción de S si existe un número positivo (t < 1 (llamado constante de contracclOn 
o coeficiente de contracción), tal que 

d(f(x), f(y» < (t d(x, y) para todo x, y de S. (7) 
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Es evidente que una contracción de un espacio métrico es uniformemente 
continua. 

Teorema 4.48 (Teorema del punto fijo). Una contracción f de un espacio 
métrico completo S tiene un único punto fijo p. 

Demostración. Si p Y p' son dos puntos fijos, (7) implica d(p, p') < ,(X d(p, p'), 
luego d(p, p') = O Y P = p'. Luego f posee, a lo sumo, un punto fijo. 

Para probar que existe uno, elijamos un punto x de S y consideremos la 
sucesión de iteraciones: 

x, f(x) , f(J(x») , 

Es decir, se define recurrentemente la sucesión {Pn} por medio de: 

Po = x, Pn+ 1 = f(Pn), n = O, 1,2, . . . 

Probaremos que {Pn} converge hacia un punto fijo de f. Ante todo demostra­
remos que {P'n} es una sucesión de Cauchy. De (7) obtenemos 

y, entonces, por inducción, resulta que 

d(p" + l' p") .$; a" d(P1' Po) = ca", 

donde e = d(p" Po)' Utilizando la desigualdad triangular hallaremos, para 
m>n, 

m-l m-l 
a" - am e 

d(p"" p,,) s L d(pk+ l ' Pk) s e L ak = e - -- . < ---- a". 
k=" k = n l-a ¡-a 

Como (Xn ~ O cuando n ~ 00, dicha desigualdad triangular prueba que {Pn} es 
una sucesión de Cauchy. Pero como S es completo, existe un punto P de S tal 
que Prn ~ p. Por la continuidad de f, 

f(p) = f(lim p,,) = lim f(p") = lim p"+ 1 = p, 
n-+ oo n -oo n-+oo 

luego p es un punto fijo de f. Esto acaba la demostración. \ 

Muchos teoremas importantes de existencia del Análisis son consecuencias 
fáciles del teorema del punto fijo. Damos ejemplos en los ejercicios 7.36 y 7.37. 
La referencia 4.4 10 aplica al Análisis numérico. 
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4.22 DISCONTINUIDADES DE LAS FUNCIONES REALES 

El resto de este capítulo lo dedicaremos a estudiar propiedades especiales de 
funciones reales definidas en subintervalos de R. 

Sea f una función real definida sobre un intervalo (a, b). Supon~amos que 
e E [a, b). Si f(x) ~ A cuando x ~ e con valores ~ay?res que e, dl:e~os que 
A es el límite lateral por la derecha de f en e y lo mdlcaremos, escnblendo 

lim f(x) = A. 
x-c + 

El límite lateral por la derecha se designa también por medio de f(e+). En la 
terminología ", ú significa que para todo o > O existe un ú > O tal que 

If(x) - f(e+)1 < o siempre que e < x < e + ú < b. 

Nótese que f no necesita estar definida en el punto e. Si f está definida en e 
y es f(e+) = f(e), diremos que f es continua por la derecha en e. 

Los límites laterales por la izquierda y la continuidad por la izquierda 
en e se definen análogamente si e E (a, b]. 

Si a < e < b, entonces f es continua en e si, y sólo si, 

f(e) = f(e+) = f(e-) . 

Diremos que e es una discontinuidad de f, si f no es continua en e. En este 
caso deberá darse alguna de las siguientes condiciones: 

a) O no existe f(e+) o no existe f(e-). 
b) Tanto f(e+) como f(e-) existen pero son distintos. 
c) Tanto f(e+) como f(e-) existen y f(e+) = f(e-) =f= f(e). 

En el caso (c) se dice que el punto e es una discontinuidad evitable, ya que 
la discontinuidad podría evitarse volviendo a definir f en e de suerte que el 
valor de f en e fuese f(e+) = f(e-). En los casos (a) y (b), se dice que. e es 
una dlseontinuidad inevitable dado que la discontinuidad no puede evlÍarse 
aunque volvamos a definir f en e. 

Definición 4.49. Sea f una función definida sobre un intervalo cerrado [a, b]. 
Si f(e+) y f(e-) existen en un punto interior e, entonces: 

a) f(e) ---'- f(e-) se llama el salto de f a la izquierda de e, 
b) f(e+) - f(e) se llama el salto de f a la derecha de e, 
e) f(e+) - f(e-) se llama el salto de f en e. 
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d
Si 

dalgduno lde ellos es distinto de 0, entonces se dice que f ttene una discontinui-
a e sa fo en c. 

l
En Ilos puntos extremos a y b, sólo consideraremos uno de los saltos late-

ra es, e salto a la derecha en a f( +) f() 1 . 
f(b) _ f(b-). ' a - a, y e salto a la lzquierda en b, 

Ejemplos 

1. La función f definida por f(x) = x/lxl si x =1= O feO) - A f d'" 
dad de salto en O, independiente del valor de A. Aquí f-(O+)' ~en+elunaf(Olsc)o~tmull­
(Ver fig. 4.6.) Y - - - . 

2. La función f definida por f(x) = 1 si x =1= O feO) - O r 'd d . bI ' -, posee un salto de discon-
mm a eVIta e en O. En este caso f(O+) = f(O-) = 1. 

Figura 4.6 
Figura 4.7 

3. La función f definida por f(x) = l/x si x =1= O feO) - A f . 
continuidad inevitable en O. En este caso f(O+) f(O-)' len: un punto de dls-

4. La función f definida por f(x) = sen (l /x) si x: O -f(O)n~ Aexlsten. (Ver fig: 4.7.) 
t · 'd d' . b ", -, posee una dlscon-
mUI a mevlta le en O ya que f(O+) y f(O) . t (V fi 

S. La función f definida por f(x) = x sen (l/x) si n; ;~s efneO) _ elr t~' 4.8.) 
de discont ' 'd d . bl ' -, lene un punto 
. mUI a eVIta e en O, ya que f(O+) = f(O-) = O. (Ver fig. 4.9.) 

\ 

Figura 4.8 Figura 4.9 

I 
f 
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4.23 FUNCIONES MONóTONAS 

Definición 4.50. Sea f una función real definida en un subconjunto S de R. 
Entonces f es creciente (o no decreciente) en S si para todo par de x e y de S, 

x < y implica f(x) < f(Y). 

Si x < y implica f(x) < f(y), entonces f se llama estrictamente creciente sobre S. 
(Las funciones decrecientes se definen análogamente.) Una función se llama 
monótona en S si es creciente o decreciente en S. 

Si f es una función creciente, entonces - f es una función decreciente. Gra­
cias a este resultado tan simple, resulta que en muchas de las situaciones que 
involucren funciones monótonas bastará considerar sólo el caso de las fun­
ciones crecientes. 

Probaremos que las funciones monótonas en intervalos compactos poseen 
siempre límite lateral por la derecha y límite lateral por la izquierda. Por lo 
tanto sus discontinuidades (si tiene) deben ser discontinuidades de salto. 

Teorema 4.51. Si f es creciente en [a, b], entonces. f(c+) y f(c-) existen las 
dos para cada c de (a, b) y se tiene 

j(c-) :::; j(c) :::; j(c+). 

En los puntos extremos se tiene fea) < f(a+) y f(b-) < f(b). 

Demostración. Sea A = {t(x): a < x < e}. Como f es creciente, este conjunto 
está acotado ~uperiormente por j(c). Sea ex = sup A. Entonces ,ex < f(c) y 
probaremos que f(e-) existe y es igual a «. 

Para ello probaremos primero que para cada E > O existe un a > O tal que 

e-a < x < e implica If(x)-ex! < E. 

Pero como 'ex = sup A, existe un elemento f(x l ) de A tal que a - E < f(x l ) < a. 
Como f es creciente, para cada x de (Xi' c) tenemos también que a - E < f(x) < 
<ex, y por lo tanto If(x) - ex l < E. Por consiguiente, el número a = c- XI tiene 
la propiedad requerida. (La demostración de que f(c+) existe y es 2 fCc) es 
análoga y sólo algunas modificaciones triviales son necesarias en el caso de los 
puntos extremos.) 

Existe, además, un teorema análogo para funciones decrecientes que el 
lector puede formular por sí mismo. 
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Teorema 4.52. Sea I estrictamente creciente en un conjunto S de R. Enton­
ces 1- 1 existe y es estrictamente creciente en I(S). 

Demostración. Como I es estrictamente creciente, es uno a uno en S, luego 
1-1 existe. Para ver que 1-1 es estrictamente creciente, sean YI < Y

2 
dos puntos 

de I(S) y sea Xl = I-I(Yl)' X 2 = I-I(Y2)' No puede ser que XI ~ X
2

, ya que en­
tonces tendríamos también que YI > Y 2' La única alternativa es Xl < X

2
' Y esto 

significa que 1-1 es estrictamente creciente. 

El teorema 4.52 junto con el teorema 4.29 conducen a: 

Teorema 4.53. Sea I estrictamente creciente y continua en un intervalo com­
pacto [a, b]. Entonces 1-1 es continua y estrictamente creciente en el intervalo 
[fea), f(b )]. 

NOTA. El teorema 4.53 nos dice que una función continua, estrictamente cre­
ciente es una aplicación -topológica. Recíprocamente, toda aplicación topoló­
gica de un intervalo [a, b] sobre un intervalo [e, d] debe ser una función es­
trictamente monótona. La verificación de este hecho constituye un ejercicio 
muy instructivo para el lector. (Ejercicio 4.62.) 

EJERCICIOS 

Límites de sucesiones 

4.1 Probar cada una de las afirmaciones siguientes acerca de sucesiones de C. 
a) zn ~ O si Izl < 1; {in} diverge si Izl > 1. 
b) Si Zn ~ O Y si {en} está acotada, entonces {cnzn} ~ O. 
c) i"/n! ~ O para cada complejo z. 
d) Si a", = .J-n 2 -i--2 - n, entonces an ~ O. 

4.2 Si a"+2 = (an +¡ + a,,)/2 para todo n ~ 1. expresar ll¡" en función de a¡ y a
2

, y 
demostrar que an ~ (al + 2a2)/3. Observación: an+2 - an+1 = t(a" - a

n
+ 1)' 

4.3 Si O < x, < 1 Y si X,,+¡ = 1 - . .J I - XII para todo n ~ 1, probar que {xn} es 
una sucesión decreciente con límite O. Probar además que x"+Jx,, ~ t . 
4.4 Dos sucesiones de enteros positivos {a,,} y {bn } se definen recursivamente ha­

ciendo a¡ = b¡ = 1 e igualando las partes racionales e irracionales de la ecuación 

Probar que a,,2 - 2b,," = 1 parll n ~ 2. Deducir que a,,/bn ¿ " 2 por medio de va­
lores > ,/z, y que 2b,, /all ~ , / 2 por medio de valores < ....;2. 

\ 
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4.5 Una sucesión real {XlI } satisface 7x,,+, = X.II~ + 6 para n ~ 1. Si Xl = ~, pro­
bar que la sucesión crece y hallar su límite. ¿Qué ocurre si Xl = i o si Xl = i ? 
4.6 Si lan l < 2 Y lan+ 2 - a,,+1 1 ~ i ia;+l - a~ 1 para todo n> 1, probar que {a",} 

converge. 
4.7 En un espacio métrico (S, d) suponemos que x." ~ x y que Yn ~ y. Probar 

que d(xn, Yn) ~ d(x, y). 
4.8 Probar que en un espacio métrico compacto (S, d), cada sucesión de S admite 

una sub sucesión convergente en S. Esta propiedad implica también que S es com­
pacto, pero no se pide una demostración de ,este resultado. (Una demostración puede 
encontrarse en las referencias 4.2 o 4.3 .) 

4.9 Sea A un subconjunto de un espacio métrico S. Si A es completo, probar 
que A es cerrado. Probar que el recíproco también es cierto siempre que S sea 
completo. 

Límites de funciones 

NOTA. En los ejercicios 4.10 a 4.28 todas las funciones serán reales. 
4.10 Sea f definida en un intervalo abierto (a, b) y supongamos que x E (a. h¡ . 
Consideremos las des afirmaciones siguientes: 

a) lim If(x + h) - f(x) 1 = O; b) lim If(x + h) - f(x - h)1 = O. 
h~O h ~O 

Probar que (a) siempre implica (b), y dar un ejemplo en el que (b) se verifique 
pero (a) no. 
4.11 Sea f definida en R2. Si 

I¡m f(x, y) = L 

y si existen los dos límites unidimensionales lim .T-> a!(x, y) y limY->b f(x, y), pro­
bar que 

tim [timf(x, y)] = lim [Iimf(x, y)] = L. 
X-Q y_b y~b x - a 

Consideremos ahora las funciones f definidas en R2 como sigue: 

X2 _ y2 
a) f(x , y) = -.--

X2 + y2 

(xy)2 
b) f(x, y) = (;y)2 +" (x _ y)2 

1 
c) f(x, y) = - sen (xy) 

x 

{
(OX + y) sen (1/x) sen (1/y) 

d) f(x, y) = 

(

sen x- sen y 

e) f(x , y) = tg X - tg Y 

cos3 
X 

si(x, y) #- (0, 0),/(0, O) = O. 

si (x, y) #- (O, O), feO, O) = o. 

six #- 0,/(0, y) = y. 

six #- O e y #- O, 

six = O o y = o. 

si tg x ~ tg y, 

si tg X = tg y .' 
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En cada uno de los ejercicios anteriores, determinar cuándo existen los límites que 
se proponen y calcular los que existan: 

lim [lim f(x, y)] ; lim [lim f(x, y)] ; lim f(x, y). 
x-o y-O y ...... O x-o (x,y)-(O.O) 

4.12 Si x E [O, 1] probar que el siguiente límite existe, 

lim [lim cos2n (m! nx)] , 
m_ OC! n- C() 

y que su valor es O o 1, según que x sea irracional o racional. 

Continuidad de funciones reales 

4.13 Sea f continua en [a, b] y sea f(x) = O si x es racional. Probar que f(x) = O 
para todo x de [a, b]. 
4 .. 14 Sea f continua en el punto a ~ (a" a2 , ••• , ar.) de Rn. Conservemos a 2 , a3 , ••• , an 

fiJOS y definamos una nueva función g de una sola variable real definida por la 
ecuacj.jn 

g(x) = f(x, a2 , •.. , an). 

Probar que g es continua en el punto x = a,. (Este resultado suele expresarse di­
ciendo que una fllnción continua de n variables es continua en cada una de ellas 
separadamente.) 
4.15 Probar por medio de un ejemplo que el recíproco de la proposición estable­
cida en el ejercicio 4.14 no es verdadero en general. 
4.16 Sean f, g y h definidas en [O, 1] como sigue: 

f(x) = g(x) = h(x) = O, siempre que x sea irracional; 
f(x) = 1 Y g(x) = x, siempre que x sea racional ; 
h(x) = l/n, si x es el racional m/n (irreducible); 
h(O) = 1. 

Probar que f no es continua en ningún punto de [O, 1], que g es continua sólo 
en.\" = O, Y que h sólo es continua en los puntos irracionales de [O, 1]. 
4.17 Para cada x de [O, 1], sea f(x) = x si x es racional , y sea f(x) = 1 - x si x es 
irracional. Probar que: 

a) f(f(x» = x para todo x de [O, 1]. 
b) f(x) + f(l-x) = 1 para todo x de [O, 1]. 
c) f es continua sólo en el punto x = t. 
d) f toma todos los valores comprendidos entre O y 1. 
e) f(x+y)- f(x)- f(y) es racional para todos los x e y de [O, 1]. 

4.18 Sea f definida en R y supongamos que existe por lo menos un punto x de R 
l f 

. () \ en e que es contmua. Supongamos también que, para cada x e y de R, f satis-
face la ecuación 

f(x + y) = f(x) + f(y). 

Probar que existe una constante a tal que f(x) = ax para todo x. 
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4.19 Sea f continua en [a, b] y definamos g como sigue: g(a) = fea) y, para a < x 
::S; b, g(x) es el máximo de los valores de f del intervalo [a, x]. Probar que g es 
continua en [a, b]. 
4.20 Sean f" ... , fm m funciones reales definidas en un conjunto S de R". Supon­
gamos que cada h es continua en el punto a de S. Definir una nueva función f como 
sigue: Para cada x de S, f(x) es el mayor de los m valores fl(x), ... , fm(x). Dis­
cutir la continuidad de f en a. 
4.21 Sea f: S ....... R continua en un conjunto abierto S de Rn, supongamos que p E S 
y que f(p) > O. Probar que existe una bola n-dimensional B(p; r) tal que f(x) > O 
para cada x de la bola. 
4.22 Sea f definida y continua en un conjunto cerrado S de R. Sea 

A={x:xES y f(x) = O} . 

Probar que A es un subconjunto cerrado de R. 
4.23 Dada una función f: R ....... R, de·finimos dos conjuntos A y B en R2 como sigue: 

A = {(x, y): y < f(x)}, B = {(x, y): y > f(x)}. 

Probar que f es continua en R si, y sólo si, tanto A como B son subconjuntos 
abiertos de R2. 
4.24 Sea f definida y acotada en un intervalo compacto S de R. Si T ~ S, el número 

n¡(T) = sup {f(x) - f(y) : x E T, Y E T} 

se Ilama oscilación de f en T. Si x E S, la oscilación de f en x se define como el 
número 

Wf(X) = lim nf(B(x; 11) (\ S). 
h-+O+ 

Probar que este límite existe siempre y que Wf(X) = O si, y sólo si, f es continua en x. 
4.25 Sea f continua en un intervalo compacto [a, h]. Supongamos que f tiene un 
máximo local en XI y un máximo local en x 2 • Probar que debe existir un tercer 
punto entre ¡Xl y x

2 
en el que f posea un mínimo local. 

NOTA. Decir que f posee un máximo local en Xl significa que existe una bola uni­
dimensional B(x,) tal que f(x) ::S; f(x l ) para todo x de B(x l ) n [a, b). Los mínimos 
locales se definen análogamente. 
4.26 Sea f una función real, continua en [O, 1], con la siguiente propiedad: para 
cada número real y, o no existe ningún x de [O, 1] para el cual f(x) = y o bien 
existe uno exactamente. Probar que f es estrictamente monótona en [O, 1]. 
4.27 Sea f una función definida en [O, 1] con la siguiente propiedad: Para cada 
número real y, o no existe ningún x en [O, 1] que verifique f(x) = y, o bien existen 
exactamente dos valores de ;x en [O, 1] para los cuales f(x) = y. 

a) Probar que f no puede ser continua en rO, 1]. 
b) Construir una función f que tenga esta propiedad. 
e) Probar que una función con esta propiedad debe tener una infinidad de 
discontinuidades en [O, 1]. 

http://libreria-universitaria.blogspot.com



120 
Límites y continuidad 

4.28 En cada caso, ?ar un ejemplo de una función j, continua sobre S de modo 
que I(S) = T, o exphcar por medio de un ejemplo .por qué no puede existir tal j: 

a) S = (O, 1), T = (0, 1]. 

b) S = (0,1), T = (O, 1) u (1, 2). 
C)S=RI, 

d) S = [O, J J u [2, 3 J, 
T = el conjunto de los números racionales. 
T = {O, I}. 

e) S = [O, 1 J x [O, 1 J, 
f) S = [O, 1 J x [O, 1 J, 
g) S = (O, 1) x (O, 1), 

T = R 2 . 

T = (O, 1) x (O, 1). 

T = R 2
. 

Continuidad en espacios métricos 

1-:11 los ejercicios que van del 4.29 al 4.32, suponemos que 1: S ~ T es una 
de un espacio métrico (S, d,~) en otro (T, d

T
). 

4.29 Probar que I es continua en S si, y sólo si, 

función 

para todo subconjunto B de T. 

4.30 Probar que I es continua en S si, y sólo si, 

leA) S; leA) para cada subconjunto A de S. 

~.31 Probar que I es continua en S si, y sólo si, I es continua sobre cada subcon­
Junto compacto de S. Indicación. Si xn ~ p en S, el conjunto {p x x } es 
compacto. ' l' 2'''' 

4.32 Una función 1: S ~ T se denomina aplicación cerrada en S si la imagen I(A) 
(~e cada ~no de los. cerr:,ados A de S, es cerrada en T. Probar que .t es continua ; 
cerrada SI, y s~lo SI, feA) = J(A) para cada subconjunto A de S. 
... 33. Dar un ejemplo de una función continua I y de una sucesión de Cauchy {x

n
} 

de S para los que {f(x,,)} no sea de Cauchy en T. 

".34 ~robar que ~l inte:valo (-1, 1) de Rl es homeomorfo a R'. Ello demuestra 
que nI la co~pletItud m .la acotación son propiedades topológicas. 
4.35 La secclOn 9.7 contiene un ejemplo de una función I continua en [O l} con 
f([O, 1]) = [0, l} X [0, 1]. Probar que dicha I no puede ser' uno a uno sob;e [0, l}. 

Conexión 

4.36 P!obar que un espacio métrico S es no conexo si, y sólo si, no existe ningún 
subconjunto A de S, A =1= S, que sea a la vez abierto y cerrado en S. 
~.37 Probar que un espacio métrico S es conexo si, y sólo si, los únicos subcon­
Juntos de p que son a la vez abiertos y cerrados en S son el vacío y el propio S. 
4.38 Prob~r que los únicos subconjuntos conexos de R son (a) el conjunto vacío, 
(h) los c?nJ~ntos formados por un solo punto, y (e) los intervalos (abiertos cerra-
dos, semlablertos, o infinitos). ' 

\ 
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4.39 Sea X un subconjunto conexo de un espacio métrico S. Sea Y un subconjurto 
de S tal que X ~ Y ~ X, donde X es la clausura de X. Probar que Y también es 
conexo. En particular, esto prueba que X es conexo. 
4.40 Si x es un punto. de un espacio métrico S, sea U(x) la componente de S ene 
contiene a x. Probar que U(x) es cerrado en S. 
4.41 Sea S un subconjunto abierto de R. Por el teorema 3.11, S es la reunión de 
una colección numerable y disjunta de intervalos abiertos de R. Probar que c[(la 
uno de estos intervalos abiertos es una componente del subespacio métrico S. lx­
plicar por qué esto no contradice al ejercicio 4.40. 
4.42 Se da un conjunto compacto S de Rm con la siguiente propiedad: Para c[(la 
par de puntos a y b de S y para cada o > ° existe un conjunto formado por un 
número finito de puntos {xo, XI' ... , xn } en S con Xo = a y Xn = b tal que 

II xk ~ Xk-1 11 < ¡; para k = 1,2, ... ,11. 

Probar o refutar: S es conexo. 
4.43 Probar que un espacio métrico S es conexo si, y sólo si, cada subconjutto 
no vacío de S tiene una frontera no vacía. 
4.44 Probar que cada subconjunto convexo de Rn es conexo. 
4.45 Se da una función f: Rn ~ Rm que sea continua en Rn y uno a uno. Si A es 
abierto y no conexo de Rn, probar que feA) es un abierto no conexo de f(Rn

: 

4.46 Sea A = {(x, y):O < x:<;: 1, y = sen l/x}, B = {(.x, y):y = O, -1 :<;: x ::; ° y 
sea S = A U B. Probar que S es conexo pero no arco-conexo. (Ver la figura -.5, 
sección 4.18.) 
4.47 Sea F = {Fl' F 2 , ... } una colección numerable de conjuntos conexos y C{ffi­

pactos de Rn tales que Fk+l ~ F" para cada k 2 1. Probar que la interseccón 
n~ 1 Fk es conexa y cerrada. 
4.48 Sea S un conjunto conexo y abierto de R". Sea T una componente de Rn - S. 
Probar que Rn - T es conexo. 
4.49 Sea (S, d) un espacio métrico conexo no acotado. Probar que para cad: a 
de S y cada r > O, el conjunto {x: d(x, a) = r} es no vacío. 

Continuidad uniforme 

4.50 Probar que una función que es uniformemente continua en un conjunto ~ es 
también continua en S. 
4.51 Si I(x) = X2 para cada x de R, probar que I no es uniformemente continua erR. 
4.52 Supongamos que j es uniformemente continua sobre un conjunto acotacL S 
de R". Probar que I debe estar acotada en S. 
4.53 Sea f una función definida en un conjunto S de Rn y supongamos que feS) f::tm. 
Sea g definida en feS) con valores en Rk, y sea h la función compuesta defiIida 
por h(x) = g[f(x)] si x E S. Si f es uniformemente continua en S y g es uniforne­
mente continua en feS), probar que h es uniformemente continua en S. 
4.54 Supongamos que j: S ~ T es uniformemente continua en S, donde S y T :on 
espacios métricos. Si {xn } es una sucesión de Cauchy en S, probar que {f(x.,>: es 
una sucesión de Cauchy en T. (Comparar con el ejercido 4.33.) 
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~~50nsea 1: S ~ T func~én de un espacio métric~ S en otro espacio métrico T 
p gamos que I es uDlformemente continua en Ul sUbconjunt A d S . 

completo-=- Probar que existe una única extensión de I a;¡ o 'f e y que T es 
nua en A. um ormemente conti-

4.56 fEn .~n espacio métrico {S, el), sea A un subccnjunto no vacío de S Dfi . 
una unclOn lA: S ~ R+ por medio de la ecuación . e DImos 

fA(x) = inf {d(x, y) : yE A } 

para cada x de S. El número IA(x) se llama la disancia de x a A 
a) Probar que 1.4. e;; uniformemente continu; sobre S . 
b) Probar que ;¡ = {x:xE S y fA(x) = OJ. . 

4.57 En un espacio métrico (S, d), sean A y B subconjuntos cerrados d" t 
~e ~'UProbar que exis.ten . ~ubconjuntos U y V d! S abiertos disjuntos ta;~sunq~~ 

- y Be V. IndlcaC:lOn Sea g(x) - I (t) ' (.x) , . d eJ'er " 4 56- . . - A ' - B , Slglllen o la notación del 
CIClO . ,y consIderemos g- l ( -00, O) Y g-l (O, +00). 

Discontinuidades 

4.58. Localizar y clasificar las discontinuidades de las funciones 
medIante las siguientes ecuaciones: 

a) I(x) = (sen x)/x si x =1= O, feO) = l. 
b) I(x) = el / x si x =1= O, 1(0) = (. 
c) f(x) = el / ", 

c) I(x) = e l
/ '" + sen (l /x) si x =1= O, feO) = ( 

d) f(x) = l /O - el
/ 3) si x =1= O, 1(0) = ( 

I definidas en Rt 

4.59 Localizar los puntos de R" 1 en os que cada una de 1 f . 
cio 4.11 no es continua. as uncIOnes del ejerci-

Funciones monótonas 

4.60 Sea I definida en un intervalo abierto (a b y SUPongamos 
t ' . " que para cada 

pun o mtenor x de (a, b) existe una bola unidimensj¡naJ B(x) en ·Ia qu I . 
Probar qu I f' '. . e es crecIente e es una unCIOn creCIente en todo Ca b). . 
4.61 Sea I continua en un intervalo cerrado [a b]Y SUPOnga I ' . , . . mos que carece de 
~axI.m.os y mmlmos local~s en el interior del interalo. (Ver la NOTA ue si ue al 
ejercJcI? 4.25.) Probar que I debe ser monótona el [a, b]. q g 
4.62 SJ I es uno a uno y continua en [a h] prob;r que f ha d t . 
monóton [h] E ' , , e ser es nctamente 

. a en a, . sto es, probar que cada aplioción topológica de [a b] b 
un mtervalo [c, d] debe ser estrictamente monótona ' so re 
4.6~ Sea I una función creciente definida en [a bJ y sean x 
tenores tales que a < XI < X2 < ' " < X

n 
< b. ' " ... , xn n puntos in-

a) Probar que L:Z=: (f(Xk+) - f(xk-)l 5. /~-) - f(a+). 

b) Deducir de la parte (a) que el conjunto ~ las discontinuidades de I es 
numerable. 

\ 
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c) Probar que I posee puntos de continuidad en cada uno de los subinter-
valos abiertos de [a, b]. 

4.64 Dar un ejemplo de una función 1, definida y estrictamente creciente en un 
conjunto S de R tal que 1-1 no sea continua en I(S). 
4.65 Sea I estrictamente creciente en un subconjunto S de R. Supongamos que la 
imagen I(S) verifica una de las propiedades siguientes: (a) I(S) es abierto; (b) I(S) es 
conexo; (c) I(S) es cerrado. Probar que I debe ser continua en S. 

Espacios métricos y puntos fijos 

4.66 Sea B(S) el conjunto de todas las funciones reales definidas y acotadas en un 
conjunto S, no vacío. Si lE B(S), sea 

11/11 = sup If(x)l. 
xeS 

El número Ilf ll se llama la «nOTma sup" de l. 
a) Probar que la fórmula d(f, R) = Ilf - gil define una métrica d en B(S). 
b) Probar que el espacio métrico (B(S), el) es completo. Indicación. Si U,.} 

es una sucesión de Cauchy en B(S), probar que Un(x)} es una sucesión de 
Cauchy de números reales para cada x de S. 

4.67 Con referencia al ejercicio 4.66 consideremos el subconjunto de B(S) de todas 
las funciones continuas y acotadas en S, que designaremos C(S), en donde S designa 
ahora un espacio métrico. 

a) Probar que C(S) es un subconjunto cerrado de B(S). 
b) Probar que el subespacio métrico C(S) es completo. 

4.68 Recurrir a la demostración del teorema del punto fijo (teorema 4.48) para las 
cuestiones de notación. 

a) Probar que d(p , p,,) 5. d(xJ(x»an/(1 - a). 
Esta desigualdad, útil en trabajos numéricos, proporciona un3 aproximación 
de la distancia existente entre Pn y el punto fijo p. Se da un ejemplo en (b). 

b) Tomar f(x) = t (x + 2/x), S = [1, +::0]. Probar que I es una contracciÓl} 
de S cuya constante de contracción es a = 1- y cuyo punto fijo es P = ..)2. 
Formar _la sucesión {p.,,} empezando por x = Po = 1 Y probar que 
Ip" - ... 21:::;: 2-n . 

4.69 Probar, utilizando contraejemplos, que el teorema del punto fijo no tiene por 
qué verificarse si (a), el espacio métrico subyacente no es completo, o bien si (b), la 
constante de contracción ex ~ l. 
4.70 Sea f: S ~ S una función de un espacio métrico completo (S, el) en sí mismo. 
Supongamos que existe una sucesión real {ex,,) convergente hacia O tal que d(tn(x), 
In(y).:::;: ex.,.d(x, y) para todo n ~ 1 Y todo x, y de S, donde In es la n-ésima iteración 
de 1, es decir, 

Il(x) = I(x), fn +J (x) = 1(ln(x») para n ~ 1. 
Probar que I tiene un punto fijo. Indicación. Aplíquese el teorema del punto fijo 
a ¡m para un m conveniente. 
4.71 Sea 1: S -4 S una función de un espacio métrico (S, d) en sí mismo tal que 

d(!(x), f(y) < d(x, y) 

' , \~ 
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siempre que x =1= y. 

a) Pro~ar que I pos~ a l? sumo un punto fijo, y dar un ejemplo de una 
funcIón '1 de este tipo sm puntos fijos. 

b) S.i, S es compacto, probar que I admite un punto fijo exactamente. Indica­
Clon. Pro~ar que g(x} = d(x, I(x» alcanza un mínimo en S. 

e) Dar un ejemplo e~ el que, siendo S compacto, I no sea una contracción. 
4.72 Supongamos que I satisface la condición del ejercicio 4.71. Si x E S sea p = 
Pn+l = I(p",), y e" = d(p"" P"'+l) para n ~ O. ' o x, 

a) Probar que {en} es .una sucesión decreciente, y sea c = lim Cn' 

b) Supongamos que eXIste una subsucesión (Pk(n)} convergente hacia un cierto 
punto q de S. Probar que 

c = d(q,f(q» = d(I(q),f[f(q)]) . 

Deducir que qes un punto fijo de I y que Pon ~ q. 
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CAPíTULO 5 

Derivadas 

5.1 INTRODUCCIóN 

Este capítulo trata de la derivada, concepto fundamental del Cálculo diferen­
cial. Dos tipos distintos de problemas -el problema físico, que consiste en 
buscar la velocidad instantánea de una partícula móvil, y el problema geo­
métrico, que consiste en buscar la recta tangente a una curva en un punto 
dado-, ambos conducen de forma muy natural a la noción de derivada. No 
nos interesaremos ni por las aplicaciones físicas ni por las aplicaciones geo­
métricas; dedicaremos nuestra atención a las propiedades generales de las de­
rivadas. 

Este capítulo tratará, ante todo, de las derivadas de funciones de una 
variable real y, especialmente, de funciones reales definidas en intervalos de R. 
Estudiará también brevemente las derivadas de funciones de valores vectoriales 
de una variable real, y las derivadas parciales, ya que estos temas no envuelven 
ideas nuevas. Mucho de lo que se expone será familiar al lector, pues se trata 
de Cálculo elemental. Un tratamiento más detallado de la teoría de la deri­
vación para funciones de varias variables involucra cambios realmente impor­
tantes y por ello se desarrollará en el capítulo 12. 

La última parte de este capítulo trata de las derivadas de funciones com­
plejas de una variable compleja. 

5.2 DEFINICIóN DE DERIVADA 

Si f está definida sobre un intervalo abierto (a, b), entonces para cada dos pun­
tos distintos x y c de (a, b) podemos considerar el cociente de diferencias (*) 

fJ:~) - f(e) 
x - e 

Mantenemos 'c fijo y estudiamos el comportamiento de este cociente cuan­
do x~c. 
• Este cociente se conoce con el nombre de cociente incremental. (N. de t.) 

125 
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Definición 5.1. Sea f una función real definida en un intervalo abierto (a, by, 
y supongamos que e E (a, bY. Diremos que f es difereneiable en e siempre que 
el límite 

lim j(x2~ j(e) 

exista. El límite, designado por f'(e), se llama derivada de f en e. 
,Este método de calcular límites define una nueva función r, cuyo dominio 

esta formado por aquellos puntos de (a, b) en los que f es diferenciable. La 
función r se llama la primera derivada de f. Análogamente, la n-ésima deri­
vada de f. designada por 1<"), es la primera derivada de ¡<n-l), para n = 2, 3, ... 
(según nuestra definición, sólo es posible considerar f<n) si f<,.-l) está definida 
en un cierto intervalo abierto). Otras notaciones con las que el lector puede 
estar familiarizado son 

f (e) = Df(e) = -- . (e) = -, dj dy I 
dx dx x=c 

[donde y = f(x)], 

o notaciones similares. La función f se escribe, aveces, f(O). El proceso que 
produce r a partir de f se llama diferenciación. 

5.3 DERIVADAS Y CONTINUIDAD 

El teorema que se da a continuación permite reducir algunos de los teoremas 
de derivadas a teorem8~ de continuidad. 

Teorema 5.2. Si f está definida en un intervalo (a, b) y es diferenciable en 
un punto e de (a, by, entonces existe una función f* (que depende de f y de e) 
continua en e y que satisface la ecuación 

f(x) - ¡(e) = (x - e)f*(x), (1) 

para todo x de (a, bY, con f*(e) = f'(e). Recíprocamente, si existe una fun­
ción f*, continua en e, que satisfaga (1), entonces f es diferenciable en e y 
f'(e) = f*(e). 

Demostración. Si f'(e) existe, sea f* definida en (a, b) como sigue: 

f*(x) = j(x) - J(e) si x #: e, f*(e) = f'(e). 
x - e 

Entonces f* es continua en e y (1) se verifica para todo x de (a, b). 
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Recíprocamente, si (1) se verifica para una cierta función f* continua en e, 
entonces dividiendo por x - e y haciendo x ~ e vemos que f'(e) existe y es 
igual a f*(e). 

Como consecuencia inmediata de (1) se obtiene: 

Teorema 5.3. Si f es diferenciable en e, entonces f es continua en e. 

Demostración. En (1) hagamos x ~ e. 

NOTA. La ecuación (1) tiene una interpretación geométrica que ayuda a ad­
quirir una intuición de su significado. Como que f* es continua en e, f*(x) es 
aproximadamente igual a f*(e) = (e) si x es próximo a e. Reemplazando f*(x) 

por (e) en (1) obtenemos la ecuación 

f(x) = ¡(e) + f'(e)(x - e), 

que será aproximadamente correcta cuando x - e sea pequeño. En otras pa­
labras, si f es diferenciable en e, entonces f es aproximadamente una función 
lineal en las proximidades de e. (Ver Fig. 5.1.) El Cálculo diferencial explota, 
continuamente, esta propiedad geométrica de las funciones. 

(.r, j (.r» : -- - --1-
I . _ j(.! ) j le) 

Tangente 
con pendiente f'(c) -

I t J _____ Lr~~2 -

Figura 5.1 

5.4 ÁLGEBRA DE DERIVADAS 

I 
I 
I 
I 
I 
I 

El siguiente teorema describe las fórmulas usuales para diferenciar la suma, 
la diferencia, el producto y el cociente de dos funciones. 

Teorema 5.4. Supongamos que f y g están definidas en (a, b) y son dife­
reneiables en e. Entonces f + g, f - g y f· g son también diferenciables en e. 
Esto es asimismo verdadero para fJg si g(e) =F O. Las derivadas en e están 

dadas por las fórmulas si'guientes: 
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a) (J ± g)'(e) = f'(e) ± g'(e), 

b) (J' g)'(e) = f(e)g'(e) + f'(e)g(e), 

c) Ujg)'(e) = rz(e)f'(e)=-lV:)g'(e), en el supuesto de que g(e) =:f= O. 
g(e)2 

Demostración. Probaremos (b). Utilizando el teorema 5.2, escribiremos 

f(x) = f(e) + (x - c)f*(x), g(x) = g(e) + (x - c)g*(x). 

Entonces 

f(x)g(x) - f(e)g(c) = (x - c)[I(c)g*(x) + f*(x)g(c)J + (x - C)2 f*(x)g*(x). 

Dividiendo por x - e y haciendo que x ~ e obtendremos (b). Las demostra­
ciones de las otras afirmaciones son análogas. 

De la definición se sigue inmediatamente que si f es constante en (a, b), en­
tonces ( = O en (a, b). También, si f(x) = x, entonces f'(x) = 1 para todo x. 
Aplicando repetidamente el teorema 5.4 obtenemos que si f(x) = X" (n entero 
positivo), entonces (x) = nxn- 1 para todo x. Aplicando, de nuevo, el teore­
ma 5.4 vemos que todo polinomio admite derivada en todo R y que cada fun­
ción racional admite derivada en los puntos en los que está definida. 

5.5 LA REGLA DE LA CADENA 

Un resultado más profundo lo constituye la llamada regla de la cadena para la 
diferenciación de funciones compuestas. 

Teorema 5.5 (Regla de la cadena). Sea f definida en un intervalo abierto S 
y sea g definida en f(S), y consideremos la función compuesta 9 o f definida 
en S por medio de la ecuación 

(g o f)(x) = g(f(x». 

Supongamos que exista un punto e de S tal que f(e) sea un punto interior de f(S). 
Si f es diferendable en e y g es diferenciable en f(e), entonces g o f es diferen­
ciable en e y se tiene que 

(g o f)'(e) = g,[f(e)Jf'(e). 

Demostración. Utilizando el teorema 5.2 podemos escribir 

f(x) - f(e) = (x - c)f*(x) para todo x de S, 
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donde f* es continua en e y f*(e) = (e). Análogamente, 

g(y) - g[l(e)J = [y - f(e)Jg*(y), 

para todo y de un cierto subintervalo abierto T de feS) que contenga a f(e) . 
Aquí 15* es continua en f(e) y g*(f(e» = g'[f(c)]. 

Elijamos x de s tal que y = f(x) E T; tenemos entcmces 

g[l(x)] - g[l(e)] = [I(x) - f(e)Jg*[I(x)] = (x - e)f*(x)g*[I(x)J. (2) 

En virtud del teorema de continuidad de las funciones compuestas, 

g*[I(x)J -> g*[I(e)J = g'[I(e)J cuando x ~ e. 

Por lo tanto, si dividimos (2) por x - e y hacemos que x -- e, obtenemos 

liro g[l(x)J - g[J(e)J = g,[f(e)Jf'(e), 
x~c x - e 

como pretendíamos. 

5.6 DERIVADAS LATERALES Y DERIVADAS INFINITAS 

Hasta ahora, la afirmación de que f tenía derivada en e significaba que e era 
interior a un cierto intervalo en el que f estaba definida y que el límite que 
definía (e) era fim'to. Es conveniente extender el campo de nuestras ideas con 
vistas a la discusión de las derivadas en los extremos de los intervalos. Es 
asimismo deseable introducir las derivadas infinitas, de forma que la interpre­
pretación geométrica de una derivada como la pendiente de la recta tangente 
sea válida aun en el caso en el que la tangente sea vertical. En tal caso no es 
posible demostrar que f es continua en e. Sin embargo, exigiremos explícita­
mente que 10 sea. 

Definición 5.6. Sea f una función definida en un intervalo eerr~do S ~ su­
pongamos que f es continua en el punto e de S. Entonces f admite derlvada 
lateral por la derecha de e si el límite lateral por la derecha 

liro f(x) - !(e) 
x~c+ x - c 

existe y es finito, o si es +00 o -oo. Este límite lo designaremos por f'.~-(c). 
Las derivadas laterales por la izquierda, designadas por f' _(e), se definen 
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, , 
- J~------~---;'X'2:--X:;:';3:---X~4---::X;-5------:XL6---X-L'7-

Figura 5.2 

análogam~nte. Además, si c es un punto interior de S, entonces diremos que f 
p.osee dertvada f(e) = +00 si ambas derivadas laterales en e valen +00. (La de­
rtvada f'( c) = -00 se define análogamente.) 

. Es ,c1ar~ q~e f pos~e una derivada (finita o infinita) en un punto interior e 
SI, y sol~) SI, f +(e). = t jc), en cuyo caso f +(e) = f _(e) = f(e). 

La figura 5.2 Ilustra algunos de estos conceptos. En el punto Xl tenemos 
que. f +(x ,) = -oo. En el punto X 2 la derivada lateral por la izquierda es O y la 
denvada lateral por la derecha vale -1. Además, f'(x) = - f' ( ) = -1 
f
' ( ) 3 00, - X 4 , 

:- X. = + 1, nxo) = +00, Y f -<x7) = 2. No existe derivada (ni por un lado 
DI por el otro) en x5 , ya que f no es continua en dicho punto. 

5.7 FUNCIONES CON DERIVADA NO NULA 

Teorema 5.7. Sea f definida en un intervalo abierto (a, b) y supongamos 
que para cada e de (a. b) tenemos f(e) > O o j'(e) = +00. Entonces existe una 
bola unidimensional B(e) ~ (a, b) en la que 

Demostración. 

f(x) > f(c) si x > e, y f(x) < f(e) 

Si f'(c) es finito y positivo podemos escribir 

f(x) - f(c) = (x - c)f*(x), 

si x < e. 

donde f* es .continua en c y ¡"(e) = f(c) > O. Por la propiedad de la conser­
vación del sIgno de las funciones continuas existe una bola unidimensional 

... .. 
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B(e) ~ (a, b) en la que f*(x) tiene el mismo signo que f*(c), y esto significa que 
f(x) - f(e) tiene el mismo signo que x-c. 

Si (e) = +00, existe una bola unidimensional B(e) en la que 

fC!) --= ~~.cJ > 1 cuando x i' c. 
x - e 

En esta bola el cociente es, de nuevo, positivo y la conclusión sigue como antes. 

Un resultado análogo al del teorema 5.7 es válido, naturalmente, si j'(e) < O 
o si f(e) = -00 en algún punto interior e de (a, b). 

5.8 DERIVADAS CERO Y EXTREMOS LOCALES 

Definición 5.8. Sea f una función real definida en un subconjuntO' S de un 
espacio métrico M, y supongamos que a E S. Entonces f posee un máximo local 
en a si existe una bola B( a) tal que 

f(x) < fea) para todo x de B(a) n S. 

Si f(x) > fea) para todo x de B(a) n S, entonces f posee un mínimo local en a. 

NOTA. Un máximo local en a es el máximo absoluto de f en el subconjunto 
B(a) n S. Si f tiene un máximo absoluto en a, entonces a es un máximo local. 
Sin embargo, f puede poseer máximos locales en varios puntos de S sin que 
posea máximo absoluto en el conjunto S. 

El teorema que sigue establece una relación entre las derivadas nulas y los 
extremos locales (máximos o mínimos) en puntos interiores. 

Teorema 5.9. Sea f definida en un intervalo abierto (a, b) y supongamos 
que f posee un máximo local o un mínimo local en un cierto punto interior e 
de (a, bY. Si f posee derivada (finita o infinita) en e, entonces f(e) debe ser cero. 

Demostración. Si f'(e) es positiva o + 00, entonces f no puede tener un ex­
tremo local en e, en virtud del teorema 5.7. Análogamente, f'(c) no puede ser 
negativa ni - oo. Luego, dado que existe derivada en e, la única posibilidad 
que queda es f(e) = O. 

El recíproco del teorema 5.9 es falso. En general, el saber que j'(e) = O 
no basta para deducir que f tiene un extremo en e. De hecho, es posible que 
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carezca de ellos, como puede verificarse por medio del ejemplo f(x) = x3 y 
C = O. En este caso, 1'(0) = O pero f es creciente en todo entorno de O. 

Además, conviene insistir en el hecho de que f puede tener un extremo local 
en e sin que f'(c) sea cero. Por ejemplo, f(x) = JxJ tiene un mínimo en x = O 
pero, naturalmente, no existe la derivada en O. El teorema 5.9 presupone que 
f tiene derivada (finita o infinita) en e. El teorema presupone también que e es 
un punto interor de (a, b). En el ejemplo f(x) = x, donde a < x < b, f alcanza 
su máximo y su mínimo en los puntos extremos pero en cambio f'(x) no es 
nunca cero en [a, b]. 

5.9 TEOREMA DE ROLLE 

Es geométricamente evidente que una curva suficientemente «regulan) que corta 
al eje ox en los puntos extremos del intervalo [a, b] debe poseer un «punto de 
viraje)) en algún punto comprendido entre a y b. El enunciado preciso de este 
resultado se conoce con el nombre de teorema de Rolle. 

Teorema 5.10 (Rolle). Supongamos que f posee derivada (finita o infinita) 
en cada uno de los puntos de un intervalo abierto (a, b), y supongamos tam­
bién que f es continua en los puntos extremos a y b. Si f(a) = f(b), entonces 
existe un pullto interior e, por lo menos, en el que f'(c) = O. 

Demostración. Supongamos que f no es cero en ningún punto de (a, b) y 
llegaremos a una contradicción. Como que f es continua en un conjunto com­
pacto, alcanza su máximo M y su mínimo m en algún punto de [a, b]. Nin­
guno de dichos valores extremos puede ser alcanzado en un punto interior 
(pues en ese caso f' se anularía) ; por lo tanto la función los alcanza en los 
extremos del intervalo. Como fea) = f(b), entonces m = M, Y por 10 tanto 
f es constante en [a, b]. Esto contradice el supuesto de que l' no es cero en 
ningún punto de (a, b). Luego f(e) = O para algún e de (a, b). 

5.10 TEOREMA DEL VALOR MEDIO PARA DERIVADAS 

Teorema 5.11 (Teorema del valor medio). Sea f una función con deri­
vada (finita o infinta) en cada uno de los puntos de un intervalo abierto (a, b), 
y supongamos además que f es continua en los extremos a y b. Entonces existe 
un punto e de (a, b) tal que 

f(b) - fea) = f'(c)(b - a) . 

Geométricamente, este teorema establece que una curva suficientemente re­
gular que una dos puntos A y B posee una tangente con la misma pendiente 
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que la cuerda AB. El teorema 5.11 lo deduciremos de un teorema más gene­
ral que se refiere a dos funciones f y g que juegan un papel simétrico. 

Teorema 5.12 (Teorema del valor medio generalizado). Sean f y g dos 
funciones continuas que poseen derivada (finita o infinita) en cada uno de los 
puntos del intervalo abierto (a, b) y cada una es continua en los puntos ex­
tremos a y b y, además, no existe ningún punto x del interior del intervalo en 
el que f'(x) y g'(x) sean ambas infinitas. Entonces para algún punto e interior 
se tiene 

f'(c)[g(b) - g(a)] = g'(c)[J(b) - fea)]. 

NOTA. Cuando g(x) = x, se obtiene el teorema 5.11. 

Demostración. Sea h(x)=f(x).[g(b)-g(a)]-g(x).[f(b)-f(a)]. Entonces h'(x) 
es finito si f'(x) y g'(x) son ambas finitas, y h'(x) es infinito si una de las deri­
vadas 1'(x) o g'(x) es infinita. (La hipótesis excluye el caso de que ambas sean 
infinitas.) Además, h es continua en los exremos a y b, Y h(a) = h(b) = 
= f(a)g(b) - g(a)f(b). Por el teorema de Rolle existe un punto interior c en el 
que h'(e) = O, lo que demuestra la proposición. 

NOTA. El lector podrá interpretar el teorema 5.12 geométricamente . refirién­
dolo a la curva del plano coordenado xy cuyas ecuaciones paramétricas son 
x = g(t), y = f(t), a < t < b. 

Existe una extensión de este teorema que no requiere la hipótesis de con­
tinuidad en los extremos. 

Teorema 5.13. Sean f y g dos funciones, cada una de ellas con derivada 
(finita o inflnita) en cada punto de (a, bY. Supongamos también que en l~s. ex­
tremOs a y b existen los límites f(a+) , g(a+), f(b-), g(b-) y son fmltos. 
Supongamos además que no existe ningún punto x de (a, b) en el que las de­
rivadas f'(x) y g'(x) sean ambas infinitas. Entonces para algún punto interior e 
tenemos 

f'(c)[g(b-) - g(a+)] = g'(c)[J(b-) - f(a+)]. 

Demostración. Definamos dos nuevas funciones F y G en [a, b] como sigue: 

F(x) = f(x) y G(x) = g(x) si x E (a, b); 

F(a) = f(a+), G(a) = g(a+), F(b) = f(b-), G(b) = g(b-). 
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Entonces F Y G son continuas en [a, b] y podemos aplicar el teorema 5.12 
a F y G a fin de obtener la conclusión deseada. 

El resultado que sigue es una consecuencia inmediata del teorema del va­
lor medio. 

'I't'orema 5.14. Suponemos que f posee una derivada (finita o infinita) en 
('({da uno de los puntos del intervalo (a, b) y que f es continua en los extre­
/l/OS a y b. 

11) Si f' toma sólo valores positivos (finitos o infinitos) en (a , b), entonces f es 
estrictamente creciente en [a. b). 

h) Si f' lOma sólo valores negativos (finitos o infinitos) en (a, b), entonces f es 
('strictamente decreciente en [a, b). 

e) Si f' es cero en todo (a, b). entonces f es constante en [a, b). 

/)(,/l/ostración. Elijamos x < y y apliquemos el teorema del valor medio 
111 suhintcrvalo [X, y) de [a, b]. Obtendremos 

f( y ) - f(x) = f' (c)( y - x) donde c E (x, y). 

Todas las afirmaciones del teorema siguiente se deducen inmediatamente de 
rslll ecuación. 

Aplicando el teorema 5.14(c) a la diferencia f-g se obtiene: 

( :",ol"r;o 5.15. Si f y g son continuas en [a, b) y tienen derivadas finitas 
i.I:Illt/I'.\· ('1/ (a, bY, entonces f-g es constante en [a, b). 

á.1 1 TEOREMA DEL VALOR INTERMEDIO 
PAHA LAS DERIVADAS 

I ':n el teorema 4.33 se ha demostrado que una función f continua en un intervalo 
~:ompacto [a. b) alcanza todos los valores comprendidos entre su máximo y su 
mínimo en el intervalo. En particular, f alcanza cada uno de los valores com­
prcndidos entre fea) y f(b). Un resultado análogo es válido para las funciones 
qUL' se ohtienen como derivadas de otras. 

'l't'o(t·ltut 5.16 (teorema del valor intermedio para derivadas). Supon-
¡:(//1I0S q/le f está definida en un intervalo compacto [a. b] y que posee deri­
\'lula (fil/ita o infinita) en cada uno de los puntos interiores. Supongamos, ade­
/luís, ql/e f posee derivadas laterales finitas f' +(a) y f' _(b) en los puntos extre-
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mas, con f' +(a) =F f' _(b). Entonces, si c es un número real comprendido entre 
f'+(a) y f'_(b), existe por lo menos un punto ¡'nterior x tal que f'(x) = c. 

Demostración. Definamos una nueva función g como sigue: 

g(x) = f(x) - fea) si x =F a, g(a) = f~(a). 
x - a 

Entonces g es continua en el intervalo cerrado [a, b). Por el teorema del valor 
intermedio de las funciones continuas, g alcanza cada uno de los valores com­
prendidos entre f'+(a) y U(b)-f(a)] /(b-a) en el interior de (a, b). Por el teo­
rema del valor medio, tenemos que g(x) = f'(c) para algún c de (a, x), en donde 
x E (a, b). Por lo tanto, f' toma todos los valores entre f' +(a) y U(b)­
- f(a)]/(b - a) en el interior (a, b). Un argumento análogo aplicado a la fun­
ción h, definida por 

h(x) = f(x) - f(b) 
x - b 

si x =F b, h(b) = f:"(b), 

prueba que f alcanza todos los valores comprendidos entre [f(b) - f(a)]/(b - a) 
y f -Cb) en el interior (a, b). Combinando estos resultados, vemos que f' al­
canza cada uno de los valores comprendidos entre f+(a) y f _(b) en el inte­
rior (a, b), 10 cual termina la demostración. 

NOTA. El teorema 5.16 es asimismo válido si una o ambas derivadas late­
rales f' +(a) y f _(b) es infinita. La demostración en este caso se obtiene consi­
derando la función auxiliar g definida por medio de la ecuación g(x) = 
f(x) - cx, si x E [a, b]. Los detalles se dejan al lector. 

El teorema del valor intermedio demuestra que una derivada no puede cam­
biar de signo en un intervalo si no toma el valor cero. Por lo tanto, tenemos 
el siguiente teorema, que es más fuerte que el 5.14(a) y (b). 

Teorema 5.17. Sea f con derivada (finita o infinita) en (a, b) y continua en 
los extremos a y b. Si f'(x) =F O para todo x de (a, bY, entonces f es estricta­
mente monótona en a, b. 

El teorema del valor intermedio prueba también que las derivadas monó­
tonas son necesariamente continuas. 

Teorema 5.18. Supongamos que f existe y es monótona en un intervalo 
abierto (a, by. Entonces r es continua en (a, by. 
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Demostración. Supongamos que f' tuviese una discontinuidad en algún punto c 
de (a, b); llegaremos entonces a una contradicción. Elijamos un sub intervalo 
cerrado ~et, .8] de (a, b) que contenga a c en su interior. Como que f' es mo­
nótona en {et, m, la discontinuidad en c debe ser una discontinuidad de salto 
(por el teorema 4.51). Por lo tanto f' omitiría alguno de los valores compren­
didos entre f'(a) y /'(.8), en contradicción con el teorema del valor intermedio. 

;',12 FóRMULA DE TA YLOR CON RESTO 

('01110 hemos observado anteriormente, si f es diferenciable en e, entonces f es 
aproximadamente una función lineal en las proximidades de e. Esto es, la 
ecuación 

f(x) = f(e) + f'(e)(x - c), 

es aproximadamente correcta cuando x - e es pequeño. El teorema de Taylor 
nos dicc que, en general, f puede aproximarse por medio de un polinomio de 
v,rado 1/ - 1 si f posee derivadas hasta el orden n. Además, el teorema de Tay-
101' proporciona una expresión útil para calcular el error cometido en esta 
IIpn1ximación. 

'I','or"mn ,'>.19 (Taylor). Sea f una función que admita derivada n-ésima 
j'''' fil/ita en todo el intervalo abierto (a, b) Y supongamos que f(1I-l) es eon­
til/I/II ('1/ el intrevalo cerrado [a, b]. Supongamos que c E [a, b]. Entonces, para 
todo x de [a, b] , x =1= e, existe un punto x, interior al intervalo, que une x con e 
tll/ (///(' 

n-) f(k)(e) k f(n·)(x¡) n 
f(x) = f(e) + L - - (x - e) + - - - (x - e) . 

k=) k! n! 

El teorema de Taylor se obtiene como consecuencia de un resultado más 
~el1cral que, a su vez, es una extensión directa del teorema del valor medio ge­
I1crulizado. 

Tt'oremn .'>.20. Sean f y g dos funciones que posean derivadas n-ésimas f(1I) 
y g(lI) finitas en un intervalo abierto (a, b) y derivadas (n-1) continuas en 
l'I intervalo cerrado [a, b]. Supongamos que c E [a, b]. Entonces, para todo x 
de [(/, h], x =1= e, existe un punto Xl interior al intervalo, que une x con e tal que\ 

((x) - L f (e) (x - et g(n)(x¡) = ¡<n)(x¡) g(x) - L fL.+ (x - e)k . 
[ 

n-¡ (k) ] [n-) (k)() ] 

k = O k! k=O k. 
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NOTA. Para el caso especial en que g(x) = (x --:- c)1I, tendremos g(k'(C) = O 
para O < k < n - 1 Y g(1I'(x) = n!. Este teorema se reduce entonces al teo­
rema de Taylor. 

Demostración. Para simplificar, supongamos e < b Y x> c. Mantengamos x 
fijo y definamos dos nuevas funciones F y G como sigue: 

n-¡ (k) 

F(t) = f(t) + L fi!.2 (x - t)k, 
k=l k! 

n-1 (k)() 
G(t) = g(t) + L rt_.~ _ (x - t)k, 

k= ¡ k!' 

para cada t de [e, x]. Entonces F y G son continuas en el intervalo cerrado 
[e, x] y tienen derivadas finitas en el intervalo abierto (e, x). Por lo tanto, el 
teorema 5.12 se puede aplicar y podemos escribir 

F'(x¡)[G(x) - G(e)] = G'(x)[F(x) - F(e)] , donde x,E (e, x). 

Esto conduce a la ecuación 

F'(x)[g(x) - G(e)] = G'(x)[j(x) - F(e)] , (a) 

ya que G(x) = g(x) y F(x) = f(x). Si, ahora, calculamos la derivada de la suma 
que define F(t), teniendo en cuenta que cada uno de los términos de la suma es 
un producto, encontramos que todos los términos se destruyen salvo uno, y 
se obtiene 

Análogamente, obtenemos 

F'(t) = (x - t)n-) f(n)(t). 
(n - 1)! 

G'(t) = (x - t)"-) g(n)(t). 
(n - l)! 

Si hacemos t = Xl Y substituimos en (a), obtenemos la fórmula de este teorema. 
\ 

5.13 DERIVADAS DE FUNCIONES VECTORIALES 

Sea f: (a, b) ~ Rn una función vectorial definida en un intervalo abierto (a, b) 
de R. Entonces f = (fl' ... , f7l), donde cada componente fk es una función real 
definida en (a, b). Diremos que f es diferenciable en un punto e de (a, b) si 
cada una de las componentes f" es diferenciable en e y definimos 
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{'(e) = (j{(e) , .. . , ¡~(e». 

Fn otras palabras, la derivada f'(e) se obtiene diferenciando cada una de las 
componentes de f en e. A la vista de esta definición no es sorprendente que 
nos preguntemos cuáles de los teoremas de diferenciación son válidos para 
funciones vectoriales. Por ejemplo, si f y g son funciones vectoriales diferen­
ciaolcs en e y si ,\, es una función real diferenciable en e, entonces la suma 
f +~. el producto Af, y el producto escalar f· g son diferenciables en e y 
se tiene 

(f + g)'(e) = {'(e) + g'(e), 

(U)'(e) = A'(e)f(e) + ),(e)f'(e) , 

(f'g)'(e) = f '(e)'g(e) + f(e)·g' (e). 

I.lls demostraciones se obtienen fácilmente si se consideran las componentes. 
Fxi~tc también una regla de la cadena para diferenciar funciones compuestas 
que se prueba de la misma manera. Si f es vectorial y u es real, entonces la 
funCÍ()n compuesta g, dada por g(x) = f[u(x)], es vectorial. La regla de la ca­
della establece que 

g'(e) = f'[u(e)]u'(e), 

Ni l'I dominio de f contiene un entorno de u(c) y si u'(e) y f'[u(e)] existen. 
El teorema del valor medio establecido en el teorema 5.11 no se verifica en 

el caso de funciones vectoriales. Por ejemplo, si f(t) = (cos t, sen t) para todo 
I rl~ul. entonces 

{(2 7l') - feO) = O, 

IK~(,() nI) no es nunca cero. De hecho, 11 f ' (t) [[ = 1 para todo t. Una versión 
lIlotl ificada del teorema del valor medio para funciones vectoriales será desa­
rrollada en el capítulo 12 (teorema 12.8). 

;'.11. IlERIVADAS PARCIALES 

Sen S un conjunto abierto del espacio euclídeo Rn, y sea f : S 0--)0 Runa fun­
cil'm real definida en S. Si x = (x" oo., xn ) y e = (e" oo., en) son dos puntos 
,k' S con las coordenadas correspondientes iguales excepto en el k-ésimo lugar, 
l' .~to es si X i = ei para i ,* k Y si X I; '* e", entonces podemos considerar el \ 
limite 

lim f(x) _- ¡(e). 
X k-Ck X k - ek I 
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Cuando este límite existe, se le llama derivada parcial de f con respecto de la 
k-ésima coordenada y se designa por medio de 

Dd(e), 
a¡ 
- (e), 
aXk 

o por alguna otra expresión análoga. Nosotros adoptaremos la notación D"f(c). 
Este proceso produce n nuevas funciones D,f, D 2f. oo ., D.,,f definidas en los 

puntos de S en los que los correspondientes límites existen. 
La diferenciación parcial no es, realmente, un nuevo concepto. Podemos 

considerar a f(x" oo., x n) como una función de una sola variable cada vez, 
dejando las demás fijas. Es decir, si· introducimos una función g definida por 

entonces la derivada parcial D"f(c) es precisamente la derivada ordinaria g'(e,,). 
Esto se enuncia usualmente diciendo que para diferenciar f con respecto a la 
k-ésima variable, se suponen constantes las otras variables. 

Siempre que tengamos que generalizar un concepto de R' a Rn procura­
remos conservar las propiedades más importantes que, en el caso unidimensio­
nal, la existencia de la derivada en e implica la continuidad en e. Por lo tanto, 
lo óptimo sería disponer un concepto de derivada para funciones de varias 
vari,ibles que implicara la continuidad. Para las derivadas parciales no ocurre 
esto. Una función de n variables puede poseer derivadas parciales en un punto 
con respecto de cada una de las variables y no ser continua en dicho punto. 
Ilustraremos esta afirmación por medio del ejemplo de una función con dos 
variables: 

f(x , y ) = {~, + y, 
si X = ° o y = O, 

en otro caso. 

Las derivadas parciales D,f(O, O) Y D 2f(0, O) existen ambas. En efecto: 

DJ(O, O) = lim ¡(x, O) - _/(0,-f!J = lim ~ = J, 
x- o x - O x-o x 

y, análogamente, D 2f(0, O) = 1. Por otro lado, es claro que esta función no 
es continua en (O, O). 

La existencia de las derivadas parciales con respecto de cada variable 
separadamente implica la continuidad con respecto de cada variable separada­
mente; pero como hemos visto, ello no implica necesariamente la continuidad 
respecto de todas las variables simultáneamente. La dificultad que presentan 

http://libreria-universitaria.blogspot.com
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las derivadas parciales proviene de su misma definición: en ella estamos obli­
gados a considerar sólo una variable cada vez. Las derivadas parciales nos 
proporcionan una medida de la variación de una función en la dirección de 
cada uno de los ejes. Existe un concepto más general de derivada que no res­
tringe nuestras consideraciones a las direcciones particulares de los ejes coor­
denados. Este concepto será desarrollado en el capítulo 12. 

El propósito de esta sección es únicamente el de introducir la notación de 
las derivadas parciales, ya que las utilizaremos ocasionalmente antes de alcan­
zar el capítulo 12. 

Si f tiene derivadas parciales D¡j, ... , Donf en un conjunto abierto S, enton­
ces podemos también considerar sus derivadas parciales. Éstas se llamarán 
derivadas parciales de segundo orden. Escribiremos Dr,d para designar la de­
rivada parcial de Dd con respecto de la r-ésima variable, Entonces, 

Dr ,J = Dr(DJ), 

Las derivadas parciales de orden superior se definen análogamente, Otras no­
taciones son 

!l.15 DIFERENCIACIÓN DE FUNCIONES DE UNA VARIABLE 
COMPLEJA 

En esta sección discutiremos brevemente las derivadas de las funciones com­
plejas definidas en subconjuntos del plano complejo. Tales funciones son, na­
turalmente, funciones vectoriales cuyo dominio y recorrido son subconjuntos 
de R". Todas las consideraciones del capítulo 4 concernientes a los límites y a 
la continuidad de las funciones vectoriales se aplican, en particular, a las fun­
ciones de una variable compleja. Existe, sin embargo, una diferencia esencial 
entre el conjunto C de los números complejos y el conjunto R n de los vec­
tores 11 dimensionales (cuando n > 2) que juega un importante papel en este 
momento. En el sistema de los números complejos disponemos de las cuatro 
operaciones algebraicas de sumar, restar, multiplicar y dividir, y estas opera­
ciones verifican muchas de las propiedades «usuales» del Álgebra que son vá­
lidas en el sistema de los números reales. En particular verifican los cinco p~ 
meros axiomas de los números reales enumerados en el capítulo 1. (Los axio­
mas 6 al 10 involucran la relación de orden <, que no existe entre números 
complejos.) Todo sistema algebraico que verifica los axiomas 1 al 5 se llama 
cuerpo. (Para una discusión más amplia de los cuerpos, véase la referencia 1.4.) 

I 

I 
1 

.. 
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La multiplicación y la división no pueden ser introducidas en Rn. (?~~a n > 2) 
de forma que Rn sea un cuerpo * que contenga a C. Como la dlvlsI~n es ~o­
sible en C, es posible asimismo formar el cociente fundamental de dIferencIas 
[fez) - f(c)]/(z - c) que fue utilizado para definir la derivada en R, y entonces 
se presenta de forma clara cómo hay que definir la derivada en C. 

Definición 5.21. Sea f una función compleja definida en un conjunto abier­
to S de C, y sea cES. Entonces f es diferenciable en c si el límite 

¡im f(z)~Jc) = I'(e) 
z~c z - e 

existe. 

Por medio de este proceso de calcular límites se obtiene una nueva f~nción 
compleja f definida en aquellos puntos z de S donde fez) existe. Las denvadas 
de orden superior f", f", .. , se definen, como es natural, de form~ análog~. 

Las siguientes proposiciones son válidas para funciones complejas ~Cfilll­
das en un conjunto abierto S; sus demostraciones son exactamente las mismas 
que las utilizadas en el caso real: 

a) f es diferenciable en e si, y sólo si, existe una función f*, continua en e, 

tal que 

fez) - f(e) = (z - e)f*(z), 

para todo z de S, con f*(c) = f(e). 

NOTA. Si hacemos g(z) = f*(z) - f'(c), la ecuación de (a) podemos ponerla 
en la forma 

fez) = f(e) + I'(e)(z - e) + g(z)(z - e), 

donde g(z) ~ O cuando z ~ c. Esta expresión se llama la fórmula de Taylor de 

primer orden para f. 

* Por ejemplo, si fuese posible definir una multiplicación en ~3 que dotara a R ' de es!ruc­
tura de cuerpo, conteniendo a C. podríamos razonar como SIgue: . Para cada x de R los 
vectores 1 x x' x' serían linealmente dependientes (ver ReferenCIa 5.1, p. 558). Entonces 
para cada' x 'de R3 • se verificaría una relación del tipo ao + a,x + a,x

2 + a3x
3

• = 0, donde 
a a a a son números reales. Pero cada polinomio de grado tres. con coefiCIentes reales 
e~' u~' p:~d~cto de un polinomio lineal por un polinomio cuadrático .con ~oeficientes reales. 
Las únicas raíces de tales polinomios son o bien números reales o bien numeros compleJOS. 

APOSTOL, análisis - 6 



142 Derivadas 

b) Si f es diferenciable en e, entonces f es continua en e. 
c) Si dos funciones f y g tienen derivadas en e, entonces su suma, su diferen­

cia, su producto y su cociente tienen también derivadas en c y se obtienen 
por medio de las fórmulas usuales (como en el teorema 5.4 J. En el caso 
de flg, debemos suponer que g(e) =1= O. 

ti) /'a regla de la cadena es válida; es decir, tenemos 

(g o f)'(e) = g'[J(e)]f'(e), 

si el dominio de g contiene un entorno de f(e) y si f'(e) y g'[f(e)] existen. 

Si fez) = z, se obtiene f'(z) = 1 para todo z de C. Por (c) reiterado, se 
tlelle que f'(z) = nzn-l cuando fez) = zn (n es un entero positivo). Esto también 
NO verifica cuando n es un entero negativo, siempre que z =1= O. Por lo tanto, es 
posible calcular las derivadas de los polinomios complejos y de las funciones 
rllcionales complejas utilizando las mismas técnicas que las empleadas en el 
('ólculo elementa,I. 

5.1 (, ECUACIONES DE CAUCHY-RIEMANN 

Si f es una función compleja de una variable compleja, podemos escribir cada 
vlllor de la función en la forma 

fez) = u(z) + iv(z), 

donde u y v son funciones reales de una variable compleja. Podemos, además, 
considerar u y v como funciones reales de dos variables reales y escribir en­
tOllces 

f(z) = u(x, y) + iv(x, y), si z = x + iy. 

En ambos casos, escribiremos f = u + iv y nos referiremos a u y a v de­
Nignándolas parte real y parte imaginaria de f. Así, en el caso de la función 
exponencial compleja f, definida por 

fez) = eZ = eX cos y + ieX sen y, 

las partes real e imaginaria vienen dadas por 

u(x, y) = eX cos y, v(x, y) = eX sen y. 

Análogamente, cuando fez) = Z2 = (x + iy)2, obtenemos 

v(x, y) = 2xy. 

\ 
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En el próximo teorema veremos que la existencia de la derivada f' impone 
una severa restricción a las partes real e imaginaria u y v. 

Teorema 5.22. Sea f = u + iv definida en un conjunto abierto S de C. 
Si f'(e) existe para un e de S, las derivadas parciales D1u(e), D 2u(e), D1v(c) 
y D 2v(e) existen y se tiene 

f'(e) = D¡u(e) + i D¡v(e), (3) 

y 
f'(e) = Dzv(e) - i Dzu(e). (4) 

Esto implica, en partz'eular, que 

y D¡v(e) = -Dzu(e). 

NOTA. Las dos últimas ecuaciones 
de Cauehy-Riemann. Generalmente 

se conocen por el nombre de ecuaciones 
se escriben en la forma 

au av av ·au 

a~ = ay' ux ay 

Demostración. Como que f'(e) existe, es posible encontrar una función f* defi­
nida en S tal que 

fez) - f(e) = (z - e)f*(z), (5) 

donde f* es continua en e y f*(e) = f'(e). Escribamos 

z = x + ¡y, e = a + ib, y f*(z) = A(z) + iB(z), 

donde A(z) y B(z) son reales. Obsérvese que A(z) -+ A (e) y B(z) -+ B(e) cuan­
do z -+ c. Considerando sólo aquellos números z de S para los que y = b Y 
tomando las partes real e imaginaria de (5), tenemos 

u(x, b) - u(a, b) = (x - a)A(x + ib), v(x, b) - vea, b) = (x - a)B(x + ib). 

Dividiendo por x - a y haciendo que x -+ a obtenemos 

D¡u(e) = A(e) y DI v(e) = B(e). 

Como que f'(e) = A(e) + iB(e), esto prueba (3). 
Análogamente, considerando aquellos z de S con x = a tenemos 

y 
Dzv(e) = A(e) 

Dzu(e) = - B(e), 
que prueba (4). 
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El teorema que sigue da algunas aplicaciones de las ecuaciones de Cauchy­
Ricmann. 

7" 'orf'ma 5.23. Sea f = u + iv una función con derivada en cada uno de los 

11111/10.1" de un disco abierto D centrado en (a, b). Si u, v o Ifl son constantes * 
/'1/ n, entonces f es constante en D. Además, si 1'(z) = O para todo z de D, 
/'1/1011(,(,.\' f es constante. 

f)1'lIIo,\·lración. Supongamos que u es constante en D. Las ecuaciones de Cau­
l'hy-Ricmann prueban que D 2v = D lv = O en D. Aplicando dos veces el teo­
I'Cllla del valor medio unidimensional, obtenemos para un JI' entre be y, 

v(x, y) - v(x, b) = (y - b)D2 v(x, y' ) = O, 

y pura un X entre a y x, 

v(x, b) - vea, b) = (x - a)Dlv(x', b) = O. 

1'01' lo tanto v(x, y) = vea, b) para todo (x, y) de D, luego v es constante en D. 
t J" razonamiento análogo demuestra que si v es constante, entonces u es 
consta nte . 

Supongamos ahora que Ifl es constante en D. Entonces lfI2 = u2 + v2 es 
cOllstante en D. Derivando parcialmente tenemos 

uDlu + vDlv = O, uD2 u + vD2 v = O. 

nll virtud de las ecuaciones de Cauchy-Riemann la segunda ecuación puede 
cNcl'ihirse 

Combinando ésta con la primera, podemos eliminar Dl v y obtenemos 
(11') + 1'")D¡u = O. Si u 2 +v2 = O, entonces u = v= O, luego f = O. Si U2 +V2 =1= O, 
cntonces D¡u = O; luego u es constante y f también. 

Finalmente, si l' = O en D, ambas derivadas parciales Dl v y D 2 v son cero 
CI1 O. De nuevo, como en la primera parte de la demostración, obtenemos que 
f l~S constante en D. 

El teorema 5.22 nos dice que una condición necesaria para que la función 
f = 11 + iv posea derivada en c es que las cuatro derivadas parciales Dlu, D 2u, \ 
n \I'. D~v existan en e y satisfagan las ecuaciones de Cauchy-Riemann. Esta 

• Aquí 111 designa la función cuyo valor en z es If(z)l. 
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condición no es, sin embargo, suficiente, como podemos ver considerando el 

siguiente ejemplo. 

Ejemplo. Sean u y v definidas como sigue: 

x3 _ y3 
u(x, y) = --­

X2 + y2 

x3 + y3 
v(x, y) = 2 2 

X + Y 

si (x, y) f:. (0, O), u(O, O) = 0, 

si (x, y) f:. (0, O), veO, O) = O. 

Es fácil comprobar que D 1 u(O, O) = D 1 veO, O) = 1 Y que D ,u(O, O) = - D 2 veO, O) = 
-1, por lo tanto las ecuaciones de Cauchy-Riemann se verifican en (O, O). A pesar 
de todo, la función f = u + iv no puede tener derivada en z = O. En efecto, para 
x = O, el cociente diferencial se convierte en 

fez) - feO) __ -= y + iy = ·1 . + /, 
z - O iy 

mientras que para x = y, es 

fez) - feO) = ~ = } + i 

z - O 

Y por lo tanto 1'(0) no existe. 

x + ix 2 

En el capítulo 12 demostraremos que las ecuaciones de Cauchy-Riemann 
~on suficientes para establecer la existencia de la derivada de f = u + iv ~n c 
si las derivadas parciales de u y v son continuas en un entorno de c. Para Ilu~­
trar cómo hay que utilizar este resultado en la práctica, obtendremos la den­
vada de la función exponencial. Seaf(z) = eZ = u + iv. Entonces 

u(x, y) = eX cos y, v(x, y) = eX seny, 

y por lo tanto 

DI u(x, y) = eX cos y = Dzv(x , y), D 2 u(x, y) = - eX sen y = - DI v(x, y) . 

Como estas derivadas parciales son continuas en todo R2 y satisfacen las ecua­
ciones de Cauchy-Riemann, la derivada fez) existe para todo z. Para calcularla 
usaremos el teorema 5.22 y obtendremos 

I'(z) = eX cosy + ieXsen y =/(z). 

Entonces, la función exponencial es su misma derivada (como en el caso real). 
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EJERCICIOS 

Funciones reales 

'~n los ejercicios que siguen se supone, siempre que sea necesario, que se conocen 
las fórmulas para derivar las funciones elementales trigonométricas, exponenciales 
y logarítmicas. 

~.I U na función f satisface una condición de Lipschitz de ordena en e si existe 
11/1 número positivo M (que puede depender de e) y una bola unidimensional B(c) ta­
ks qlle 

I/(x) - /(e) / < M lx - el ~ 

,¡ \ ( !l(e). x =!= c. 

;¡) Probar que una función que satisface una condición de Lipschitz de or­
den a es continua en e sia > O, Y derivable en e si >Ct > l . 

h) Dar un ejemplo de una función que satisfaga la condición de Lipschitz de 
orden 1 en e para la que f'{e) no exista. 

!I.Z P/1 l'ada uno de los siguientes casos, determinar los intervalos en los que la 
J'1I1ll'it'l/1 / es creciente o decreciente y determinar los máximos y mínimos (si existen) 
t'1I l'I l'llnjunto en el que f está definida. 

a) /(x) o •• x 3 + ax + b, x E R. 

h) /ü) = log (x 2 
- 9), /xl > 3. 

d/(x) ~ x2/3(x _ 1)4, 

ti) /(,r) = (sen x)/x if x # 0,[(0) = 1, 
O S; x S; l. 

O S; x S; n/2. 

!I .. ' BlIsl:ar un polinomio I del menor grado posible tal que 

¡Jomll' .\, I x" y a" a2 , b" b2 son números reales dados. 
!I.4 .... e define I como sigue: I(x) = e- l/X' si x =!= O, 1(0) = O. Probar que 

;¡) / es continua para todo x. 

h) /(1/) es continua para todo x, y que 1("1(0) = O, (n = 1, 2, Oo.). 
!I.!I I >dinimos l, !? Y h como sigue: 1(0) = g(O) = h(O) y, si x =!= O, I(x) = sen (l /x), 

g(l) x sen (l /x), h(x) = X2 sen (l/x). Probar que 

a) j'(x) = - l /x 2 cos (l/x), si x # O; 

h) .e/(x) = sen (l/x) - l/x cos (l/x), si x # O; 

e) /t ' (x} = 2xsen (l/x) - cos (l/x), si x # O; 

/,(0) no existe. 

g'(O) no existe. 

h' (O) = O; 
limx_o h'(x) no existe. 

~.6 Ohtener la fórmula de Leibnitz para la derivada n-ésima del producto h de \ 
¡JO'. funciones I y g: 

donde (;) 
n! - - -.-

k!(n - k)! 
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5.7 Sean I y g dos funciones definidas en todo R y con derivadas finitas terce~as 

f"(x) y g'''(x) para todo x de R. Si I(x) g(x) = 1 para todo x , probar que las r~laclO­
nes de (a), (b), (c) y (d) se verifican en todos los puntos en los que el denommador 
no es cero: 

a) f'(x)/f(x) + g'(x)/g(x) = O. 

b) f"(x)//,(x) - 2/'(x)//(x) - g"(x)/g'(x) = o. 

/'''(x) f'(x)g"(x) _ 3/"(x) _ ~~~ = O. 
c) 1'(; ) - 3 f(x)g '(x) f(x) g '(x) 

d /III(~) _ ~ (/"(X»)2 = glll(~) _ .~ (1'(X») 2. 

) /'(x) 2 /,(x) g'(x) 2 g'(x) 

NOTA. La expresión que aparece en el primer miembro de (d) se llama derivada de 
Schwarz de I en x . . 

e) Probar que f y R tienen la misma derivada de Schwarz SI 

g(x) = [af(x) + b J/ [ef(x) + d J, donde ad - be # O. 

Indicación. Si e =1= O, escribir (al + b)/(cl + d) = (a/c) + (be - ad)/[e(el + d)] y apli­
car la parte (d). 

5.8 Sean 1" 12 , R" g2 cuatro funciones con derivadas en (a, b). Definamos F por 
medio del determinante 

F(x) = I/¡(X) /2(X) I ' 
g¡ (x) Y2(X) si x E (a, b). 

a) Probar que F'(x) existe para cada x de (a, b) y que 

F'(x) = I /~ (x) /~(x) I + I /~ (x) ¡~(Jc) I · 
g¡(x) gzCx) gi(X) gzCx) 

b) Establecer y probar un resultad'o más general para determinantes de ord~n n. 
5.9 Dadas n funciones 11' Oo., 1" derivables hasta e! orden n en (a, b), defimmos 

ulla función W, llamada el Wronskiano de 11' Oo., ln como sigu~:. Para cada ,x. de 
(a, b), W(x) es el valor del determinante de orden n que en la k-eslma fila, l11-eSlma 
columna, tiene al elemento f~-1)(x), donde k = 1, 2, Oo., n y 111 = 1, 2, 'Oo, n. [La 
expresión ¡t,:;)(x) designa a Im(x).] , . . 

a) Probar que W'(x) se obtiene reemplazando la ultima fila de! determl-
. , . ¡'(nl( ) ((n)( ) nante que define W(x) por las derivadas n-eslmas ¡ X , . .. , . n x. 

b) Supongamos que existen n constantes el' Oo., Cn' no nulas, tales que 
ed¡(x) + ' Oo + enf.n(x) = O para todo x de (a, b). Probar que W(x) = O 
para cada x en (a, b). .. 

NOTA. Un conjunto de funciones que satisface una relaCión de este tIpO se llama 
conjunto linealmente dependiente sobre (a, b). . 

c) La anulación del Wronskiano en todo e! intervalo (a, b) es n.ecesana, pero 
no es suficiente para que 1,. Oo. , In sean linealmente dependientes. Probar 
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que en el caso de dos funciones, si el Wronskiano se anula en (a, b) y si 
una de las funciones no se anula en (a, b), entonces constituyen un con­
junto linealmente dependiente en (a, b). 

.':. teorema del valor medio 

!l. 10 Dada una función f definida y derivable con derivada finita en (a, b) y tal que 
lim" ,/¡ !(x) = +OJO, probar que lim"' ''' b_ {(x) o no existe o es infinito. 
!l." Prohar que la fórmula del valor medio puede escribirse en la forma: 

f(x + h1- f(x) = f'(x + Oh), 

dllndL' () < Ii < 1. Determinar fj en función de x y de h cuando 

al f(x) = .1'2, 

I.:l f(x) = eX, 

':ijal' \ / O y hallar limh ... o (} en cada caso. 

b) f(x) = x 3 , 

d) f(x) = log x, x> O. 

11.11 nn el teorema 5.20 hacemos f(x) = 3x4 -2x"-x2 + 1 y g(x) = 4x3 -3x2 -2x. 
11I'ohar que f(x) fg'(x) nunca es igual al cociente [f(l) - f(O)]f [g(l) - g(O)] si O < x 
., 1, ¡,( ".ímo conciliar esto con la igualdad 

f(b) - fea) _ f'(x 1) 

g(b) - g'(a) - g'(xI) ' 
a < XI < b, 

11"t' ~e ohtiene del teorema 5.20 cuando n = 1? 
11.1.1 En l:ada uno de los casos especiales del teorema 5.20, tomar n = 1, c = a. 

¡" y demostrar que XI = (a + b)f2. 

al f(x) = sen x, g(x) = cos x; b) f(x) = eX, 

,' .... ~ po~ihle cncontrar una clase general de pares de funciones f y g para los que 
\, wa siempre (a + b)f2 y tales que los ejemplos (a) y (b) pertenezcan a dicha clase? 
LU4 Dada una función 1 definida y con derivada finita f en el intervalo se­
ll1iahierto O < x s I y tal que W(x)1 < 1, definimos an = l(lfn) para n = 1, 2, 3, '" 
Demostrar que el lim,,_ oo a" existe. Indicación. Utilizar la condición de Cauchy. 
!I.'!I Supongamos que f posee derivada finita en cada uno de los puntos del inter­
valo ahierto (a, b). Supongamos además que limx ... cf'(x) existe y es finito para 
IIIHl dc 'O~ puntos interiores c. Demostrar que el valor de este límite deberá ser f(e). 

!l.'" Sca / continua en (a , b) con derivada finita f en todo (a, b), excepto quizás 
rl1 , ', Si limJ, ... c f'(x) existe y vale A, entonces f'(c) existe también y vale A, 
!I,'7 Sea f continua en [O, 1], feO} = O. f(x) finito para cada x de (O, 1). Probar que 
~i f' cs aeciente en (O, 1 l, entonces también 10 es la función g definida por medio 
de la cl.:uac ión g(x) = f(x}fx. 
!I.'M Supongamos que f posee derivada finita en (a, b) y es continua en [a, b] con 
(11) - /(h) = O. Probar que para cada real A existe un e de (a, b) tal que f'(e) = Af(e). 
/lItli(,ilC'ión. Aplicar el teorema de Rolle a g(x) f(x) para una g conveniente que de­
l1l'nda de j\. 
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5.19 Supongamos que f es continua en [a, b] y que posee una derivada segunda 1" 
finita en el intervalo abierto (a, b). Supongamos que la cuerda que une los puntos 
A = (a , fea»~ y B = (b , f(b)) corta a la gráfica de la función f en un tercer punto P 
distinto de A y de B. Probar que f"(e) = O para un e de (a, b). 
5.20 Si f posee derivada tercera 1'" finita en ra, b] y si 

fea) = f'(a) = f(b) = f'(b) = O, 

probar que fl/(e) = O para un e de (a, b). 
5.21 Sea f una función no negativa y que admita tercera derivada finita t'" en 
el intervalo abierto (O, 1). Si 1(0-':) = O para dos puntos, por lo menos, de x en (O, 1), 
entonces f"'(e) = O para un e de (O, 1). 
5.22 Supongamos que f admite una derivada finita en un cierto intervalo (a, +OJO). 

a) Si I(x) -+ l Y f'(x) -+ e cuando x -+ +00, probar que e = O. 
b) Si f(x)-+ 1 cuando x -+ +00, probar que f(x)fx -+ I cuando X -+ +00. 
c) Si f'(x) -+ O cuando x -+ +OJO, probar que f(x)fx -+ Ocuando x -+ +00. 

5.23 Sea h un número positivo fijo. Probar que no existe ninguna función f que 
satisfaga las tres condiciones siguientes: f'(x) existe para x ~ O, 1'(0) = O, f'(x) ~ h 

para x> O. . 
5.24 Si h > O y f'(x) existe (y es finita) para cada x de (a - h, a+ h), y SI f es con-
tinua en [a - h, a + h], probar que se tiene: 

a) fea + h) - fea - h) = f'(a + Oh) + f'(a - Oh), 
h 

0 < 0<1; 

b) fea + .~t-: 2f(a) + f(a.~ h] = f'(a + )'h) - f'(a - Ah), 
h 

c) Si real existe, probar 

/,,(a) = lim f(o+ h) _= 2f (a) +[(a ___ 11) . 

h ... O h2 

0 <).< 1. 

d) Dar un ejemplo en el que exista el límite del cociente que aparece en (e) 

pero r(a) no exista. 
5.25 Sea f una función con derivada finita en (a, b) y supongamos que e E (a, b). 
Considerar la siguiente condición: Para cada E > O existe una bola unidimensional 
B(c; (¡), cuyo radio (¡ depende s610 de E y no de e, tal que si x E B(e; 8) y x =1= e, 

entonces 

Probar que l' es continua en (a, b) si esta condición se verifica en todo (a, b). 
5.26 Sea f con derivada finita en (a, b) y continua en [a, b], con a s f(x) s b para 
todo x de [a, b] y If'(x)1 s ex < 1 para todo x de (a, b). Probar que f posee un único 
punto fijo en [a, b]. 
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!t27 Dar un par de funciones f y g con derivadas finitas en (O, 1) tales que 

lim f(x] = O 
x-->O g(x) , 

pero que limT --> o f(x)/g'(x) no exista, eligiendo g de modo que g'(x) nunca valga cero. 
!1.2H Demostrar el siguiente teorema: 
.'1"/1" [ Y g dos funciones con derivadas n-ésimas finitas en (a, b). Supongamos que, 
"/lra algtín punto interior e de (a. b), f(e) = f'(e) = ... = f(n- 1 )(e) = O, Y que g(e) = 
,l/k) :: ... = R(n-l ) (e) = O, pero que g(n)(x) nunca es cero en (a, b). Probar que 

. f(x) f(n\c) 
lim-- = --o 

x-->c g(x) g<n)(e) 

NlIIA. [('11) Y g(ll) no se suponen continuas en e. Indicación. Haciendo 

(x - et- 1f(n-1)(e) 
F(x) = f(x) - ----- , 

(n - 1)! 

IIrflnir (,' de forma análoga, y aplicar el teorema 5.20 a las funciones F y G. 
8.29 Prohar que la fórmula que aparece en el teorema de Taylor se puede escribir 
de la forma siguiente: 

n-l f(k)(e) (x - e)(x - X )n-l 
f(x) = ¿ -,- (x - e)k + ____ ,_1 ----¡<n)(x¡), 

k=O k. (n - 1). 

donde x, es un punto interior al intervalo que une X con c. Sea 1-8 = (x-x 1)/(x-e). 
Prohar que 0< fI < 1 Y deducir la siguiente forma del término complementario 
(dl'hida a ('aúchy): 

(1 __ 8)n-¡(x - e)n f (n)[8x + (1 - 8)e]. 
(n - 1)! 

1"'¡¡I'I/('iI¡,,. Tomar G(t) = g(t) = t en la demostración del teorema 5.20. 

."lIndones vectoriales 
!I.JO Si una función vectorial f es difereneiable en c, probar que 

r'(c) = lim ! [f(e + h) - f(e)]. 
h-->O h 

I{cdprocamente, si este límite existe, probar que f es diferenciable en e. 
!t.H Una función vectorial f es diferenciable en cada punto de (a, b) y tiene norma \ 
/11'11 constante. Demostrar que f(t)·f'(t) = O en (a, b). 
!i,J2 U na función vectorial f no es nunca cero y posee una derivada f' continua 
l'n R. Si existe una función real Jo.. tal que f'(t) = Jo..(t)f(t) para todo t. entonces existe 
IIn:\ función real positiva 11 y un vector constante c tales que f(t) = u(t)·c para todo t. 
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Derivadas parciales 

5.33 Consideremos la función f definida en R2 por las siguientes fórmulas: 

si (x, y) -:f (O, O) feO, O) = o. 

Probar que las derivadas parciales D,f(x. y) y D 2 f(x, y) existen para cada (x, y) 
de R2 y expresar dichas derivadas explícitamente en función de x e y. Probar, ade­
más, que f no es continua en (O, O). 
5.34 Sea f definida en R2 como sigue: 

X2 _ y2 

f(x, y) = y 2 2 
X + Y 

si (x, y) -:f (O, O), feO, O) = o. 

Calcular las derivadas parciales de primer y segundo orden de f en el origen, cuando 
existan. 

Funciones complejas 

5.35 Sea S un conjunto abierto de e y sea S* el conjunto de los complejos con­
jugados z, cuando z E S. Si f está definida sobre S. definir g sobre S* como sigue: 
g(z)= M, complejo conjugado _de fez). Si fes diferenciable en e, probar que g es 
diferenciable en e y que g'(e) = !,(c). 
5.36 i) En cada uno de los siguientes ejemplos escribir f = u + iv y hallar fórmu­

las explícitas para U'(x, y) y v(x, y) 

a) fez) = sen z, 

c) fez) == Izl, 
e) fez) = arg z (z -:f O), 

g) fez) = ez2
, 

b) fez) = cos z, 

d) fez) = z, 
f) f(z) = lag z (z =1= O), 

h) fez) = za (ct complejo, z =1= O). 

(Estas funciones están definidas tal como se indicó en el capítulo 1.) 
ii) Probar que u y v satisfacen las ecuaciones de Cauchy-Riemann para los 

siguientes valores de z: Para todo z en (a), (b), (g); ningún z en (c)" 
(d), (e); todos los z excepto los números reales z < O en (f), (h). (En la 
parte (h), las ecuaciones de Cauchy-Riemann se verifican para todos los z 
sict es un entero no negativo, y se verifican para todo z =1= O si el es un 
entero negativo.) 

iii) Calcular las derivadas fez) en (a), (b) (f), (g), (h), en el supuesto de que 
existan. 

5.37 Escribir f = u + iv y suponer que f posee derivada en cada uno de los puntos 
de un disco abierto D centrado en (O, O). Si au2 + bv2 es constante en D para cier­
tos números reales a y b, no ambos nulos, probar que f es constante en D. 
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Funciones de variación acotada 

y curvas rectificables 

6.1 INTRODUCCIóN 

Algunas de las propiedades básicas de las funciones monótonas fueron descritas 
en el capítulo 4. En este breve capítulo se estudian las funciones de variación 
acotada, una clase de funciones íntimamente relacionada con las funciones mo­
nótonas. Veremos que estas funciones están en estrecha conexión con las curvas 
que poseen longitud finita (curvas rectificables). Juegan también un papel en la 
teoría de la integración de Riemann-Stieltjes que desarrollaremos en el próxi­
mo capítulo. 

6.2 PROPIEDADES DE LAS FUNCIONES MONóTONAS 

Teorema 6.1. Sea f una función creciente definida en [a, b] y sean XO• Xl' ... , X" 
n + 1 puntos tales que 

a = Xo < Xl < X2 < '" < Xn = b. 

Tenemos entonces la desigualdad 
n-l 

L: [j(xk +) - f(x k -)] 5, f(b) - fea). 
k=l 

Demostración. Supongamos que Yk E (Xk, Xk+ l )' Para 1 < k < n - 1 tenemos 
que f(Xk +) < f(Yk) y f(Yk-I) < f(Xk-), luego f(Xk +) - f(Xk-) < f(Yk) - f(Yk-I)' 
Si sumamos ' estas desigualdades, la suma de la derecha nos da f(Yn-l) - f(Yo)' 
Puesto que f(Yn- l ) - f(yo) < f(b)...,- fea), esto completa la demostración. 

La diferencia f(Xk +) - f(Xk-) es, además, el salto de f en Xk. El teorema 
anterior nos dice que, para cada colección finita de puntos Xk de (a, b), la 
suma de los saltos en estos puntos está siempre acotada por f(b) - fea) . Este 
resultado nos servirá para demostrar el teor'ema siguiente. 

Teorema 6.2. Si f es monótona en [a, b], entonces el conjunto de disconti­
nuidades de f es numerable. 

153 
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f)"IIIoMraóón. Supongamos que f es creciente y sea S." el conjunto de puntos 
de (a, h) en los que el salto de f es superior a l/m, m > O. Si Xl < X2 < ... 
• .roo I están en S"" el teorema 6.1 nos asegura que 

n - 1 
-- ~ f(b) - f(a). 

m 

IiNto significa que s'm debe ser un conjunto finito. Pero el conjunto de discon­
tlnuidadcs de f en (a, b) es un subconjunto de la reunión U:= l SlI' y por lo 
IlIlIto lIulllcrable. (Si f es decreciente, el argumento se aplica a -f.) . 
t..a FIJNf:IONES DE VARIACIóN ACOTADA 

""/''''''16" 6 .. 1. Si [a, b] es un intervalo compacto, un conjunto de puntos 

P = {xo, XI' .. . , xn}, 

qll, .\'wMaRa las desz'gualdades 

a = Xo < Xl ... < Xn - 1 < Xn = b, 

"lIallla partición de [a, b]. El intervalo {Xk_l' xd se llama k-ésimo subin­
'",'alo dc' P y se escribe ÁXk = Xk - Xk-l' con lo que LZ= 1 ÁXk = b - a. La 
""1"1"("/,5,, de' todas las particiones posibles de [a, b] se designará por medio 
,1" (\'[ fI. " ]. 

""/''''''1611. 6.4. Sea f definida en [a, b]. Sí P = {xo' Xl' ... , Xn} es una parti­
d,l" dc' [a. h]. escribiremos ·f::,.fk = f(Xk) - f(Xk-I)' para k = 1, 2, ... , n. Si existe 
"" lIIílllC'fO positivo M tal que 

n 

¿ loÓfkl ~ M 
k=l 

,mrtt toda partición de [a, b], entonces diremos que f es de variación acotada 
,." [a. IJ]. 

Los dos teoremas que siguen proporcionan ejemplos de funciones de va­
riuci6n acotada. 

7',Jort'ma 6.5. Si f es monótona en [a, b], entonces f es de variación acotada 
(." (a, b]. 

Del/lostración. Sea f creciente. Entonces para cada partición de (a, b] tenemos 
Do/¡. . O Y por lo tanto 

n n n 

¿ loÓfkl = ¿ oÓfk = ¿ [f(Xk)- f(xk-¡)] = f(b) - fea). 
k=l k=l k=l 
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Teorema 6.6. Si f es continua en [a. b] y si r existe y está acotada en .el 
interior, es decir que I f'(X) \ < A para tado X de (a, b), entonces f es de vana­
ción acotada en [a. b]. 

Demostración. Aplicando el teorema del valor medio, tenemos 

I1fk = f(xk) - f(xk- I ) = !'(fk)(Xk - Xk-l), en donde tk E (Xk- 1, xk)· 

Esto implica 
1';" 

n n 

¿ 1f'(tk)II1Xk ~ A ¿ I1xk = A(b - a) . 
k= 1 k=l 

Teorema 6.7. Si f es de variadón acotada en {a, b], es decir que ~ \·f::,.fk\ < M 
para toda partición de [a, b], entonces f está acotada en [a, b]. De hecho, 

[f(x)[ ~ [fCa)[ + M para todo x de (a, b]. 

Demostración. Supongamos que x E (a, b). Utilizando la partición especial 
P = {a, x, b}, obtenemos 

If(x) - f(a) I + If(b) - f(x) I ~ M. 

Esto implica que \f(x) - f(a) \ < M, \ f(x) I < \f(a)! + M. Idéntica desigualdad se 
verifica si x = a o si x = b. 

Ejemplos . ., 
1. Es fácil construir funciones continuas que no sean de vanaClOn acota~a. Por 

ejemplo, sea f(x) = x cos {rr/(2x)} SI X * o, feO) = 0: Entonces t es contmua en 
[0, 1 J, pero si consideramos la partición en 2n submtervalos 

p = \f 0, _L , _1 _ , ... ,!, !, l} , 
2n 2n . - 1 3 2 

es fácil comprobar, calculando, que 

2n 1 1 1 1 1 ¿ [~fk[ = - + __ o + .- - + -- + ... + - + _. = 
k= 1 2n 2n 2n - 2 2n - 2 2 2 

1 1 
+-+"'+ - . 

2 n 

Esta suma no está acotada para todo n, ya que la serie L:':l (l/n) diverge. ~n 
este ejemplo la derivada f' existe en CO, 1) pero f' no está acotada en (0, 1) .. Sm 
embargo, f' está acotada en todo intervalo compacto que no contenga el ongen 
y, por lo tanto, f es de variación acotada en tales intervalos. 
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2. l!n ejemplo análogo al primero lo proporciona la función f(x) = X2 cos (I / r) 
SI x =1= O, feO} = O. Dicha función f es de variación acotada en [O, 1], ya que 
f' está acotada en [O, 1]. De hecho, 1'(0) = O y, para x =1= 0, f'(x) = sen (l /x) -f 
2r cos (l/x), luego If{x)1 :o; 3 para todo x de [0, 1]. 

3. I.a acotación de f' no es condición necesaria para que f sea variación acotada. 
Por ejemplo, considérese la función ¡(x) = X l /3. Esta función es monótona (y por 
lo tanto de variación acotada) sobre todo intervalo finito . Sin embargo, I'(x}-) 
+00 cuando x-O. 

(tA VARIACIÓN TOTAL 

/)"/illidó";, 6.8. Sea f una función de variación acotada en [a, b] y sea 2; (P) 
/11 .\'III//{/ Lk= I 16 hl correspondiente a la partición P = {xo, X,, ... , xn } de [a, b]. 
la II/íll/ero 

V¡(a, b) = sup n:: (P): PE &'[a, b]}, 

."f· lIall/a variación total de f en el intervalo fa. b]. 

NOTA. Si no hay peligro de confusi6n, escribiremos V, en vez de V,(a, b). 

Dado que f es de variaci6n acotada en [a, b], el número V, es finito. Ade­
más VI . O, ya que cada suma 2; (P) > O. y además V,(a, b) = O si, y s610 si, 
f es constante en [a, b]. 

7"'or"ma 6.9. Supongamos que f y g son dos funciones de variación acotada 
fll ra. h]. Entonces también lo es su suma, su diferencia y su producto. Ade­
/l/Ií.\'. s(' tiene 

f'" donde 
A = sup {lg(x)l: x E [a, b]}, B = sup {lf(x)1 : x E [a, b]}. 

/)t'/l/o.\'fración. Sea h(x) = f(x)g(x). Para cada partici6n P de [a, bJ se tiene 

IAhkl = If(xk)g(Xk) - f(xk - ¡)g(xk - 1)/ 

1[¡(xk)g(Xk) - f(xk-¡)g(Xk)] 

+ [¡(Xk-l)g(Xk) - f(xk-¡)g(xk_¡)]1 :o; AIAhl + BIAgkl . 

Esto implica que h es una funci6n de variaci6n acotada y que Vh < AV, + BV
g

• 

I .as demostraciones correspondientes a la suma y la diferencia son muy sim­
ples y las omitiremos. 
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NOTA. Los cocientes no han sido incluidos en el teorema anterior ya que el 
recíproco de una función de variaci6n acotada no es, necesariamente, de va­
riación acotada. Por ejemplo, si f(x) -4 O cuando X -4Xo, entonces llf no estará 
acotada en ningún intervalo que contenga el punto X o y (por el teorema 6.7) 
l jf no puede ser de variación acotada en tal intervalo. Para poder extender el 
teorema 6.9 a los cocientes, es suficiente 'excluir las funciones cuyos valores He­
guen a ser tan próximos a cero como se desee. 

Teorema 6.10. Sea f una función de variación acotada en [a, b] y suponga-
1110S que f está acotada de forma que no se pueda aproximar a cero; esto es, 
supongamos que existe un número positivo m tal que O < m < If(x) I para todo x 
de [a, b]. Entonces g = l/f es también de variación acotada en la, b] y 
V O S V, lm 2

• 

De mostración. 

6.5 PROPIEDAD ADITIVA DE LA VARIACIóN TOTAL 

En los dos últimos teoremas el intervalo [a, b] se conservó fijo y V,(a, b) era 
considerada función de f. Ahora fijaremos f y estudiaremos la variación 
total como función del intervalo [a, b], con lo cual obtendremos la siguiente 
propiedad aditiva. 

Teorema 6.11. Sea f de vanaclOn acotada en [a, b], y supongamos que 
c E (a, b). Entonces f es de variaci6n acotada en [a, c] y en [c, b] y se tiene 

V¡(a, b) = Vf(a, c) + Vf(c, b). 

De1l10stración. Probaremos en primer lugar que f es de variaci6n acotada en 
[a. e] y en [c, b]. Sea P, una partición de [a, c] y s'ea P 2 una partici6n de [c, b]. 
Entonces P I> = PI U P2 es una partición de [a, b]. Si 2; (P) designa la suma 
S ¡.:6.h! correspondiente a la partición P (en el intervalo apropiado), podemos 
escribir 

(1) 

Esto prueba que cada suma ~ (P,) Y 2; (P2) está acotada por V,(a, b) y ello 
significa que f es de variaci6n acotada en [a, c] y en [c, b]. De (1) se obtiene 
también la siguiente desigualdad 
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VI(a, e) + VI(e, b) :s; VI(a, b), 

en virtud del teorema 1.15. 

) Para obtene~a desigualdad en el otro sentido,sea P = {x
o
, Xl> . . . , x

n
} E: 

~ [a, h] y sea:o - P U {e} la (probablemente nueva) partición obtenida al añadir 
el punto c. SI e E [Xk-I ' Xk] , entonces tenemos 

If(xk) - f(Xk-I)1 :s; If(xk) - f(e)1 + If(c) - j(Xk-I)I, 

y.r:)r I? tanto 2; (P) .~ ,2; (Po). Ahora bien, los puntos de Po que están en [a, e] 
delermlnan una partIclon PI de [a, e] y los que están en [e, b] una partición p. 
de [c, h]. Las sumas correspondientes a estas particiones están relacionadas por 

.L: (P) :s; I: (Po) = .L: (PI) + .L: (P2 ) :s; VI(a, e) + VI(e, b). 

':Ilr consiguie~te. V,(a, e) + V,(e, b) es una cota superior para cada suma 2; (P). 
I \leslo que dIcha cota no puede ser menor que el extremo superior, tenemos 

VI(a, b) :s; VI(a, e) + VI(e, b), 

que lermina la demostración. 

f"f, LA VARIACIÓN TOTAL [a, x] COMO FUNCIóN DE x 

Ahora mante.nd~emos fija la función f y el punto inicial del intervalo y estudia­
remos la vanaclón total como función del punto extremo de la derecha del in­
tervalo. La propiedad aditiva de la variación total implica consecuencias im­
porlunles para esta función . . 

7't'ort'II/a 6.12. Sea f una función de variación acotada en [a, b]. Sea V defi­
"Idll ('11 [a, h] como sigue: V(x) = V,(a, x) si a < x < b, Vea) = O. Entonces: 

i) V ('.\' una función creciente en [a, b]. 
ji) V -- f es una fundón creciente en [a, b]. 

nC'lI/ostración. Si a < x < y < b, podemos escribir V (a y) = V (a )+ V ( ) p. . l' , , , ,x , x, y . 
', slo Imp Ica que V(y) - V(x) = V,(x y) > O Luego V(x) < V(y) (') 

rilien. ' -' -, e 1 se ve-

,Para demostrar (ii), sea D(x) = V(x) - f(x) si x E [a, b]. Entonces, si a < 
.r <, y < b, tenemos 

D(y) - D(x) = V(y) - V(x) - [I(y) - f(x)] = VI(x, y) - [I(y) - f(x)]. 

Pero de la definición de V¡(x, y) se sigue que 

f(y) - f(x) :s; V¡{x, y). 

\ 
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Esto significa que D(y) - D(x) > O, Y (ii) se verifica. 

NOTA. Para ciertas funciones f, la variación total V¡(a, x) se puede expresar 
como una integral. (Ver ejercicio 7.20.) 

6.7. FUNCIONES DE VARIACIÓN ACOTADA EXPRESADAS 
COMO DIFERENCIA DE DOS FUNCIONES CRECIENTES 

La simple y elegante caracterización de las funciones de variación acotada que 
damos a continuación es consecuencia del t·eorema 6.12. 

Teorema 6.13. Sea f definida sobre [a, b]. Entonces f es de variación aco­
tada en [a, b] si, y sólo si, f puede expresarse como diferencia de dos funcio­
nes crecientes. 

Demostración. Si f es de vanaClOn acotada en [a, b], podemos escribir f = 
V - D, en donde V es la función del teorema 6.12 y D = V-f. Tanto V 
como D son funciones crecientes en [a, b]. 

El recíproco se deduce inmediatamente de los teoremas 6.5 y 6.9. 

La representación de una función de variación acotada como diferencia de 
dos funciones crecientes no es única. Si f = fI - f2' en donde fI y f2 son cre­
cientes, se tiene también que f = (tI + g) - (t. + g), siendo g una función cre­
ciente arbitraria, y ello nos proporciona una nueva representación de f. Si g es 
estrictamente creciente, también lo serán fI + g y f2 + g. Por consiguiente, el 
teorema 6.13 es asimismo válido si reemplazamos «creciente» por «estrictamente 
creciente». 

6.8 FUNCIONES CONTINUAS DE VARIACIóN ACOTADA 

Teorema 6.14. Sea f una función de variación acotada en [a, b]. Si x E (a, b], 
sea V(x) = V,(a x) y hagamos Vea) = O. Entonces cada punto de continuidad 
de f también es un punto de continuidad de V. El recíproco también es cierto. 
Demostración. Puesto que V es monótona, los límites laterales por la derecha 
y por la izquierda V(x +) y V(x-) existen para cada punto x de (a, b). En 
virtud del teorema 6.13, lo mismo es cierto para f(x+) y f(x-) . 

Si a < x < y < b, se verifica [por definición de V, (x, y)] que 

O :s; !f(y) - f(x)! :s; V(y) - V(x). 

Haciendo que y ~ x, obtenemos 

o :s; !f(x+) - f(x)! :s; V(x+) - V(x) . 

http://libreria-universitaria.blogspot.com
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Análogamente. O < If(x) - f(x-)I < V(x) - V(x-). Estas desigualdades impli. 
can que todo punto de continuidad de V es también un punto de continui­
dad de f. 

Para demostrar el r-ecíproco. sea f continua en un punto e de (a, b). En­
tonces, dado E > O. existe un o > O tal que O < Ix - el < o implica If(x) - f(e)! 
< r/2. Para este mismo E. existe una partición P de [c. b). por ejemplo 

p = {xo, XI' .. . , x n}, Xo = e, X n = b, 

tlll que 

Agregando más puntos a P únicamente conseguiremos que aumente la suma 
~ lóhl y por lo tanto podemos considerar que O < Xl - X o < o. Esto signi­
IIca que 

IL\fl1 = If(x l ) - f(e)1 < ~ 
2 ' 

con lo que la desigualdad anterior se convierte en 

n 

8 8 '" 8 V¡(e, b) - - < - + k..J IL\fd ~ - + V¡(x l , b), 
2 2 k=2 2 

yll que {XI' X 2 • •••• x,,} es una partición de [xl' b). Tenemos. por tanto, 

VAe, b) - V¡(x I , b) < 8. 

Pcro 
O ~ V(x l) - V(e) = VAa, Xl) - V¡(a, e) 

= VAe, Xl) = V¡(e, b) - V¡(x l , b) < 8. 

Con lo cual hemos probado que 

O < XI - e < (j implica O ~ V(x¡) - V(c) < 8 . 

Esto demuestra que V(e+) = V(e). Un razonamiento análogo lleva al resul­
tado V(c-) = V(c) . El teorema queda entonces demostrado para todos los pun- \ 
tos interiores de [a, b). (Para los puntos extremos son necesarias ciertas modi­
ficaciones triviales.) 

Combinando el teorema 6.14 con el 6.13. podemos establecer 
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Teorema 6.15. Sea f una función continua en [a, b). Entonces f es variación 
acotada en [a, b] si, y sólo si, f se puede expresar como diferencia de dos fun­
ciones crecientes continuas. 

NOTA. El teorema se verifica también si reemplazamos «creciente» por «estric­
tamente creciente». 

Es claro que las discontinuidades de una función de variación acotada (si 
existen) deberán ser discontinuidades de salto en virtud del teorema 6.13. Ade­
más. el teorema 6.2 nos dice que constituyen un conjunto numerable. 

6.9 CURVAS Y CAMINOS 

Sea {: [a. b] ~ Rn una función vectorial, continua en un intervalo compacto 
[a, b] de R. Cuando t recorre [a. b]. los valores {(t) de la función describen 
un conjunto de puntos de R n llamado gráfica de f o curva descrita por f. 
Una curva es un subconjunto compacto y conéxo de Rn dado que es la imagen 
continua de un intervalo compacto. La función f se llama ,un camino. 

Es a veces útil imaginarse una curva como trazada por una partícula móvil. 
El intervalo [a, b] puede ser interpretado como un intervalo de tiempo y el 
vector f(t) determina la posición de la partícula en el instante t. En esta in­
terpretación, la función { se denomina un movimiento. 

Distintos caminos pueden dibujar la misma curva. Por ejemplo. las dos fun­
ciones complejas 

O ~ t ~ 1, 

dibujan ambas el círculo unidad x 2 + y2 = 1, pero los puntos son recorridos 
en sentidos opuestos. El mismo círculo lo dibuja cinco veces la función 
h(t) = el0~it, O < t < 1. 

6.10 CAMINOS RECTIFICABLES Y LONGITUD DE UN ARCO 

A continuación introducimos el concepto de longitud de un arco de curva. La 
idea consiste en aproximar la curva por medio de polígonos inscritos, técnica 
aprendida de los antiguos geómetras. Nuestra intuición nos asegura que la lon­
gitud de cualquier polígono inscrito no excederá a la de la curva (dado que 
la línea recta es el camino más corto entre dos puntos). luego la longitud de 
una curva deberá ser una cota superior de las longitudes de todos los polígonos 
inscritos. Por consiguiente, parece natural definir la longitud de una curva como 
el extremo superior de las longitudes de todos los polígonos inscritos posibles. 
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Para la mayoría de las curvas que aparecen en la práctica , esto proporciona 
un.a definición útil de longitud de arco. Sin embargo, como veremos en seguida, 
eXisten curvas para las cuales el extremo superior de las longitudes de los 
polígonos inscritos no existe. Por tanto, es necesario clasificar las curvas en dos 
categorías: las que tienen longitud y las que no. Las primeras se denominan 
rectificables, las segundas no rectificables. 

Daremos ahora una descripción formal de estas ideas. 
Sea f: [a, b] ~ Rn un camino en Rn. Para una partición cualquiera de [a, b], 

dada por 

P = {to, ti' ... , tm}, 

los puntos f(t,,) , f(t l ), oo., f(tm) son los vértices de un polígono inscrito . (Puede 
verse un ejemplo en la figura 6.1.) La longitud de este polígono la designare­
mos por A reP) y se define como la suma 

m 

Ar(P) = L: Ilf(tk ) - f(tk-I)II· 
k= 1 

f (tl;) 

FIgura 6.1 

Dflfi"idóll 6.16. Si el conjunto de números Af(P) está acotado para todas las 
partici()nes P de [a, b], entonces el camino f se llama rectificable y su longitud 
de arco, designada por Af(a, b), se define por 

Ala, b) = sup {A,(P): PE &'[a, b]}. 

Si el conjunto de números A f(P) no está acotado, f se llama no rectificable. 

Existe un método fácil para caracterizar todas las curvas rectificables. 

Teorema 6.17. Consideremos un camino f: [a, b] ~ Rn de componentes 
f = (f" oo., fn). Entonces f es rectificable si, y sólo si, cada componente h es de 
variación acotada en [a, b]. Si f es rectificable, tenemos las desigualdades 

(k=I,2, ... , n), (2) 

\ 
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en donde V k(a, b) desgina la variación total de fk en [a, b]. 

Demostración. Si P = {to, tI' oo., tm} es una partición de [a, b] tenemos 

m m n 

L: 11k(t¡) - Ik(t¡-I)1 ~ A,(P) ~ L: L: 11/t¡) - l/t¡-I)I, (3) 
¡=1 ;=1 j=l 

para cada k. Todas las afirmaciones del teorema se siguen fácilmente de (3). 

Ejemplos 
1. Como hemos indicado anteriormente, la función dada por f(x) = x cos {7T/(2x)} 

para x =1= O, feO) = O, es continua pero no es de variación acotada en [O, 1]. Por 
lo cual su grafo no es una curva rectificable. 

2. Es posible demostrar (ejercicio 7.21) que si f ' es continua en [a, b], entonces 
f es r·e~tificable y su longitud de arco puede obtenerse por medio de una integral. 

Ar(a, b) = f IIf'(t)11 dt . 

6.11 PROPIEDADES DE ADITIVIDAD y DE CONTINUIDAD 
DE LA LONGITUD DE ARCO 

Sea f = (ft, oo., fn) un camino rectificable definido en [a, b]. Entonces cada una 
de las componentes h es de variación acotada en cada sub intervalo [x, y] de 
[a, b]. En esta sección fijamosf y estudiamos la longitud de arco Af(x, y) como 
función del intervalo [x, y]. Ante todo demostraremos una propiedad aditiva. 

Teorema 6.18. Si e E (a, b) tenemos 

A,(a, b) = A,(a, e) + A,(e, b). 

Demostración. Añadamos el punto e a la partición P de [a, b]; obtendremos 
así una partición de [a, e] y una partición de [e , b] que designaremos, respec­

tivament'e, PI y P2 tales que 

Esto implica que Af(a, b) < A ¡(a, e) + Af(c, b). Para obtener la desigualdad 
en el otro sentido, sean P I y P 2 particiones arbitrarias de [a, e] y [e, b], res­

pectivamente. Entonces 
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es una partición de [a, b] para la que tenemos 

Puesto que el supremo de todas las sumas Ar(P,) + A f (P2) es la suma Af(a c) + 
A r(C, b) (ver teorema 1.15), el teorema está demostrado. 

T"orema 6.19. Consideremos un camino rectificable f definido en [a, b]. Si 
x (:: (l/, b], sea s(x) = Af(a, x) y sea sea) = O. Entonces tendremos: 
i) La función s así definida es creciente y continua en [a, b]. 

ii) Si no existe ningún subintervalo de [a, b] en el que f sea constante, enton­
ces s es estrictamente creciente en {a, b]. 

f)('II/osfración. Si a < x < y <b, el teorema 6.18 implica sey) - s(x) = Af(x, y) 
_ • O. Ello prueba que s es creciente en [a, b]. Además tenemos que s(y)-s(x»O 
ti 110 ser que Af(x, y) = O. Pero, en virtud de la desigualdad (2), Af(x, y) = O 
Implica Vk(x, y) = O para cada k y esto, a su vez, implica que f es constante 
en [x, y]. Por consiguiente (ii) se verifica. 

Pura demostrar que s es continua, utilizar-emos, de nuevo, la desigualdad (2) 
pnrn escribir 

n 

O :$ s(y) - s(x) = A,(x, y) :$ L Vk(x, y). 
k=l 

SI hucemos que y ~ x, obtenemos que cada término Vk(x, y) - O Y por consi­
~uicnte s(x) = s(x+). Análogamente, s(x) = s(x-) y la demostración está ter­
minada. 

(J.l2 (:AMINOS EQUIVALENTES. CAMBIOS DE PARÁMETRO 

FI1 esta sección se analiza una clase de caminos en la que todos tienen el mismo 
llrnfo. Sea f: [a, b] ~ R" un camino de Rn y sea u: [e, d] ~ [a, b] una función 
rent. continua y estrictamente monótona en [c, d] con recorrido [a, b]. Entonces 
lu función compuesta g = f o u dada por 

g(t) = f[u(t)] para c<t<d, 

es un camino cuya gráfica coincide con la de f. Dos caminos f y g como los 
mencionados se llaman equivalentes. Se dice que ambas funciones proveen re­
presentaciones paramétricas distintas de una misma curva. La función u define 
UIl camhio de parámetros. 

Designemos por e la gráfica común a los dos caminos equivalentes f y g. 

\ 

.A 
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Si u es estrictamente creciente, se dice que f y g dibujan a C en la misma 
dirección. Si u es estrictamente decreciente, se dice que f y g dibujan a C en 
direcciones opuestas. En el primer caso, se dice que u preserva el orden; en el 
segUlido caso, que invierte el orden. 

Teorema 6.20. Sean f: [a, b] - Rn y g: [c, d] - Rn dos caminos en Rn, cada 
uno de los cuales es uno a uno en su domim'ó. Entonces f y g son equivalentes 
si, y sólo si, tienen la misma gráfica. 

Demostración. Caminos equivalentes tienen, necesariamente, la misma gráfica. 
Para demostrar el recíproco, supongamos que f y g tienen la misma gráfica. 
Puesto que f es uno a uno y continua en el conjunto compacto [a, b], en virtud 
del teorema 4.29 sabemos que f-' existe y es continua en su gráfica. Defina­
mos U(I) = f-'[g(t)] si t E [e, d]. Entonces u es continua en [c, d] y g(t) = 
f[u(t)]. El lector podrá comprobar fácilmente que u es estrictamente monótona, 
y que por lo tanto f y g son caminos equivalentes. 

EJERCICIOS 

Funciones de variación acotada 

6.1 Determinar cuáles de las siguientes funciones son de variación acotada en [0, 1). 
a) l(x)=x2~en (l /x) si x=I=-0, 1(0)=0. 
b) I(x) = --Ix sen (l/x} si x=I=-0, 1(0)=0. 

6.2 Una función f, definida en [a, h], verifica una condición uniforme de Lipschitz 
de orden a> O en [a, b] si existe una constante M > ° tal que I/(x) - f(y)1 < 
Mlx - yltt para todo x e y de [a, b]. (Comparar con el ejercicio 5.1.) 

a) Si 1 es una tal función, probar que a > 1 implica que f es constante en 
[a, b], mientras que (X = 1 implica que 1 es de variación acotada en [a, h]. 

b) Dar un ejemplo de una función 1 que satisfaga una condición uniforme de 
Lipschitz de orden ·a < 1 en [a, b] tal que f no sea de variación acotada 
en [a, b]. 

c) Dar un ejemplo de una función f que sea de variación acotada y que, sin 
embargo, no satisfaga ninguna condición uniforme de Lipschitz en [a, b]. 

6.3 Probar que una función polinómica 1 es de variación acotada en todo inter­
valo compacto [a, h]. Describir un método que permita calcular la variación total 
de 1 en [a, b] conociendo los ceros de la derivada r. 

6.4 Un conjunto no vacío S de funciones reales definidas en un intervalo [a, b] 
se llama espacio vectorial de funciones si verifica las siguientes propiedades: 

a) Si f E S, entonces ef E S para cada número real e. 
b) Si f E S Y g E S, entonces f + g ES. 

El teorema 6.9 demuestra que el conjunto V de todas las funciones de variación aco­
tada en [a, b] constituye un espacio vectorial. Si S es un espacio vectorial que con-
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tiene todas las funciones monótonas en [a, b) , probar que V ~ S. Este resultado 
puede enunciarse diciendo que las funciones de variación acotada constituyen el 
menor espacio vectorial que contiene a todas las funciones monótonas. 
6.5 Sea f una función real definida en [O, 1] tal que feO) > O, f(x) =1= x para todo x, 

y f(x) ::; f(y) siempre que x ::; y. Sea A = {x: f(x) > x} . Probar que sup A E A Y 

que fO) > 1. 
6.6 Si f está definida en todo R" entonces se dice que f es de variación acotada 

en (-00, +(0) si f es de variación acotada en cada intervalo finito y si existe un 
número positivo M tal que V,(a, b) < M para todo intervalo compacto [a, b]. La 
variación total de f en (-00, +(0) es, entonces, el supremo de todos los números 
V,(a, b), -00 < a < b < +00, Y se designa por V,( -00, +(0). Definiciones análogas 
se aplican a los intervalos infinitos semiabiertos [a, +(0) y (-00, b]. 

a) Establecer y demostrar para el intervalo infinito (-00, +00) teoremas aná­
logos a los teoremas 6.7, 6.9, 6.10, 6.11 V 6.12. 

b) Demostrar que el teorema 6.5 es cierto para (-00, +(0) si ((monótona» se 
sustituye por ((monótona y acotada». Establecer y demostrar una modifica­
ción análoga para el teorema 6.13. 

6.7 Supongamos que f es una función de variación acotada en [a, b] y sea 

P= {xo,x¡, .. . , xn}E,qlI[a, b]. 

('omo es usual, escribimos!::;.f" = !(Xk) - I(xk_l )' k = 1, 2, ... , n. Definimos 

A(P) = {k: Ah > O}, B(P) = {k: Ah < O}. 

I ,os números 

pia, b) = sup { L Ah:Pe,qll[a, b]} 
keA(P) 

y 

nia, b) = sup { L IAhl : Pe ,qlI[a, b]} 
keB(P) 

se llaman, respectivamente, variaciones positivas y negativas de I en [a, b]. Para 
cada x de (a, b], sean V(x) = Via, x), p(x) = pia, x), n(x) = nia, x), y Vea) = 
pea) = n(a) = O. Demostrar que se tiene: 

a) V(x) = p(x) + n(x). 
b) O ::; p(x) ::; V(x) y O ::; n(x) ::; V(x) . 
c) p y n son crecientes en [a, b]. 
d) I(x) = I(a) + p(x)- n(x). (La parte (d) da una nueva demostración del 

teorema 6.13.) \ 

e) 2p(x) = V(x) + f(x) - fea), 2n(x) = V(x) - f(x) + fea) . 

f) Cada uno de los puntos de continuidad de I es también un punto de con­
tinuidad de p y de n. 

• 
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Curvas 

6.8 Sean I y g funciones complejas definidas como sigue: 

f(t) = e2nll si t e [O, 1], g(t) = e2nit si t e [0,2]. 

a) Demostrar que I y R tienen el mismo grafo pero en cambio, de acuerdo 
con la definición de la sección 6.12, no son equivalentes. 

b) Probar que la longitud de g es el doble que la de l . 
6.9 Sea f un camino rectificable de longitud L definido en [a, b], y supongamos 

quef no es constante en ningún subintervalo de [a, b). Si s designa la función lon­
gitud de arco dada por s(x) = A t(a, x) si a < x ::; b, y sea) = O. 

a) Probar que S-l existe V es continua en [O, LJ, 
b) Definir g(t) == f[S-l(t)] si t E [O, L] Y probar que g es equivalente a f. Dado 

que f(r) = g[s(t)], la función g nos proporciona una representación de la 
gráfica de f que tiene por parámetro la longitud de arco. 

6.10 Sean I y g dos funciones reales continuas y de variación acotada del1nidas 
en [a, b], con 0< I(x) < g(x) para cada x de (a! b), I(a) = g(a), I(b) = g(b). Sea /¡ 

la función compleja definida en el intervalo [a, 2b - a] como sigue: 

h(t) = t + if(t), si a :s t :s b, 

h(t) = 2b - t + ig(2b - t), si b :s t :s 2b - a. 

a) Demostrar que h describe una curva rectificable r. 
b) Explicar por medio de un dibujo las relaciones geométricas existentes 

entre 1, g y h. 
e) Demostrar que el conjunto de puntos 

s = {(x, y): a :s x :s b, f(x):S y :s g(x)} 

es una región del plano R2 cuya frontera es la curva r. 
d) Sea H la función compleja definida en [a, 2b-a] como sigue: 

H(t) = t - ti [g(t) - f(t)], si a :s t :s b, 

H(t) = t + -!i [g(2b - t) - f(2b - t)], si b :s t :s 2b - a. 

Probar que H describe una curva rectificable r o que es la frontera de 
la región 

So = {(x, y) : a :s x :s b, f(x) - g(x) :s 2y :s g(x) - f(x)} . 

e) Probar que So posee al eje de las abscisas como eje de simetría. (La región 
S se llama la simetrización de S con respecto al eje de las abscisas.) 

f) P~obar que la longitud de ro no excede a la longitud de r. 
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en donde M' y Mil designan, respectivamente el sup de f 'en [Xi-l' e] Y IZ X i ]' 

Pcro. dado que 

M' :s; M¡{f) y Mil :s; M i(!), 

HC tiene V(P', f, ct) < V(P, f,ct). (La desiguadad existente entre las sumas infe­
riores se demuestra análogamente.) 

Para probar (ii), sea P = P, U P2 • Se tiene entonces 

L(P! , /, ex) :s; L(P, /, ex) :s; V(P,/, ex) :s; V(P2 ,/, ex). 

NOTA. De este teorema se sigue también (para o: creciente) 

m[ex(b) - ex(a)] :s; L(P!,/, ex) :s; V(P2 ,/, ex) :s; M[ex(b) - ex(a)], 

011 donde M y m designan el sup y el ínf de f en [a, b]. 

I),'IIII;t'i{m 7.16. Supongamos que ct~ en [a, b]. La integral superior de Stielt­
¡r,l' tic f respecto de ct se define como sigue: 

f f dex = inf {V(P,f, ex): P E &>[a, b]}. 

l ,tI il/legral inferior de Stietjes se define análogamente: 

r f dex = sup {L(P,f, ex): P E &>[a, b]}. 

NOTA . A veces escribiremos l(j, ct) e l(f, 'ct) para designar las integrales superior 
e inferior. En particular, si ct(x) = X , las sumas superiores e inferiores se designan 
por (1(/', f) Y L(P, f) Y se llaman las sumas superior 'e inferior de Riemann. Las 
correspondientes integrales, designadas S:f(x) dx y S:f(x) dx, se llaman 
Integrales superior e inferior de Riemann. Fueron introducidas por primera vez 
por .l . G . Darboux (1875). 

'I','ort·"w 7.17. Supongamos quect~ en [a, b]. Entonces Hf,ct) < l(f,ct). 

Ikll/()slración. Dado E > 0, existe una partición P, tal que 

V(P!,/, ex) < l(/, ex) + 8. 

14 
t~ ... 

\ 
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Por el teorema 7.15, se tiene que l(j,ct) + E es una cota superior de todas las 
sumas inferiores L(P, f, ct). Por lo tanto, [(f,o:) < let, ct) + E, y, puesto que E es 
arbitrario, ello implica W,ct) < let, ct). 

Ejemplo. Es fácil dar un ejemplo en el que ¡(j, ct) < ](j, ,ct). Sea ct{x) = x y defi­
namos f en [0, 1] como sigue: 

[(x) = ), si x es racional, [(x) = 0, si x es irracionaL 

Entonces para cada .partición P de [O, 1], tenemos Mk(f) = 1 Y mk(f) = O, ya que 
cada subintervalo contiene tanto racionales como irracionales. Por consiguiente, 
U(P, f) = 1 y L(P, f) = ° para toda P. Se deduce que, para [a, bJ = [0, lJ, tenemos 

r [dx = 1 e f [dx = O. 

Obsérvese que se obtendría el mismo resultado si f(x ) = O cuando x es racional, 
y f(x) = 1 cuando x es irracionaL 

7.12 PROPIEDADES ADITIVA Y LINEAL DE LAS INTEGRALES 
SUPERIOR E INFERIOR 

Las integrales superior e inferior gozan de muchas de las propiedades de la in­
tegral. Por ejemplo se tiene que 

si a < c < b, y la misma igualdad se verifica en el caso de la integral inferior. 
Sin embargo, ciertas igualdades que se verifican con integrales se convierten en 
desigualdades cuando se reemplazan aquéllas por integrales superiores e inferio­
res. Por ejemplo, se tiene 

y 

Estas observaciones puede verificarlas el lector sin ninguna dificultad. (Ver ejer­

cicio 7.11.) 

. ,. J -
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7.13 CONDICIóN DE RIEMANN 

Si esperamos que la integral superior y la integral inferior sean iguales, también 
debemos esperar que las sumas superiores sean tan próximas como queramos a 
las sumas inferiores. Parece pues natural buscar aquellas funciones j para las 
que la diferencia V(P, j, a) - L(P, j, a) puede hacerse arbitrariamente pequeña. 

""finición 7.18. Diremos que j satisface la condición de Riemann res­
¡U'CrO de a en [a, b] si, para cada é > 0, existe una partición Pe tal que si P es 
fI/cí.\" fina que Pe implica 

° ~ V(P,f, IX) - L(P, f, IX) < e. 

7','ormn,a 7.19. Supongamos que a,7' en [a, b] . Entonces las tres afirmaciones 
(/11(' siguen SOn equivalentes: 

1) f c::: R(ri) en la, b]. 

11) f satisface la condición de Riemann respecto deri en [a, b]. 
111) /(J, ri) = l(j,ri). 

LJrll/o.\'lración . Probaremos que la parte (i) implica la parte (ii), que (ii) impli-
1.1&& (iii) Y que (iti) implica (i). Supongamos que se verfica (i). Si a(b) = a(a), en­
tonces (ii) se verifica trivialmente, por lo tanto podemos suponer que 'riCa) < 'ri(b). 
I>udo ( > 0, elegimos Pe tal que para toda partición P más fina que Pe Y todas 
hIN elecciones de tk y t'k en [Xk- l ' XIJ, se verifique 

Itf(t¡) dak - Al < !., 
k=l 3 

0/1 donde A = fb f dri. Combinando estas desigualdades, obtenemos a 

Dlldo que M k(f) - mk(f) = sup {f(x)-j(x'): x, x' en [Xk-l' Xk]}, se sigue que para 
cllda /¡ > ° es posbile elegir tI: y t' k tales que 

'/ 

\ 

La integral de Riemann-Stieltjes 187 

y eligiendo h = !é![ri(b) - ex(a)] podemos escribir 

n 

U(P, j, IX) - L(P,j, IX) = L [Mi!) - mk(f)] t.lXk 
k=l 

Por consiguiente (i) implica (ii). ., . , 
Supongamos ahora que (ii) se verifica. Dado é > 0, eXIste una partIcIon Pe tal 

que P más fina que Pe implica U{P, f, ri) < L(P, f, a) + é. Por lo tanto, para una 
tal P se tiene 

1(1, IX) ~ U(P,f, IX) < L(P,f, IX) + e ~ [(1, IX) + e. 

Esto es l(t ri) < f(j a) + é para cada s > O. Por consiguiente, l(f,ri) < I(f, ex). 
Pero e~ vi;tud del t~orema 7.17, tenemos también la desigualdad opuesta. Por 
lo tanto (ii) implica (iii). . , 

Finalmente,supongamos que l(t, a) = l(j, 'ri) Y deSIgnemos por A dlc~o val~r 
común. Probaremos que f~ t da existe y es igual a A. Dado é > 0, .elegImo.s ~ • 
tal que V(P, t, ;a) < l(j, 'ri) + é para toda P más fina que P'e' ElegImos aSimIS­
mo P" e tal que 

L(P,f, IX) ;... 1(1, IX) - e 

, p I! S' P - P' U pI! podemos escribir para toda P mas fina que e ' I f. - e e' 

l(f, IX) - e < L(P, f, IX) ~ S(P, 1, IX) ~ U(P, f, IX) < 1(1, IX) + e 

para cada P más fina que Pe' Pero dado que l(f, ex) = l(j, a) = A, se deduce que 
IS(P t a) - A I < é siempre que P sea más fina que Pe' Todo ello prueba 9ue 
f b /d~ existe y es igual a A y la demostración del teorema queda conclUIda. a 

7.14 TEOREMAS DE COMPARACIóN 

Teorema 7.-20. Supongamos que ex,7' en [a, b]. Si tE R(ri) Y g E R(ri) en [a, 
b] y si t(x):::;: g(x) para todo x de fa, b], entonces tenemos 

r j(x) dlX(x) ~ r g(x) drx(x). 
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D~m~straci~n. Para cada partición P, las correspondientes sumas de Riemann-
SlteltJes satIsfacen -

n n 

S(P,!, ct) = L: f(tk) Actk :-::; L: g(tk) Aak = S(P, g, ct), 
k=l k=l 

ya que a,!' en [a, b]. De 10 que se deduce fácilmente el teorema. 

En particular. este teorema implica que f! g(x) &x(x) > O siempr·e que g(x) > 
' Oya,!' en [a, b]. -

',','orema 7.21. Supongamos que Ct,!' en [a, b]. Si tE R(a) en [a, b], entonces 
111 e R(Ct) en [a, b] y tenemos la desigualdad 

If J(x) dct(X)/ :-::; f If(x)1 dct(x). 

/)t'/lIoslración. Utilizando la notación de la definición 7.14, podemos escribir 

Mk(f) - mk(f) = sup {f(x) - f(y) : x, y en[Xk_l, x
k
]}. 

Olido que la desigualdad jlf(x)1 - If(y)l j :::;; If(x) - f(Y)1 se satisface siempre, 
tcncmos 

Mk(IJD - milJD :::;; Mk(f) - mk(f). 

Mulliplicando ambos miembros por Ú("jk y sumando respecto de k, se obtiene 

V(P, Ifl, ct) - L(P, IJI, ct) :::;; V(P, f, ct) - L(P, f, ct), 

f'urn cada partición P de [a, b]. Aplicando la condición de Riemann, se obtiene 
que IJI E R(Ct) en [a, b]. La desigualdad del teorema se sigue haciendo g = Itl en 
el teorema 7.20. 

NOTA . El recíproco del teorema 7.21 es falso. (Ver ejercicio 7.12.) 

~','~r('",a 7.22. Supongamos que ct.,!' en [a, b]. Si fE R(Ct) en [a, b], entonces 
J' ( -R(Ct) en [a, b]. 

nCllloslración. Utilizando la notación de la definición 7.14, tenemos 

y 

----- - - - - -- - ----

\ 
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Por 10 tanto podemos escribir 

Mk(f2) - mk(f2) = . [Mk(lfD + mk(IJD][MiIJD - mk(IJD] 

:::;; 2M[MiIJD - mk(lfD], 
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en donde M designa una cota superior de Itl en [a, b]. Aplicando la condición de 
Riemann, la demostración queda terminada. 

Teorema 7.23. Supongamos queCt,!' en [a, b]. Si fE R(a) y g 'E R(Ct) en [a, 
b], entonces el producto t' g'E R(a) en [a, b]. 

Demostración. Se utiliza el teorema 7.22 juntamente con la identidad 

2f(x)g(x) = [f(x) + g(X)]2 - [f(X)]2 - [g(x)]2. 

7.15 INTEGRADORES DE VARIACIóN ACOTADA 

En el teorema 6.13 veíamos como toda función Ct de variación acotada en [a, b] 
se podía expresar como diferencia de dos funciones crecientes. SiCt = al - a 2 

es una tal descomposición y si tE R(Ct,) Y tE R(Ct 2 ) en [a, b], se sigue en virtud 
de la linealidad que tE R(Ct) en [a, b]. Sin embargo, el recíproco no siempre es 
verdadero. Si fE R(Ct) en [a, b] , es posible elegir funciones crecientes al Y a 2 ta­
les que a = Ct l - ·Ct 2 , pero de tal manera que ninguna de las integrales f~ t da

" 
f~; t da. exista. La dificultad se halla, naturalmente. en el hecho de que la des­
composición el( = ·Ct l - Ct 2 no sea única. Sin embargo, es posibl.; demostrar la 
existencia de una descomposición, por lo menos, para la cual el recíproco es ver­
dadero a saber, cuando al es la variación total de a y a2 = al -ct. (Recuérde­
se la definición 6.8.) 

Teorema 7.24. Supongamos que a es de variación acotada en [a, b]. Designe-
1II0S por V(x) la variación total de a en [a, x] si a < x < b, Y sea Vea) = O. 
Supongamos que t está definida y acotada en [a, b]. Si fE R(a) en [a, b], enton­
ces fE R(V) en [a, b]. 

Demostración. Si V(b) = O, entonces V es constante y el resultado es trivial. 
Supongamos por lo tanto que V(b) > O. Supongamos además que If(x) l .:;: M si 
x E [a, b]. Como V es creciente, basta demostrar que f satisface la condición 
de Riemann respecto de V en [a. b] . 
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Dado E > ,0, elegimos P, tal que para todo refinamiento P y toda elección de 
puntos fk y t k en [X" _ to X kJ se verifique 

n 

y V(b) < L /Acxkl + _ 8 . 
k= l 4M 

Para P más fina que Pe podemos establecer las dos desigualdades 

" L 1M hU) - mkU)](AVk - /Acxk/) < !:., y 
1 - 1 2 

n 

¿ [Mlf) - mk(f)] /Acxk / < /: 
k=l 2 

qlle. sumándolas, nos dan V(P, f, V) - L(P, f, V) < E. 

Para demostrar la primera desigualdad, observemos que .6.V" -1.6.akl ? O 
Y po,. lo tanto 

k~ [MkU) - mk(f)](AVk - /Acxk /) :::;: 2M t (AV
k 

- /Acxk/) 
k=l 

= 2M (V(b) - t /ACXk /) < !:.. 
k ~ l 2 

1'111'11 dcmostrar la segunda desigualdad, s-ea 

A(P) = {k: Aa. ~ O}, B(P) = {k: Aak < O}, 

y _~CII /¡ = ~ E/V(b). Si k E A (P), elegimos t k y t'" tales que 

f(tk) - f(tD > Mk(f) - mk(f) - h; 

,~t'I'lI. si kE B(P), elegimos tk y t'" tales que f (t',,) - f(h ) > M .(f) - (f) _ h 
hIlIIlIH:CS k m" . 

" ¿ I MkU) - mk(f)] /Acxd < ¿ [f(tk) - f(tD] /.1a / 
k 1 k EA(P) ' k 

+ ¿ [J(t¡) - f(td] /Aad + h t ¡Aad 
k EB ( P) k= 1 

< !. + hV(b) = !. + !. = !.. 
4 4 4 2 

Todo d lo prueba que fE R( V) en [a, b J. 

\ 
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NOTA. Este teor-ema (juntamente con el teorema 6.12) nos induce a reducir la 
teoría de la integración de Riemann-Stieltjes para integradores de variación aco­
tada al caso de integradores crecientes. Entonces el criterio de Riemann es apli­
cable y nos proporciona un instrumento verdaderamente útil en nuestro trabajo. 
Como primera aplicación obtendremos un resultado íntimamente relacionado 
con el teorema 7.4. 

Teorema 7.25. Sea <X de variación acotada en [a, b J y supongamos que fE R 
(a) en [a, b]. Entonces fE R(a) en cada sub intervalo le, d] de [a, b]. 

Demostración. Sea V(x) la variación total de :x en [a, x ], con Vea) = O. Enton­
ces <X = V - (V - 0:), en donde tanto V como V - ,a son ambas crecientes en 
[a, b] (teorema 6.12). Por el teorema 7.24, f E R(V), Y por 10 tanto rE R(V - a) 
en I[a, b]. Por consiguiente, si el teorema es verdadero para integradores cre­
cientes, se tiene que f 'E R(V) en [e, d] y f 'E R(V - o:) en [e, d] , luego fE R(ct) 
en [e, d]. . 

Por lo tanto, es suficiente demostrar el teorema cuando ,aJ'f en [a, b]. En 
virtud de teorema 7.4. es suficiente probar que cada una de las integrales f~ f da 
y f~ f da existe. Supongamos que a < e < b. Si P es una partición de [a, x], sea 
.6.(P, x) la diferencia 

A(P, x) = U(P, J, ex) - L(P, J, ex), 

de las sumas superior e inferior asociadas al intervalo [a, x]. Dado que f lE R(o:) 
en [a, b] , la condición de Riemann se verifica. Por lo tarito, dado. > O, existe una 
partición Pe de ra, b] tal que.6.(B, b) < E si P es más fina que Pe' Podemos su­
poner que eE Pe' Los puntos de Pe que pertenecen a fa,. e] definen una parti­
ción P'e de fa, e]. Si P' es una partición de la, e] más fina que P'e, entonces 
p = P' U Pe es una partición de [a, b] obtenida juntando los puntos de P' con 
los puntos que Pe posee en [e, b]. Ahora bi-en, la suma definida por .6.(P', e) con­
tiene sólo parte de los términos de la suma definida por t::.(P, b). Como cada 
término es > O Y dado que P es más fina que P e' tenemos 

A(P', e) :$; A(P, b) < 8. 

Esto es, P' más fina que P'e implica t::..(P', e) < •. Por lo tanto, f satisface la 
condición de Riemann en [a , e] y J~ f eh existe. El mismo argumento prueba 
naturalmente que S: f da existe, y por el teorema 7.4 se sigue que S~ f da existe. 

El teorema que sigue es una aplicación de los teoremas 7.23, 7.21 Y 7.25. 
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Teorema 7.26. Supongamos que fE R(a) y g E R(a) en fa, b], en donde a?' 
l'Il [a, b]. D~finimos 

F(x) = r f(t) da(t) 

y 

G(x) = LX g(t) da(t) if x E [a, b]. 

1~'III()n('es f E R(G), g ,E R(F), Y el producto f· g E R(ct) en [a, b] y se tiene 

f f(x)g(x) da(x) = f f(x) dG(x) 

= f g(x) dF(x). 

Dt'li/Ostración. La integral f~ f· g da existe en virtud del teorema 7.23. Para 
elida partición P de [a, b] se tiene 

S(P,f, G) = 't:f(tk) f:k

_. g(t) da(t) = 't: r:-. f(tk)g(t) da(t) , 

y r f(x)g(x) da(x) = ~ f:k_, f(t)g(t) da(t). 

Por consiguiente, si M g = sup {l g(x)l:x E la, b]}, tenemos 

IS(p,f, G) - r f' g dal = I~ f:k_, {J(tk) - f(t)}g(t) da(t)1 

~ M9't: f:k_. If(tk) - f(t)1 da(t) ~ Mg't: f:k_, [Mk(f) - mk(f)] da(t) 

= Mg{U(P,f, a) - L(P,f, a)}. 

Puesto que f'E R(a), para cada E > O existe una partición p. tal que P más fina 
que p. implica U(P, t, a) - L(P, t , a) < E. Ello demuestra que fE R(G) en 
[a, b] y que f~f·gdct = f~fdG. Un razonamiento análogo prueba que gER(F) \ 

en [a, b] y que f~ f·gda = f~gdF. 

NOTA. El teorema 7.26 es válido también si ,a es de variación acotada en [a, b]. 
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En la mayoría de los teoremas anteriores hemos supuesto que ciertas integrales 
existían y hemos estudiado entonces sus propiedades. Es natural que nos pre­
guntemos: ¿Cuándo existirá la integral? Dos condiciones suficientes, verdade· 
ramente útiles, responden a esta pregunta. 

Teorema 7.27. Si t es continua en [a, b] y si ct es de variación acotada en 
[a, b] , entonces tE R(a) en [a, b]. 

NOTA. En virtud del teorema 7.6, se obtiene una segunda condición suficiente 

al intercambiar f y ct en la hipótesis. 

Demostración. Es suficiente demostrar el teorema para ct?' con ,a(a) < a(b). 
La continuidad de f en [a, b] implica la continuidad uniforme, esto es dado 
E > O podemos encontrar un 8 > O (que depende tan sólo de E) tal que 

Ix - yl < b implica If(x) - f(y)1 < e/A, 

en donde A = 2[a(b) - a(a)] . . Si p. es una partición de norma I!P.I! < 8. en­
tonces para P más fina que p. se tendrá 

ya que M¡.Jf) - mk(f) = sup {f(x) ---,- f(y): x, y en [Xk- l ' Xk]}' Multiplicando la 
desigualdad por t::,.ak y sumando, se obtiene 

n 

. e "" e 
U(P , f , a) - L(P, f, a) ~ -A L..,.¡ D..ak = -2 < e, 

k=l 

y por lo tanto se verifica la condición de Riemann. Por 10" tanto. fE R(a) 

'en [a, b]. 
En particular, para a(x) = x, los teoremas 7.27 y 7.6 proporcionan el si-

guiente corolario: 

Teorema 7.28. Cada una de las siguientes condiciones es una condición sufi­
ciente para que exista la integral J~ f(x) dx: 

a) t es continua en [a, b]. 
b) f es de variación acotada en [a, b]. 



194 La integral de Riemann-Stieltjes 

7.17 CONDICIONES NECESARIAS PARA LA EXISTENCIA 
DE LAS INTEGRALES DE RIEMANN·STIELTJES 

('uundo O( es de variación acotada en [a, b], la continuidad de f es suficiente 
pura que exista la integral f~ f dO(. Sin embargo, la continuidad de f en todo 
la, h] no es neoesaria. Por ejemplo, en el teorema 7.9 veíamos que, cuando la 
I'unción O( es escalonada, la función f puede definirse arbitrariamente en [a, b] 
con la condición de que f sea continua en los puntos de discontinuidad de a. 
El próximo teorema nos dice que, si queremos que la integral exista, debemos 
t'lvitllr las discontinuidades comunes tanto por la derecha como por la izquierda. 

7'tlorema 7.29. Supongamos que a/' en [a , b] y sea a < c < b. Supongamos 
tttlt'/Iliís que tanto a como f son discontinuas por la derecha en x = e; esto es, 
,VllllOl/galllos que existe un E > O tal que para cada o > O existen valores de x 
, .v ('11 l'l intervalo (e, e+o) para los que 

I/(x) - I(c) 1 :?: 8 

Ict(y) - ct(c) 1 :?: 8. 

lúIIOI/(:('.\· la integral f~ f(x) &x(x) no existe. Tampoco ex iste integral si a y f son 
dl.\'/·olllil//Uls por la izquierda en c. 

O,'/l/o.\·trllcián. Sea P una partición de [a, b] que contenga al punto e como 
run10 dc partición y consideremos la diferencia 

n 

V(P,!, ct) - L(P,!, ct) = L [Mk(f) - mk(f)] Óctk' 
k=! 

Si el intervalo i·ésimo contiene al punto e como extremo izquierdo, entonces 

V(P,/, ct) - L(P,/, ct) :?: [Mi(1) - mi(f)][ct(xi) - ct(c)] , 

yll que cada término de la suma es :;:::: O. Si e es una discontinuidad por la de­
rcchu común, podemos suponer que el punto Xi se ha 'elegido de tal manera 
quc O((.t"¡) - ,O((c) ? E. Por consiguiente, las hipótesis del teorema implican 
M¡(f) - I// ¡(/) -' . E. Luego, 

V(P,/, ct) - L(P,/, ct) :?: 8 2, 

y 111 condición de Riemann no puede verificarse. (Si e es un punto de discon­
tinuidad por la izquierda común, el argumento es análogo.) 

\ 
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7.18 TEOREMAS DEL VALOR MEDIO PARA LAS INTEGRALES 
DE RIEMANN·STIELTJES 

Si bien las integrales aparecen en gran número y variedad de problemas, son 
relativamente pocos los casos en que el valor de la integral puede o~tene~~e 
explícitamente. Sin embargo, a menudo es suficiente disponer de una e~tlmaelOn 
de la integrar más que de su valor exacto. Los teoremas del valor me~1O q.ue se 
dan en esta sección son particularmente útiles para obtener tales estImaClOnes. 

Teorema 7.30 (Primer teorema del valor medio para integrales. de Rie· 
mann.Stieltjes). Supongamos que a/, y que fE R(O() en [a, b]. SI M Y In 
designan, respectivamente, el sup y el inf del conjunto {f(x):x E [a, b]} . En· 
tonces existe un número real c que satisface m < c S; M tal que 

r f(x) dct(x) = c r dct(x) = c[ct(b) - ct(a)]. 

En particular, si f es continua en [a, b], entonces e = !(x o) para cierto X o de [a , b]. 

Demostración. Si a (a) =O((b), el teorema se verifica trivialmente, ya que am­
bos miembros son O. Por lo tanto, podemos suponer que ,O((a) < O(b). Dado que 
todas las sumas superiores e inferiores verifican 

m[ct(b) - ct(a)] :::s; L(P,/, ct) :::s; U(P,/, ct) :::s; M[ct(b) - ct(a)] , 

la integral f~! dO( debe estar comprendida entre ambas cotas. Po~ consigui~nte , 
el cociente e = (f~! dO()/(J~ del) está comprendido entre m y M. SI ! es con,tmua 
en [a, b], el teorema del valor intermedio hace que e = !(xo) para algun X o 

de [a, b]. 

Un segundo teorema de este tipo puede obtenerse a partir del primero, uti· 

lizando el método de integración por partes. 

Teorema 7.31 (Segundo teorema del valor medio para integrales de Rie· 
mann.Stieltjes). Supongamos que ,O( es continua y que! /' en [a, b]. Enton· 

ces existe un punto x" en [a, b] tal que 

f
b fXO fb a f(x) dr.x(x) = fea) a dct(x) + f(b) Jxo dct(x ). 

, " 
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nemostración. Por el teorema 7.6, tenemos 

r f(x) da(x) = f(b)a(b) - f(a)a(a) - r a(x) df(x). 

Aplicando el teorema 7.30 a la integral de la derecha, obtenemos 

r f(x) da(x) = f(a)[a(xo) - a(a)] + f(b)[a(b) - a(xo)] , 

on donde Xo E [a, b], que es la afirmación que pretendíamos demostrar. 

1,19 LA INTEGRAL COMO FUNCIÓN DEL INTERVALO 

1I fE R(rx) en [a, b] y si rx es de variación acotada, entonces (por el teore­
ma 7.25) la integral I~f drx existe para cada x de [a, b] y puede estudiarse 
Gomo una función de x. Ahora obtendremos algunas de las propiedades de 
do esta función. 

7'florema 7.32. Sea a una función de variación acotada en [a, b] y supon­
l/timos que fE R(rx) en [a, b]. Definimos F por medio de la ecuación 

si x E [a, b]. 

Untonces se tiene: 

1) F es de variación acotada en [a, b]. 
11) En cada uno de los puntos en los querx es continua, F también lo es. 

111) Si a,l' en [a, b], la derivada F'(x) existe en cada punto x de (a, b) en que 
a'(x) exista y f sea continua. Para tales x, se tiene 

F'(x) = f(x)a'(x). 

n,'mostración. Es suficiente suponer querx,l' en [a, b]. Si x =1= y, el teorema 7.30 
Implica que 

F(y) - F(x) = I f da = c[a(y) - a(x)], 

l'1I donde m < c ::::: M (siguiendo la notación del teorema 7.30). Las afirmacio­
IIt"S (i) y (ii) se siguen inmediatamente de esta ecuación. Para probar (iii), di­
vhlamos por y -x y observemos que c -+ f(x) cuando y ~ x. 

t 

\ 
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Si juntamos el teorema 7.32 con el teorema 7.26 obtenemos el siguiente 
teorema que convierte una integral de Rj.emann de un producto f· g en una 
integral de Riemann-Stieltjes S~ f dG con integrador continuo de variación 
acotada. 

Teorema 7. 33. Si fE R y g E R en [a, b], sean 

F(x) = r f(t) dt, G(x) = r g(t) dt si x E [a, b]. 

Entonces F Y G son funciones continuas y de variación acotada en [a, b]. Ade­
más, fE R(G) Y RE R(F) en [a, b], y tenemos 

r f(x)g(x) dx = r f(x) dG(x) = r g(x) dF(x). 

Demostración. Las partes (i) y (ii) del teorema 7.32 prueban que F y G son 
continuas y de variación acotada en [a, b]. La existencia de las integrales y las 
dos fórmulas obtenidas para f! f(x)g(x) dx se siguen del teorema 7.24, al ha­
cer ,rx(x) = x . 

NOTA. Cuando rx(x) = x, la parte (jii) del teorema 7.32 es a veces llamada 
primer teorema fundamental del cálculo integral. Establece que F'(x) = f(x) en 
cada uno de los puntos de continuidad de f. En el próximo apartado daremos 
un teorema, compañero del anterior, y que se conoce con el nombre de segundo 
teorema fundamental. 

7.20 EL SEGUNDO TEOREMA FUNDAMENTAL DEL CÁLCULO 
INTEGRAL 

El teorema que sigue nos dice cómo hay que integrar una derivada. 

Teorema 7.34 (El segundo teorema fundamental del Cálculo integral). 
Supongamos que fE R en [ti, b]. Sea g una función definida en [a, b] tal que 
la derivada g' exista en (a, b) y cuyo valor sea 

g'(x) = f(x) para cada x de (a, b). 

Supongamos además que, en los extremos, los valores g(a+) y g(b-) existen 
y satisfacen 

g(a) - g(a+) = g(b) - g(b-). 
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Entonces se tiene que 

f f(x) dx = f g/ex) dx = g(b) - g(a). 

DC·II/ostración. Para cada partición de [a, b], podemos escribir 

e ',1 donde tk es un punto de (Xk-l' Xk) determinado por el teorema del valor mc­
dl(~ ~Icl Cálculo diferencial. Pero, para un E > O, podemos tomar la partición 
Hultl:.lcntemente fina para que 

y ello prueba el teorema. 
( 'o ~nbinando el segundo teorema fundamental del cálculo con el teorema 7.33 

He obtlcnc un teorema más fuerte que el teorema 7.8. 

7'f1orf'II/" 7.35. Supongamos que fE R en fa, b]. Sea ·oc una función continua 
,." ra. h] y cuya derivada oc' sea integrable de Riemann en [a b] Entonces la 
,1'lgllic'lIles integrales existen y son iguales: ' . s 

f f(x) dri(x) = f f(x)a'(x) dx. 

()(,lI/o,\'lración. En virtud del segundo teorema fundamental del cálculo tene­
mos, para cada x de [a, b], 

IX(X) - riCa) = r 1X'(t) dt. 

Ilucicndo g = oc' en el teorema 7.33 obtenemos el teorema 7.35. 

Nc ITA. El' .. 7 3 n e eJercIcIo . 4 se enuncia un resultado relacionado con éste. 

\ 
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7.21 CAMBIO DE VARIABLE EN UNA INTEGRAL DE RIEMANN 

La fórmula que aparece en el teorema 7.7 para el cambio de variables en una 
integral, a saber I~f d'l. = I~ h d(3, adquiere la forma 

f
9(d) Id 

f(x) dx = f[g(t)]g'(t) dt, 
g(c) e 

cuando .oc(x) = x y g es una función estrictamente monótona con derivada g' 
continua. Esto es válido si fE R en [a, b] . Cuando f es continua, podemos uti­
lizar el teorema 7.32 para evitar la restricción de que g sea monótona. De hecho, 

tenemos el siguiente teorema: 

Teorema 7.36 (Cambio de variable en una integral de Riemann). Su­
pongamos que g posee derivada continua g' en un intervalo fe, d]. Sea f con­

tinua en g([c, d]) y definamos F por medio de la ecuación 

F(x) = rx f(t) dt 
Jg(C) 

si x E g([c, d]). 

Entonces, para cada x de fe. d]. la integral J~ f[g(t)] g'(t) dt existe y vale F[g(x)]. 

En particular, tenemOS 

J
9(d) Id 

f(x) dx = f[g(t)]g'(t) dt. 
g(c) e 

Demostración. Como tanto g' como la función compuesta f o g son continuas 
cn le, d], la integral en cuestión existe. Definamos G en fe, d] como sigue: 

G(x) = r f[g(t)]g'(t) dt. 

Debemos probar que G(x) = F[g(x)]. Utilizando el teorema 7,32, tenemos 

G/(x) = f[g(x)]g'(x) ; 

y, en virtud de la regla de la cadena, la derivada de F[g(x)] es también 
f[g(x)]g'(x), ya que F'(x) = f(x). Por consiguiente, G(x) - F[g(x)] es constante. 
Pero, para x = e, tenemos G(c) = O Y F[g(c)] = O, luego la constante debe ser 
ccro. Así pues, G(x) = F[g(x)] para todo x de [e , d]. En particular, cuando 
x = d, obtenemos G(d) = F[g(d)], que es precisamente la última ecuación del 

tcorema. 
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s 
d 

Figura 7.2 

NOTA. Algunos libros demuestran el anterior teorema con la hipótesis suplemen­
larin de que g' es no nula en todo [e, d], que implica, naturalmente, la mo­
notonfa de g. La anterior demostración muestra que esto no 'es necesario. Ob­
IIdrvese que, al ser g continua en [e, d], g([c, d)) es un intervalo que contiene al 
Inlervalo que une g(c) con g(d). En particular, el r·esultado es válido si g(e) = 
1/1 ti). Esto hace que este teorema sea particularmente útil en las aplicaciones. 
(Vénse la figura 7.2 para una g admisible.) 

Relllmente existe una versión más general del teorema 7.36 que no requiere 
ni In continuidad de f ni la de g', pero la demostración es mucho más com­
rllendll. Supongamos que hE R en [e, d] y, si x E le, d], consideremos g(x) = 
J: hU) dI, en donde a es un punto fijo de [e, d]. Entonces, si fE R en g([e, d]), 

111 Integral J~ f[.(.'(t)] h(t) dt existe y se tiene 

f(x) dx = f[g(t)]h(t) dt. i9(d) Id 
g(c) e 

"Nle parece ser el teorema más general acerca del cambio de variable en una 
Inlellral de Riemann. (Para una demostración, consúltese el artículo de H. Kes­
lellllnn. Mathematieal Gazette, 45 (1961), pp. 17-23.) El teorema 7.36 es el caso 
cNpeciul que se obtiene al considerar que h es continua en [e, d] y que f es con­
tlnulI en .I.'([e. d)). 

7.22 SEGUNDO TEOREMA DEL VALOR MEDIO 
PARA INTEGRALES DE RIEMANN 

7"'or,',"" 7.37. Sea g continua y supongamos que f?' en [a, b]. Sean A y B 
do.\· míllleros reales que satisfagan las desigualdades 

A -s;, f(a+) ,y B ;;::: f(b-). 

\ 
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Entonces existe un punto X o de la, b] tal que 

fb fXO fb 
i) a f(x)g(x) dx = A a g(x) dx + R Jxo g(x) dx. 

En parteular, si f(x) > O para todo x de [a, b], tenemos 

ii) fb f(x)g(x) dx = R Jb g(x) dx, en donde Xo E la, b]. 
a Xo 

NOTA. La parte (ii) se conoce con el nombre de teorema de Bonet. 

Demos/ración. Si:x(x) = J: g(t) dt, entonces (x' = g, y el teorema 7.31 es apli­
cable. y se obtiene 

f
b fXO fb 
a f(x)g(x) dx = fea) a g(x) dx + f(b) Jxo g(x) dx. 

Esto prueba (i) siempre que A = fea) y B = f(b). Ahora bien. si A y R son 
dos números reales que satisfacen las desigualdades A < f(a+) y R > f(b-). 
podemos volver a definir f en los extremos a y b asignándole los valores fea) = A 
y f(b) = B. La función f modificada es asimismo creóente en [a, b] y. como 
hemos indicado anteriormente. el hecho de cambiar el valor de f en un número 
finito de puntos no afecta en absoluto el valor de la integral de Ri·emann. (Es 
claro que el puntoxo de (i) dependerá de la elección de A y de R.) Haciendo 
A = O. la parte (ii) s·e sigue de la parte (i). 

7.23 INTEGRALES DE RIEMANN-STIELTJES DEPENDIENTES 
DE UN PARÁMETRO 

Teorema 7.38. Sea f continua en cada punto (x. y) de un rectángulo 

Q = {(x, y) : a -s;, x -s;, b, e -s;, y -s;, d}. 

Supongamos que .:x es de variación acotada en [a, b] y sea F la función defi­
nida en [e, d] por medio de la ecuación 

F(y) = f f(x, y) da(x). 
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EI/tonces F es continua en [e, d]. En otras palabras, si Yo E [e, d], tenemos 

lim fb f(x, y) da(x) = fb lim f(x, y) da(x) 
Y-YO Ja Ja Y~YO 

= f f(x , Yo) da(x). 

''''/l/ostración. Supongamos que a/, en [a, b]. Como que Q es un conjun10 
COlllpacto, f es uniformemente continua en Q. Por 10 tanto, dado E > O, exis1e 
un )\ > O (que depende sólo de E) tal que, para cada par de puntos z = (x, y) 

y r.' == (x', y') de Q tales que jz - z'[ < ó, tenemos [f(x, y) - f(x', y')[ < E. Si 
Iy /[ < 1), tenemos 

lF(y) - F(y')1 ::; f If(x, y) - f(x, y')1 da(x) ::; e[a(b) - a(a)]. 

Hlllo estahlece la continuidad de F en [e, d]. 

Nnluralmente. éuando ct(x) = x, este resultado se convierte en un teorema 
do continuidad para las integrales de Riemann que dependen de un parámetro. 
SIn crnhnrgo, es posible obtener un teorema mucho más útil para integrales de 
R I~mllnn que el que se obtiene haciendo a(x) == x si se utiliza el teorema 7.26. 

''' .. "r,·",,, 7.:W. Si f es continua en el rectángulo [a, b] X [e, d], Y si RE R 
,,, 1", "J, (,I/tonces la función F definida por la ecuación 

F(y) = r g(x)f(x, y) dx , 

1',\' /"fIf//illllll ('f/ [e, d]. Esto es, si Yo E [e, d] , tenemos 

;i~o r g(x)f(x, y) dx = r g(x)f(x , Yo) dx. 

¡k/l/ll,I/fl/ci(í,1. Si G(x) == f: R(t) dt, el teorema 7.26 prueba que F(y ) = 
J:: ftl, y) dGtx). Aplíquese ahora el teorema 7.38. 

\ 
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7 .24 DERIVACIóN BAJO EL SIGNO DE INTEGRAL 

Teorema 7.40. Sea Q = {(x, y): a <x < b, e < y::;; d}. Supongamos que IX 

es de variación acotada en [a, b] y, para cada y fijo de [e, d], supongamos que 
la integral 

F(y) = r f(x, y) da(x), 

existe. Si la derivada parcial D2f es continua en Q, la derivada F'(y) existe 
pa'ra cada y de (e, d) y viene dada por 

F'(y) = r D2 f(x, y) da(x). 

NOTA. En particular, cuando g E R en [a, b] yct(x) = f: g(t) dt, obtenemos 

F(y) = r g(x)f(x, y) dx 

y 

F'(y) = r g(x) Dd(x, y) dx. 

Demostración. Si Yo E (e, d) e y * Yo' tenemos 

F(y) - F{yo) = 'fb f(x, y) - f(x, Yo) da(x) = fb D2f(x, ji) da(x), 
Y - Yo a Y - Yo a 

en donde Si está comprendido entre y e Yo' Como que D 2f es continua en Q, 
se obtiene la conclusión razonando análogamente a como se razonó en la de­
mostración del teorema 7.38. 

7.25 INTERCAMBIO EN EL ORDEN DE INTEGRACIóN 

Teorema 7.41. Sea Q = {(x, y): a <x < b, c < y < d}. Supongamos que ,ct 
es de variación acotada en [a, b), (5 es de variación acotada en [e, d), y f es 
continua en Q. Si (x, y) E Q, definimos 

F(y) = r f(x, y) da(x) , G(x) = r f(x , y) dfJ(y)· 
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entonces FE R(j3) en [e, d], G E R(a) en [a, b], y tenemos 

r F(y) d{3(y) = f G(x) drx(x). 

Un otras palabras, podemos intercambiar el orden de integración como sigue: 

f [f f(x, y) d{3(y)] drx(x) = f [f f(x, y) drx(x)] d{3(y). 

/)('lnostración. Por el teorema 7.38, F es continua en [e, d] y por lo tanto 
lo' E R({3) en [e, d] . Análogamente, G 'E R(a) en [a, b]. Para demostrar la igual­
dud de ambas integrales, es suficiente considerar el caso en quea.l' en [a, 11] 

'i /1/, en [e, d]. 
En virtud de la continuidad uniforme, dado s > O existe un 8 > O tal que 

pum cada par de puntos z = (x, y) y z' = (x', y') de Q, con Iz - z'l < 8, se tiene 

If(x, y) - ¡(x', Y')I < e. 

Subdividimos ahora el rectángulo en n2 rectángulos iguales, subdividiendo [a, b] 
'1 [e, d] en n partes iguales cada uno, en donde n se ha elegido de tal ma­
nerll que 

y 
(d - e) b 

n < .J"2' 
ENcribiendo 

k(,_b _-_ a---,-) 
Xk = a + -

n 

k(d - e) 
Yk = e + , 

n 
y 

pura k = O, 1, 2, ... , n, tenemos 

f~ (fd f(x, y) d{3(y») drx(x) = ¡: i rXk

+

1 (rYi
+

1 

f(x, y) d{3(y») drx(x). 
u e k-O )-0 J."k JYi 

¡\pli~amos dos veces el t'eorema 7.30 al segundo.. miembro. La doble suma se \ 
COllVlcrte en 

.-1 .-1 

L: L:f(x~, Yj)[{3(Yj+l) - {3(y)][rx(Xk+l) - rx(xk )] , 

k=O j=O 
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en donde (X'k, y'¡) pertenece al intervalo Qk, j que tiene por vértices opuestos los 
puntos (Xk, Yi) y (Xk+ l' Yi+,)' Análogamente, obtenemos 

r (f f(x , y) drx(x») d{3(y) 

"-1 "-1 

= L: L:f(x~, yj)[P(Yj+l) - P(y)][rx(Xk+l) - rx(Xk)]' 
k=O j=O 

en donde (x,\, y" i) E Qk,j. Pero If(x\, y' i) - f(x,\, Y" ¡)I < s y por lo tanto 

If G(x) drx(x) - r F(y) d{3(Y)1 

.-1 .-1 

< e L: [P(Yj+l) - P(y)] L: [rx(Xk+l) - rx(Xk)] 
j=O k=O 

= e[p(d) - {3(c)][rx(b) - rx(a)]' 

Puesto que s es arbitrario, esto implica la igualdad entre ambas integrales. 
El teorema 7.41 junto con el teorema 7.26 nos da el siguiente resultado para 

las integrales de Riemann. 

Teorema 7.42. Sean f continua en el rectángulo [a, b] X [e, d]. Si g E R en 
{a, b] y si hE R en [e, d], entonces tenemos 

f [f g(x)h(y)f(x, y) dY] dx = r [f g(x)h(y)f(x, y) dX] dy. 

Demostración. Sea :x(x) = J~ g(u) du y sea (3(y ) = J~ h(v) dv, y apliquemos los 
teoremas 7.26 y 7.41. 

7.26 CRITERIO DE LEBESGUE PARA LA EXISTENCIA 
DE LAS INTEGRALES DE RIEMANN 

Cada función continua es integrable de Riemann. Sin embargo, la continuidad 
no es ciertamente necesaria, pues hemos visto que fE R cuando f es de varia­
ción acotada en [a, b]. En particular, f puede ser una función monótona con 
un conjunto numerable de discontinuidades y aun así la integral f~ f(x) dx 
existe. En realidad, existen funciones con un conjunto infinito no numerable 
de discontinuidades que son integrables de Riemann. (Ver ejercicio 7.32.) Por lo 
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tato, parece natural preguntarse «cuántas» discontinuidades puede poseer una 
runción siendo integrable según Riemann. El teorema definitivo en este sen­
t ido fue descubierto por Lebesgue y lo demostraremos en esta sección. La idea 
que se halla detrás del teorema de Lebesgue se hace patente si examinamos qué 
condiciones impone al conjunto de las discontinuidades de f la condición de 
Riemann. 

La diferencia entre las sumas superior e inferior de Riemann viene dada por 

n 

L [Mk(f) - mh(f)] Axk, 
k=l 

y. hablando «grosso modo», f es integrable si, y sólo si, esta suma puede ha­
cerse suficientemente pequeña. Descompongamos esta suma en dos partes, 
SI + S1' en donde S, contiene sólo los subintervalos cuyos puntos son todos de 
c.lontinuidad de f, y S2 contiene los restantes sumandos. En S" cada diferencia 
Mh(f) - mk(f) es pequeña en virtud de la continuidad y, por lo. tanto, aunque 
en SI aparezca un gran número de sumandos puede conseguirse que sea pe­
'IUena . En S2' sin embargo, las diferencias Mk(f) - mk(f) no tienen por qué ser 
necesariamente pequeñas; pero puesto que están acotadas (por M, por ejem­
plo), tenemos IS21 < M 2:Axk , por lo cual S2 será pequeña siempre que la suma 
dc IlIs 'Iongitudes de los subintervalos correspondientes a S2 lo sea. Por lo tanto, 
"",lcll1oS esperar que el conjunto de discontinuidades de una función integra­
ble rueda recubrirse por medio de intervalos cuya longitud total sea pequeña. 

r~sta es la idea central del teorema de Lebesgue. Para formularlo con ma­
yor rrecisión introduciremos los conjuntos de medida cero. 

1),'llllit-ilm 7.43. Un conjunto S de números reales posee medida cero si, para 
('adll f > O, existe un recubrimiento numerable de S por medio de intervalos 
aMI'rra.\', tales que la suma de sus longitudes sea menor que ó . 

Si designamos a los intervalos por medio de (ak, bk), la definición requie­
re que 

y (3) 

Si la colección de intervalos es finita,. el índice k de (3) recorre un conjunto 
IInito. Si la colección es infinita numerable, entonces k irá de 1 a 00, y la suma 
de las longitudes es la suma de una serie infinita, dada por 

N 

lim L (bk - ah)' 
N-> co k = l 

" 

\ 
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Junto con la definición, precisamos algunos resultados acerca de los con­
juntos de medida cero. 

""'ort'III(1 7.44. Sea F una colección numerable de conjuntos de R, por ejemplo 

F = {F¡, F2 , ..• }, 

mllll uno de los cuales tiene medida cero. Entonces su unión 

co 

S = U Fk , 
k=l 

th'lIe también medida cero. 

J)('lIlOstración. Dado E > O, existe un recubrimiento numerable de Fk por me­
dio de intervalos abiertos, la suma de cuyas longitudes es menor que E/2k. La 
reunión de todos estos recubrimientos de S es asimismo un recubrimiento nu­
merable de S por medio de intervalos abiertos y la suma de las longitudes de 
todos los int·ervalos es menor que 

Ejemplos. Como un conjunto formado por un solo punto tiene medida cero, 
se tiene que cada subconjunto numerable de R tiene medida cero. En particular, el 
conjunto de los números racionales liene medida cero. Sin embargo, existen con­
juntos no numerables que tienen medida cero. (Ver el ejercicio 7.32.) 

A continuación introduciremos el concepto de oscilación, 

lJefinición 7.45. Sea f una función definida y acotada en un intervalo S. Si 
T ~ S, el número 

Qf(T) = sup {f(x) - I(y) : x E T, Y E T} , 

se llama la oscilación de f en T. La oscilación de f en x se define como el 
número 

Wf (X) = lim Qf(B(x; h) (\ S) . 
h->O+ 

NOTA. Este límite exi ste siempre, ya que Dr(B(x ; h) n S) es una función cre­
ciente de h. En realidad , T , ~ T 2 implica f.1r(T,) < Ü r(T2 ). Además, wr(x) = O 
si, y sólo si, f es continua en x. (Ejercicio 4.24). 
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El teorema que sigue nos dice que si wf(x) < E en cada uno de los puntos 
de un intervalo compacto [a, b), entonces nf(T) < E para todo subintervalo T 
suficientemente pequeño. 

Teorema 7.46. Sea f una función definida y acotada en [a, b), y sea E > O 
un número real dado. Supongamos que h'f(X) < E para cada x de [a, b). Enton­
ces existe un o > O (que depende tan sólo de ó) tal que para cada sub intervalo 
cerrado T ~ [a, b), se tiene que nf(T) < E siempre que la longitud de T séa 
menor que o. 

Demostración. Para cada x de [a, b) existe una bola unidimensional B" = 
B(x; o .. ) tal que 

n¡(Bx n [a, b]) < ro¡(x) + [e - ro¡(x)] = e. 

El conjunto de todas las bolas B(x; 0",/2) de amplitud la '-mitad constituyen un 
recubrimi'ento de I[a, b). En virtud de la compacidad, un número finito de ellas 
recubre a {a, b) (supongamos que este número es k). Sean los radios corres­
pondientes 01/2, ... , ó~.j2 y sea o el menor de estos números k. Cuando el inter­
valo T tenga longitud menor que o, entonces T estará parcialmente recubierto 
por una, por lo menos, de estas bolas; sea, por ejemplo, B(xp ; op/2). Sin em­
bargo, la bola B(¡xp; op) recubre totalmente a T (ya que op :::: 28). Además, en 
B(xp ; 01') n [a, b) la oscilación de f es menor que E. Ello implica que n,(T) < E 

Y el teorema está demostrado. 

Teorema 7.47. Sea f una función definida y acotada en [a, b). Para cada 
E > O se define el conjunto J. como sigue: 

le = {x: x E [a, b], ro¡(x)?: e}. 

Entonces J. es un conjunto cerrado. 

Demostración. Sea x un punto de acumulación de Je• Si x El: Je , tenemos 
wf(X) < E. Por lo tanto existe una bola unidimensional B(x) tal que 

n¡{B(x) n [a, b]) < 8. 

Por lo tanto, ningún punto de B(x) pertenecerá a JE , contradiciendo el hecho de 
que x sea de acumulación de JE• De donde, x E Je y Je. es cerrado. 

Teorema 7.48. (Criterio de Lebesgue para la integrabilidad de Rie­
mmm.) Sea f una función definida y acotada en [a. b) y sea D el conjunto de 
las discontinuidades de f en fa, b). Entonces fE R en [a, b) si, y sólo si, D 
tiene medida cero. 
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Demostración. (Necesidad.) Supondremos, en primer lugar, que D no tiene me­
dida cero y demostraremos que f no es integrable. Podemos escribir D como 
una reunión numerable de conjuntos 

00 

D = U D" 
r~l 

en donde 

Si x E D, entonces wf(X) > O, luego D es la reunión de los conjuntos Dr, para 
r = 1,2, .... 

Ahora bien si D no tiene medida cero, entonces alguno de los conjuntos D, 
tampoco la tendrá (en virtud del teorema 7.44). Por consiguiente, existe un 
E > O para el cual cualquier colección numerable de intervalos abiertos que 
recubra Dr tendrá una suma de longitudes :::: E. Para una partición P de [a, hl 
tenemos 

n 

U(P,!) - L(P,!) = L [Mk(f) - mk(f)] AXk = SI + S2 ¿ Si' 
k~l 

en donde SI contiene los términos que provienen de subintervalos que en su 
interior contienen puntos de D, y S2 contiene los términos restantes. tos inter­
valos abiertos de SI recubren Dro excepto posiblemente a un subconjunto finito 
en D" de medida O, luego la suma de sus longitudes es, por lo menos, E. Pero 
en estos intervalos tenemos 

Esto significa que 
e 

U(P,!) - L(P,!) ¿ -, 
r 

para cada partición P, luego la condición de Riemann no se verifica. Por con­
siguiente, f no es integrable de Riemann. En otras palabras, si f E R, enton­
ces D tiene medida cero. 

(Suficiencia). Ahora supondremos que D tiene medida cero y demostrare­
mos que se v'erifica la condición de Riemann. De nuevo escribimos D = U ~ l' D" 
en donde Dr es el conjunto de los puntos x en los que wf(X) > l/ro Dado que 
Dr S;;; D, cada Dr tiene medida cero, por lo que cada Dr se puede recubrir por 
medio de intervalos abiertos, cuyas longitudes sumen < l/ro Puesto que Dr es 
compacto (teorema 7.47), un número finito de dichos intervalos recubrirá a Dr. 
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La reunión de estos intervalos es un conjunto abierto que designaremos Ar. El 
complementario Br = [a, b] - Ar es la reunión de un número finito de subin­
tervalos cerrados de [a, b]. Sea / un subintervalo típico de Br. Si xE /, entonces 
(,,¡ex) < l/r y entonces, en virtud del t-:.~orema 7.46, existe un !l > O (que sólo 
depende de r) tal que 1 puede ser subdividido en un número finito de subinter­
valos T de longitud < () en los que U¡(T) < l/ro Los extremos de todos estos 
subintervalos definen una partición P,. de [a, b]. Si P es más fina que P,. po­
demos escribir 

n 

V(P,f) - L(P,f) = ¿ [Mk(f) - mk(f)] ~Xk = SI + S2' 
k=1 

en donde S 1 contiene los términos que provienen de los subintervalos que con­
tienen puntos de Deo Y S2 contiene los términos restantes. En el k-ésimo término 
de S2 tenemos 

1 b - a 
Mk(f) - mk(f) < - y entonces S2 < --

r r 

Puesto que A,. recubre todos los intervalos que intervienen en S" tenemos 

M-m 
SI :::; 

r 

en donde 111 y M son el sup y el ínf de f en [a, b]. Por consiguiente 

M-m+b-a 
V(P, f) - L(P, f) < . .. 

r 

Dado que esto se verifica para cada r > 1, la condición de Riemann se verifi­
ca, luego fE R en [a, b]. 

NOTA. Una propiedad se verifica casi en todo un subconjunto S de RI si se 
verifica en todo S salvo en un conjunto de medida O. Luego, el teorema de 
Lebesgue establece que una función f acotada en un intervalo compacto [a, b] 
es integrable de Riemann en [a, b] si, y sólo si, f es continua casi en todo 
[a, b]. 

Las siguientes afirmaciones (algunas de las cuales han sido probadas an­
teriormente en este mismo capítulo) son consecuencias inmediatas del teorema 
de Lebesgue. 

Teorema 7.49. a) Si f es de variación acotada en [a, b], entonces fE R en 
[a, b]. 
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b) Si fE R en [a, b], entonces fE R en [c, d] para cada subintervalo [c, d] e 
e [a, b; Ifl'E R Y f2 E R en [a, b]. También ¡'g E R en [a, b] siempre que 
g'E R en [a, b]. 

c) Si fE R Y g E R en [a, b], entonces flg E R en [a, b] siempre que gesté 
acotada en valor absoluto por un número mayor que O. 

d) Si f y g son funciones acotadas con las mismas discontinuidades en [a, b], 
entonces f'E R en [a, b] si, y sólo si, g E R en [a, b]. 

e) Sea g E R en [a, b] y supongamos que m ~ g(x) -s= M para todo x de [a, b]. 
Si f es continua en 1m, M], la función compuesta h definida por h(x) = 
f [g(x)] es integrable de Riemann en [a, b]. 

NOTA. La afirmación (e) no se verifica necesariamente SI se supone sólo que 
fE R en [m, M]. (Ver ejercicio 7.29.) 

7.27. INTEGRALES COM¡>LEJAS DE RIEMANN-STIELTJES 

Las int'egrales de Riemann-StieItje,s de la forma S~f da, en las que f y a son 
funciones complejas definidas y acotadas en un intervalo [a, b] son de gran im­
portancia en la teoría de funciones de variable compleja. Pueden introducirse 
utilizando exactamente la misma definición que la utilizada en el caso real. La 
definición 7.1 tiene perfectamente sentido cuando f ya son funciones comple~ 
jaso Las sumas de los productos f(tk)[a(xk) - a(xk-l)] utilizadas para formar 
las sumas de Riemann-StieItjes deben interpretarse como sumas de productos 
de números complejos. Puesto que los números complejos verifican las propieda­
des conmutativa, asoCÍativa y distributiva que se verifican también en el caso 
de los números reales, no debe, pues, sorprendernos que las integrales com­
plejas satisfagan muchas de las propiedades de las integrales reales. En par­
ticular, los teoremas 7.2, 7.3, 7.4, 7.6 Y 7.7 (así como sus demostraciones) 
son válidos (palabra por palabra) cuando f yet son funciones complejas. (En 
los teoremas 7.2 y 7.3, las constantes C I Y C 2 pueden ser números complejos.) 
Además, disponemos del siguiente teorema que reduce la teoría de las integra­
les complejas de Stidtjes al caso real. 

Teorema 7.50. Sean f = fI + if2 Y IY. = al + ¡a2 funciones complejas defi­
nidas en el intervalo [a, b]. Se tiene, entonces, 

siempre que existan las cuatro integrales del segundo miembro. 
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La demostración del teorema 7.50 es inmediata a partir de la definición y 
se deja como ejercicio para el lector. 

El uso de ·este teorema nos permite extender al caso complejo muchas de 
las propiedades importantes de las integrales reales. Por jemplo, la conexión 
entre la diferenciación y la integración establecida en el teorema 7.32 es válida 
si definimos las nociones de continuidad, diferenciabilidad y variación acotada 
por medio de las componentes, como hacíamos en el caso de las funciones vec­
toriales. Diremos entonces que la función compleja a = 0: 1 + ¡0:2 es de varia­
ción acotada en [a, b] si cada componente '0: 1 y '0: 2 es de variación acotada en 
[a, b]. Análogamente, la derivada o:'(t) está definida por la ecuación o:'(t) = 
a;(I) + ;a;(t) siempre que las derivadas o:',(t) y 0:'2(t) existan. (Las derivadas 
laterales se definen análogamente.) Con estos convenios, los teoremas 7.32 y 7.34 
(los teoremas fundamentales del Cálculo integral) son válidos cuando f y o: son 
funciones complejas. Las demostraciones se obtienen directamente utilizando 
el teorema 7.50 Y los teoremas correspondientes del caso reaL 

Volveremos a ocuparnos de las integrales complejas en el capítulo 16, al 
estudiar con más detalle las funciones complejas de una variable compleja. 

EJERCICIOS 

Integrales de Riemann-Stieltjes 

7.1 Probar que f~ drx(x) = rx(b) - rx(a), directamente a partir de la definición 7.1. 
7.2 Si fE R(,a) en [a, b] y si S~f da = O para cada f monótona en [a, b], probar 

que o: es constante en [a, b]. 
7.3 La siguiente definición de la integral de Riemann-Stieltjes es bastante usual 

en textos matemáticos: Se dice que I es integrable respecto de o: si existe un 
número real A que satisfaga la siguiente propiedad: para cada • > O existe un 
8> O tal que para cada particdn P de [a, b] con norma IIPII < 8 y cada elección 
de tk en [Xk_, , Xk], tenemos IS(P, 1, 'ct) - A I < E. 

a) Probar que si f~ f do:. existe según esta definición, entonces existe también 
de acuerdo con la definición 7.1 y ambas integrales son iguales. 

b) Sean f(x) = 'o:(x) = O para a ::; x < c./(x) = 'o:(x) = 1 para e < x S b,f(c)=O, 
o:(c) = 1. Probar que S~ I do: existe de acuerdo con la definición 7.1 pero 
no existe según esta segunda definición. 

7.4 Si fE R según la definición 7.1, probar que f~f(x) dx existe también según 
la definición 7.3. (Contrastar este resultado con el ejercicio 7.3(b). Indicación. Sea 
1 = f~f(x) dx, M = sup {lf(x)1 : x E [a, b]}. Dado. > O, elegir P , tal que V(Pe , f) < 
1+ ./2 (con la notación de la sección 7.11). Sea N el número de puntos de subdi­
visión de Pe y sea ó = ./(2MN). Si IIPII < 8, hagamos 

I 
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en donde S es la suma de los términos que pertenecen a aquellos subintervalos 
de P que ca;ecen de puntos de Pe y S2 es la suma de los términos restantes. Entonces 

SI ~ V(P.,!) < I + s/2 y S2 ~ NMIIPII < NMJ = s/2, 

y por lo tanto V(P, f) < J + •. Análogamente, 

L(P,!) > 1 - s si IIPII < J' para algún 8'. 

por lo tanto IS(P, f) -/1 < • si IIPII < min (8, 8'). . 
7.5 Sea {a.,,} una sucesión de números reales. Para x ¿ O, defimmos 

[xl 

A(x) = L an = L ano 
nSx n=1 

en donde []x] es la parte entera de x y las sumas vacías vale.n. cero. Se~ f una fun­
ción con derivada continua en el intervalo 1 S x S a. UtIhzar las mtegrales de 
Stieltjes para deducir la fórmula que sigue: 

L aojen) = - fa A(x)f'(x) dx + A(a)j(a). 
n S. o 1 

7.6 Utilizar la fórmula de sumación de Euler, o la integración por partes en una 
integral de Stieltjes para deducir las siguientes identidades: 

"1 1 f" [x] d si s =F 1. 
a) " - = - - 1 + S --;:;:J X f;1 k S nS

- 1 X 

o 1 fO x - [x] 
b) L - = In n - X2 dx + 1. 

k=1 k 1 

7.7 Suponer que f' es continua en [1, 2n] y utilizar la fórmula de sumación de 
Euler o la integración por partes para demostrar 

2" f20 
(; (-J)"f(k) = 1 f'(x)([x] - 2[x/2]) dx. 

7.8 Sea 'PI(X) = x - [x] - { si x =F entero, y sea 'p,(x) = O si x = ~ntero. Sea tam­
bién P2(X) = í~ ,p,(t) dI. Si f" es continua en [1 , n] probar que la formula de suma­

ción de Euler implica que 

" f" fn j(1) + f(n) 
~ j(k) = 1 j(x) dx - 1 ((J2(X)!"(X) dx + 2 

7.9 Hágase f(x) = In x en el ejercicio 7.8 Y pruébese que 

In n! = (n + V In n-n + 1 + - 2- dt. fn ({J2(t) 

1 t 
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7.10 Si x;;::: 1, sea 1:'(x) el número de primos::;; x. esto es, 

n(x) = L 1, 
psx 

C'f1 donde la suma está extendida a todos los números primos p::;; x. El teorema 
,{,./ I/Iíl/lero primo establece que 

. In x 
hm n(x) -- = 1. 

x-+oo x 

UNIIl se demuestra usualmente estudiando una función .¡r, íntimamente relacionada, 
,huln por 

9(x) = L In P. 
PSx 

In dunde, de nuevo, la suma está extendida a todos los primos p ::;; x. Tanto la fun­
,,11\11 Ir como la función .¡r son funciones escalonadas con salto en los números pri­
mil". Esle ejercicio demuestra cómo, por medio de la integral de Riemann-Stieltjes, 
1M !,uNible relacionar estas dos funciones. 

n) Si x ~ 2, probar que rr(x) y -&(x) se pueden expresar por medio de las si­
guientes integrales de Riemann-Stie\tjes: 

9(x) = IX In t drr(t), 
3/2 

1l(x) = - d9(t). Ix 1 

3 / 2 In t 

NOTA. El Hmite inferior puede substituirse por cualquier otro número del intervalo 
IIblrrlll (1. 2). 

b) Si x ~ 2, utilizar la integración por partes para probar 

3(x) = n(x) In x - IX n(t) dI, 
2 t 

n(x) = 9(x) + IX ~ dt. 
In x 2 t ln2 f 

Estas relaciones son útiles para demostrar que el teorema del número primo 
es equivalente a la relación limx_ oo 9(x)Jx = 1. 

'7,11 Si .ce)' en [a, b], probar que se verifica: 

11) J"h I d~ = f-c I drx + {b I drx, 
{I a Jc 

(a < e < b), 

b) f (f + g) drx::; r I drx + r g drx, 

t' (b Jb 
c) Jo (f + g) drx ~ Jo I drx + o g drx. 

_. - " 

r 

\ 
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7.12 Dar un ejemplo de una función acotada I y de una función creciente -oc defi­
nidas en [a, b] tales que 1I1 E R(ce) pero para las que S~ I drx no exista. 
7.13 Sea .ce una función continua de variación acotada en [a, b]. Supongamos que 
g E R(ce) en [a, b] y definamos f3(x) = S: g(t) drx(t) si x E [a, b]. Probar que: 

a) Si 1)' en [a, b ], existe un punto X o de [a, b] tal que 

f
b fXO lb I dP = fea) g drx + f(b) g drx. 

o o ~ 

b) Si, además, I es continua en [a, b], se tiene también 

fb fXO lb f(x)g(x) drx(x) = fea) g drx + f(b) g drx. 
a Q Xo 

7.14 Supongamos que lE R(a) en [a, b], en donde ce es de variación acotada en 
[a, b]. Si V(x) designa la variación total de tX en [a, x] para cada x de (a, b], y 
Vea) = O, probar que 

If Idrxl ::; f 1I1 dV ::; MV(b), 

en donde M es una cota superior de 1I1 en [a, b]. En particular, cuando a(x} = x , 
la desigualdad se transforma en 

I f f(x) dx l ::; M(b - a). 

7.15 Sea {cc"J una suceSlOn de funciones de variación acotada en [a, b]. Supon­
gamos que existe una función ce definida en [a, b] tal que la variación total de 
ce - ,ct", en [a, b] tienda hacia cero cuando n ~ CXl. Supongamos además que a(a) = 
cen(a) = O para cada n = 1, 2, ... Si I es continua en [a, b], probar que 

lim fb f(x) drxn(x) = fb f(x) drx(x). 
n-+ o:) a a 

7.16 Si fE R(rx),j2 E R(rx), g E R(IX) , Y g2 E R(rx) en [a, b] , probar que 

~ fb [Jb If(X) g(X) 1
2 

drx(y)] drx(x) 
2 o a f(y) g(y) . 

= (f f(X)2 drx(x»)(f g(X)2 drx(x») - (f f(x)g(x) drx(X)f· 

Cuando ce?' en [a, b], deducir la desigualdad de Cauchy-Schwarz 

(f f(x)g(x) drx(X)f ::; (f f(X)2 drx(x») (f g(X)2 drx(x») . 

(Comparar con el ejercicio 1.23.) 
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7.17 Supongamos que fE R(rx), g E R(rx), y f · g E R(rx) en [a, b]. Probar que 

i f [Lb (I(y) - f(x»(g(y) - g(x» drx(y)] drx(x) 

= (a(b) - a(a» f f(x)g(x) da(x) - (f f(x) da(X») (f g(x) da(X») • 

Si <:1.7' en [a, bJ, deducir la desigualdad 

(f f(x) dlX(X») (f g(x) dlX(X») S (lX(b) - lX(a» f f(x)g(x) dlX(x) 

en ?onde ta?to f como g son crecientes (o decrecientes) en [a, bJ . Probar que la 
desIgualdad mversa se verifica si f crece y g decrece en [a, b]. 

Integrales de Riemann 

7.18 Supongamos que fE R en [a, b]. Utilizar el ejercicio 7.4 para demostrar que 
el límite 

lim b - a t f(a + k b - a) 
n __ oo n k;l n 

existe y vale S~f(x) dx. Deducir que 

n 

lim L: (n 2 + k 2 )-1 12 = In (l + v'2). 
n~ oo k=l 

7.19 Definir 

g(x) = dI. 1
1 e-x2(r2+ 1) 

o 1
2 + 1 

a) Pr~'~ar que g'(x) + f(x) = O para todo x y deducir que g(x) + f(x) = 11'/4. 
b) UtJhzar (a) para demostrar que 

. 1x 
r2 1 1-' hm e- dI = - y n. 

x __ oo o 2 

7.20 Suponga~os que ~ E R en [a, b] y definamos f(x) = S: g(t) dI si x E [a, b . 
Probar que la mtegral fa Ig(I)1 dI da la variación total de f en [a, xJ. ] 

7.21 Sea f = (f" ... , f n) ~na funció~ vectorial con derivada continua f' en [a, bJ. 
Probar que la curva descnta por f tiene por longitud 

Af(a, b) = f /If'(I)/1 dI. 

I 
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7.22 Si l<nH) es continua en [a, xJ, definimos 

¡n(X) = - (x - t)"!(n+I)(I) dI. 1 IX 
n! a 

a) Demostrar que 

k = 1,2, .. . , n. 

b) Utilizar (a) para expresar el resto de la fórmula de Taylor como una in­
tegral (ver Teorema 5.19). 

7.23 Sea f una función continua en [O, a]. Si x E [O, aJ, definimos fo(x) = f(x) y sea 

!,,+I(X) = - (x - t)nf(t) dI, 1 IX 
n! o 

n = 0,1,2, ... 

a) Probar que la n-ésima derivada de fn existe y es igual a f. 
b) Demostrar el siguiente teorema de M. Fekete: El número de cambios de 

signo de f en [O, a] no es inferior al número de cambios de signo del con­
junto o'rdenado 

f(a),[I(a), . . . ,fn(a). 

Indicación. Procédase por inducción matemática. 
c) Usar (b) para demostrar el siguiente teorema de L. Fejér: El número fe 

cambios de signo de f en [O, aJ no es inferior al número de cambios de signo 
del conjunto ordenado 

feO), s: f(t) dI, La If(t) dI, J: tnf(t) dI. 

7.24 Sea 1 una función continua positiva en [a, b]. Si M designa el máximo valor 
que f alcanza en [a, bJ, probar que 

(lb )1/n 
lim f(x)n dx = M. 

n-+oo a 

7.25 Una función 1 de dos variables reales está definida en cada punto (x, y) del 
cuadrado unidad O ~ x ~ 1, O ~ Y ~ 1 como sigue: 

f(x, y) = {2~: si x es racional 
si x es irracional 

a) Calcular fA f(x, y) dx y fA f(x, y) dx en términos de y. 
b) Probar que f~ f(x, y) dy existe para cada x fijo y calcular n f(x, y) dy en 

términos de x y t para O S x SI, O ~ I ~ 1. 
c) Sea F(x) = fA f(x, y) dy. Probar que fA F(x) dx existe V calcular su valor. 
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7_26 Definimos f en [O, 1] como sigue: feO) = o; si 2-n- 1 < x :S; 2-on; entonces 
f(x) = 2-n , para n = O, 1, 2, ... 

a) Dar dos motivos por los que fó f(x) dx existe. 

b) Sea F(x) = f6f(t) dt. Probar que para O < x:S; 1 se tiene 

F(x) = xA(x) - tA(x)2, 

en donde A(x) = 2-[-ln .x/In 2], siendo [y] la parte entera de y. 

7.27 Supongamos que f posee una derivada monótona decreciente que satisface 
f'(x) 2': m > O para todo x de fa, b]. Probar que 

ILb 

cosf(x) dxl ~ ;;. 
Indicación. Multiplicar y dividir el integrando por f'(x) y utilizar el teorema 7.37(ii). 
7.28 Dada una sucesión decreciente de números reales {G(n)} ta1 que G(n) ~ O 
cuando n ~ oo. se define una función en [O, 1] por medio de {G(n)} como sigue: 
feO) = 1; si x es irracional,entonces f(x) = O; si xes el número racional irreduci­
ble m/n, entonces f(m/n) = G(n). Calcular la oscilación wf(x) en cada x de [O, 1] 
Y probar que fE R en [O, 1]. 

7.29 Sea f la función definida en el ejercicio 7.28 con G(n) = lIno Sea g(x) = 1 si 
O < x :S; 1, g(O) = O. Probar que la función compuesta h definida por h(x) = g[f(x)] 
no es integrable de Riemann en [O, 1], a pesar de que fE R Y g E R en [O, 1]. 
7.30 Utilizar le teorema de Lebesgue para demostrar el teorema 7.49. 
7.31 Utilizar el teorema de Lebesgue para demostrar que si fE R Y g E R en [a, b] 
y si f(x) 2': m > O para todo x de [a, b], entonces la función h definida por 

h(x) = f(x)g(X) 

es integrable de Riemann en [a, b]. 

7.32 Sea 1=[0, 1] Y sea Al = 1- (!, ~) el subconjunto de l obtenido suprimiendo 
en 1 los puntos del intervalo abierto que constituye el tercio central de 1; esto es, 
Al = [O, !] U [~, 1]. Sea Az el subconjunto de Al obtenido suprimiendo el tercio 
central abierto de [O, !] y el de [~, 1]. Continuar este proceso y definir A

3
, A" 

El conjunto e = n~l An se llama conjunto de Cantor. Probar que 
a) C es un conjunto compacto que tiene medida cero. 
b) x E e si, y sólo si, x = L~l an3- n

, en donde cada a
n 

o es O o es 2. 
e) C es no numerable. 
d) Sea f(x) = 1 si x E e, f(x) = O si x Ef. C. Probar que fE R en rO, 1]. 

7.33 Este ejercicio proporciona una demostración (debida a Ivan Niven) de que ",2 

es irracional. Sea f(x) = xn(1-x)n/n!. Probar que: 
a) 0< f(x) < l/n! si O < x < 1. 
b) Cada una de las k-ésimas derivadas f(kl(O) y f(kl(1) es un entero. Supon­

gamos entonces que ",2 = a/ b, en donde a y b son enteros positivos, y sea 
n 

F(x) = bn L (-1)kf(2k)(x) n2n - 2k. 
k=O 
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Probar que: 
e) F(O) y F(1) son enteros. 

d) n2anf(x) sen nx = !!.- {F'(x) sen nx -'o nF(x) cos nx}. 
dx 

e) F(l) + F(O) = nan f f(x) sen nx dx. 
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f) Utilizar (a) y (e) para deducir que 0< F(I) + F(O) < 1 si n es suficiente­
mente grande. Esto contradice (e) y prueba que ",2 (y por lo tanto "') es 
irracional. 

7.34 Sea a una función real, continua en el intervalo [a, b] con derivada a' finita 
y acotada en (a, b). Sea f una función definida y acotada en [a, b] y supongamos 
que las integrales 

f f(x) dlX(x) y f f(x) IX'(X) dx 

existen. Probar que ambas integrales son iguales. (No se impone que a' sea continua.) 
7.35 Probar el siguiente teorema, que implica que una función que tenga integral 
positiva debe ser ella misma positiva en algún intervalo. Supongamos que fE R 
en [a, b] y que O:S; f(x):S; M en [a, b], en donde M> O. Sea l = f~f(x) dx, sea 
h = t I/(M + b -a), y supongamos que 1> O. Entonces el conjunto T = {x: f(x) 2': h} 
contiene un número finito de intervalos la suma de cuyas longitudes es por ~ 10 
menos h. 
Indicación. Sea P una partición de [a, b] tal que toda suma de Riemann S(P, f) 
= L~=l f(tk) ~Xk satisface S(P, f) > 1/2. Dividamos S(P, f) en dos partes S(P, f) 

= LkEA + LkEB' donde 

y B = {k : k rt A}. 

Si k 'E A, usamos la desigualdad f(tk) < M; si k E B, elegimos tk tal que f(tk) < h. 
Deducir que LkEA ~Xk > h. 

Teorema de existencia para ecuaciones integrales y diferenciales 

Los ejercicios que siguen muestran la utilidad del teorema del punto fijo para con­
tracciones (teorema 4.48) a la hora de probar teoremas de existencia para resolución 
de ciertas ecuaciones integrales y diferenciales. Designaremos por era, b] el espacio 

métrico de todas las funciones reales continuas en [a, b] dotado de la siguiente 
métrica 

d(/, g) = Ilf - gil = max If(x) - g(x)l, 
a;:5;x:5.b 

Recordemos que era, b] es un espacio métrico completo (ejercicio 4.67). 
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7.36 Dada una función g de C[a, b], y una función K continua en el rectángulo 
(J = [a, b] X [a, b], se considera la función T definida en C[a, b] por medio de 
111 ecuación 

T(q.¡)(x) = g(x) + A f K(x, t)q.¡(t) dt, 

1'1I donde A es una constante dada. 
a) Demostrar que T aplica C[a, b] en sí mismo. 
b) Si IK(x, y)1 S M en Q, en donde M> O, Y si IAI < M-l(b - a)-1, probar 

que T es una contracción de C[a, b] y por lo.tanto posee un punto fijo 9' que 
es solución de la ecuación integral q.¡(x) = g(x) + ). Jt K(x, t)q.¡(t) dt. 

7.J7 Supongamos que I es continua en un rectángulo Q = [a - h, a + h] X 

X [h - k, b + k], en donde h > O, k > O. 
11) Sea .9' una función continua en [a-h, a+h], tal que (x, 9'(x» E Q para 

todo x de [a-h, a+h]. Si O < e S h, probar que 9' satisface la ecuación 
diferencial y' = I(x, y) en (a-e, a+c) y la condición inicial <pea) = b si, 
y sólo si, 9' satisface la ecuación integral q.¡(x) = g(x) + A S! K(x, t)q.¡(t) dt. 

q.¡(x) = b + L~ f(t, q.¡(t)) dt en (a - e, a + e). 

h) Supongamos que I/(x, y)1 S M en Q, en donde M>O, y sea e= min {h. kjM}. 
Sea S el subespacio métrico de C[a - e, a + e] formado por todas las 9' 
(ales que 19?(x) - bl S Me en [a - e, a + e]. Probar que S es un sub­
espacio cerrado de C[a - e, a + e] y por lo tanto que el mismo S es un es­
pacio métrico completo. 

l') Probar que la función T definida en S por la ecuación 

T(q.¡)(x) = b + LX f(t, q.¡(t») dt 

aplica S en sí mismo. 
d) Supongamos ahora que I satisface una condición de Lipschitz de la forma 

If(x, y) - ¡(x, z)1 ::; Aly - zl 

para cada par de puntos (X. y) y (x, z) de Q, en donde A > O. Probar 
que T es una contracción de S si h < l/A. Deducir que para h < l/A la 
ecuación diferencial y' = I(x, y) tiene exactamente una solución y = S"{x) 
en (a - e, a + e) tal que <pea) = b. 
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CAPíTULO 8 

Series infinitas 

y productos infinitos 

8.1 INTRODUCCIóN 

En este capítulo daremos un breve desarrollo de la teoría de las series y pro­
ductos infinitos. Se trata, en el fondo, de sucesiones infinitas especiales cuyos 
términos son o bien números reales o bien números complejos. Las sucesiones 
convergent'es fueron estudiadas en el capítulo 4 en el ámbito de los espacios 
métricos generales. Recordaremos algunos de los conceptos del capítulo 4 apli­
cándolos a sucesiones de C, con la métrica euclídea usual. 

8.2 SUCESIONES CONVERGENTES Y DIVERGENTES 
DE NúMEROS COMPLEJOS 

Definición 8.1. Una sucesión {an } de puntos de C es convergente si existe un 
punto p de C que verifique la siguiente propiedad: 

Para cada ~ > O existe un entero N (dependiente de ~) tal que 

lan - pI < ¡¡ siempre que n ~ N. 

Si {an } converge hacia p, escribiremos limn-> oo an = p y se dice que p es el lími­
te de la sucesión. Una sucesión que no es convergente se llama divergente. 

Una sucesión de C se llama sucesión de Cauchy si satisface la condi­
ción de Cauchy; esto es, para cada ~ > O existe un entero N tal que 

siempre que n > N Y m ;;::: N. 

Ya que C es un espacio métrico completo, sabemos por el capítulo 4 que una 
sucesión de C es convergente si, y sólo si, es una sucesión de Cauchy. 

La condición de Cauchy es particularmente útil para establecer la conver­
gencia cuando se desconoce el valor hacia el que la sucesión converge. ' 

Toda sucesión convergente está acotada (teorema 4.3) y por consiguiente 
una sucesión no acotada es necesariamente divergente. 

223 
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Si una sucesión {a,,} converge hacia p, entonces cada sub sucesión {akJ COII 

verge asimismo hacia p (teorema 4,5), 
Una sucesión {an } cuyos términos son números reales diverge hacia +0:' si, 

para cada M > 0, existe un entero N (dependiente M) tal que 

a,,>M siempre que n > N. 

En este caso diremos que limn-+ oo an = + oo. 
Si Iímn -+ oo (- an) = + 00, escribiremos que Iímn-+ooa" = - 00 y diremos lJIJt· 

{a,,} diverge hacia - 00, Además, existen sucesiones reales divergentes que !lO 

divergen ni hacia + 00 ni hacia - oo. Por ejemplo, la sucesión {( - 1 Y(l + 1/11) l 
diverge pero no diverge ni hacia + 00 ni hacia - oo. 

8.3 LíMITE SUPERIOR Y LíMITE INFERIOR 
DE UNA SUCESIÓN REAL 

Definición 8.2 Sea {an } una sucesión de números reales. SuPongamos qut' 
existe un número real U que satisface las dos condiciones siguientes: 
i) Para cada E > ° existe un entero N tal que n > N implica 

an < U + e. 
ii) Dado E > ° y dado m > 0, existe un entero n > m tal que 

an > U-e. 

Entonces U se llama el límite superior de {a",} y se escribe 

U = lim sup an0 

La proposición (i) implica que el conjunto {a" a2 , , •• } está acotado superior­
mente. Si este conjunto no está acotado superiormente, definimos 

lim sup an = + oo. 
n-+ 00 

Si el conjunto está acotado superiormente pero en cambl'o no lo está inferior­
mente y si {an } carece de límite superior finito, entonces se dice lim sup n-+ 00 a" 
= -oo. El límite inferior de {a,,} se define como sigue: 

lim inf an = -lim sup bm en donde bn = -a" para n = 1, 2, ... 
n-+ 00 

NOTA. La condición (i) significa que todos los términos de la sucesión a partir 
de uno en adelante están a la izquierda de U + E. La condición (ii) significa 
que una infinidad de términos se hallan a la derecha de U-E. Es claro que 
no puede existir más que un número U que satisfaga simultáneamente (i) y (ii). 

Toda sucesión real tiene un límite superior y un límite inferior en el sistema 
de los números reales R* (ver ejercicio 8.1). 
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El lector puede realizar las demostraciones de los siguientes teoremas: 

Teorema 8.3 Sea {an } una sucesión de números reales. Se tiene entonces: 

a) lim infn-+ 00 an :-::;; lim SUPn-+ 00 an° 

b) La sucesión converge si, y sólo si, lim sUPn-+oo an y lim infn-+ oo an son ambos 
finitos e iguales; en este caso, limn-+ 00 an = lim infn-+ 00 an = lim SUPn-+ 00 an° 

c) La sucesión diverge haciv + 00 si, y sólo si, lim infn-+ oo an = lim sUPn-+oo an = 
+ oo. 
d) La sucesión diverge hacia - 00 si, y sólo si, lim infn --> 00 an = lim sUPn-+ 00 an = 
- oo. 

NOTA. 

lunte. 

Una sucesión en la que lim infn-->oo an i= lim sUPn--> 00 an se llama osci-

Teorema 8.4. Supongamos que a" <bn para cada n = 1, 2, oo' Se tiene en­

tonces 

lim inf an ::; lim inf bn. y lim sup an ::; lim sup bn• 

n-+oo n-+OCl 

Ejemplos 

1. an = (-l)n(1 + l/n), 

2. an = (_1)n, 

3. an = (- l)n n, 

4. an = n 2 sen2 (tnlr), 

lim infn-->oo an = -1, 

Jim infn-->oo an = -1, 

lim infn-->oo an = - 00, 

lim infn--> 00 an = 0, 

lim sup an = + 1. 

lim SUPn-->oo an = + 1. 

lim sUPn-->oo an = + oo. 

Jim sup an = + oo. 

8.4. SUCESIONES MONÓTONAS DE NúMEROS REALES 

Definición 8 .. 5. Sea {a,,} una sucesión de números reales. Diremos que l~ 
sucesión es creciente y escribiremos an l' si a" < a,,+1 para n = 1, 2, ... SI 

a > a para todo n diremos que la sucesión es decreciente y escribiremos 
'n - n+l ' 

an \,¡. Una sucesión se llama monótona si es creciente o decreciente. 
La convergencia o divergencia de una sucesión monótona se puede deter­

minar con facilidad. En efecto, tenemos 

Teorema 8.6. Una sucesión monótona converge si, y sólo si, está acotada. 

Demostración. Si an?, limn-+ 00 an = sup {an : n = 1, 2, ... } .Si an '" , limn-+ 00 an = 

= inf {an : n = 1, 2, ... }. 

http://libreria-universitaria.blogspot.com
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8.5 SERIES INFINITAS 

Sea {a,, } una sucesión dada de números reales o complejos, y formemos una 
nueva sucesión {Sn} como sigue: 

n 

Sn = al + .,. + an = L ak 
k=1 

(n = 1,2, ... ). ( I ) 

Definición 8.7. El par ardenado de sucesiones ({an}, {sn}) se llama seri/' 
infinita. El número s", se llama suma parcial n-ésima de la serie. Se dice qul' 
una serie canverge a diverge según que la sucesión {s .. } sea convergente o di ­
vergente. Las símbolos que siguen sirven para designar la serie definida par (1) : 

al + a2 + ... + an + ... , 
OC) 

al + a 2 + a 3 + "', L ak· 
- k= 1 

NOTA. La letra k que aparece en el símbolo :L:'= 1 ak es una ((variable muda» 
y puede sustituirse por cualquier otro signo conveniente. Si p es un entero ? O. 
un símbolo de la forma :L:': p bn se puede interpretar como el símbolo :L:'= 1 an • 

en donde an = bn + p-I' Si no hay peligro de confusión, escribiremos :Lbn en 
vez de:L:': p bn· 

Si la sucesión {Sn} definida por (1) converge hacia s, el número s se llama 
suma de la s-erie y se escribe 

OC) 

s = L ak' 
k=1 

Por lo tanto, en el caso de las series convergentes el símbolo ~l4 se utiliza tanto 
para designar la serie como para designar su suma. 

Ejemplo. Si x tiene un desarrollo decimal infinito x = aO·al a2• ... (ver sección 1.17), 
entonces la serie :L~o ak lO - k converge en x. 

Teorema 8.8. Sean a = ~an y b = ¿b" das series convergentes. Entances, 
para cada par de constantes -IX y (3, la serie :L(cxan + fibn) converge hacia la 
suma 'r:t!a + j3b. Esto es, 

Demastración. 

Teorema 8.9. Supangamas que an > O para cada n = 1, 2, ... Entances ~an 

converge si, y sólo si, la sucesión de las sumas parciales está acotada superiar­
mente. 
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Demastración. Sea s" = al + ... + ano Entonces sn7' y basta aplicar el teo­

rema 8.6. 

Teorema 8.10 (Series telescópicas). Se(1n {an} y {b ,, } dos sucesiones tales 
que a

n 
= b

n
+

1 
- b" para n = 1,2, .. . Entonces ~a,. converge si, y sólo si, exis-

te lim,. .... "" b,P en cuyo caso se tiene 
00 

L an = lim bn - b l ' 
n==1 n-+ CX) 

Demostración. 

Teorema 8.11 (Condición de Cauchy para series). La serie ¿an conver­
ge si, y sólo si, para cada E > O existe un entero N tal que n > N implica 

la + . . . + a I < G para cada p = 1, 2, ... 
n+1 n+p 

(2) 

Demostración. Sea Sn = L:Z= 1 ak; escribamos Sn+ p - Sn = an+ 1 + . . . + an + p' 
y apliquemos el teorema 4.8. 

Tomando p = 1 en (2), resulta que lím" .... "" an = O es una condición nece-
saria para la convergencia de la serie ¿ano Sin embargo, esta condición no es 
suficiente y esto se ve al considerar el ejemplo dado por an = l /n . Cuand«> 

n = 2'" Y P = 2'" en (2), se obtiene 

y por consiguiente no se satisface la condición de Cauchy cuando E < t· Luego 
la serie L::'= 1 l /n diverge. Esta serie se llama serie armó11lca. 

8.6 INTRODUCCióN y SUPRESIÓN DE PARÉNTESIS 

Definición 8.12 Sea p una función cuyo dominio sea el conjunto de los en­
taos positivos y cuyo recorrido sea un subconjunto del conjunto de los ente-

ros positivos tal que 

i) p(n) < p(m), si n < m. 

Span ¿a.,. y Lb." dos series relacionadas como sigue: 

b
l 

= al + a2 + ., . + ap(ll' 
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ii) bn+1 = ap(n)+1 + ap(n)+2 + '" + ap(n+l)' si n = 1, 2, ... 

Entonces diremos que "2,bn se ha obtenido a partir de ¿a.,. introduciendo parén­
tesis, y que "'San se ha obtenido de Lb" suprimiendo paréntesis. 

1'eorema 8.13 Si ¿an converge hacia s, toda serie "2,b" obtenida a partir 
de :La" introduciendo paréntesis también converge hacia s, 

Demostración. Sean :La.,. y "2,bn dos series relacionadas por (ii) y sean Sn = 
L:~=1 ak> tn=L~=l bit.. Entonces {t",} es una subsucesión de {s", }. En efecto, 
In = sp(n)' Por lo tanto, la convergencia de {sn} hacia s implica la convergencia 
de {tn} hacia s. 

Suprimiendo paréntesis puede destruirse la convergencia, Para verlo, consi­
dérese la serie 'Sbon tal que cada uno de sus términos 'es O (que obviamente es 
convergente). Sea p(n) = 2n y sea Un = (- l)n. Entonces (i) y (ii). se satisfacen 
y sin embargo ¿;an es divergente. 

Los paréntesis s'e pueden suprimir si imponemos restricciones a ¿;an y a p. 

7'eorema 8.14. Sean 2:a"" ¿;bn relacionadas como en la definición 8.12. Su­
pongamos que existe una constante M > O tal que p(n + 1) - p(n) < M para 
todo n, y supongamos que límn~ oo an = O. Entonces :¿O." converge si, y sólo si, 
Lb" converge, y en dicho caso tienen la misma suma. 

Demostración. Si 2:a .. conv'erge, el resultado se sigue del teorema 8.13. Toda 
la dificultad radica en la deducción inversa. Sea 

Dado E > O, elegimos un N tal que n > N implique 

e 
I/n - ti < -

2 
y 

Si n > p(N), podemos encontrar m > N tal que 

N :5: p(m) :5: n < p(m + 1). 

[¿Por qué?] Para este n se tiene 

sn = al + ... + ap(m+l) - (an+1 + an+2 + ... + ap(m+l» 

= tm+l - (an+1 + an+2 + ... +'ap(m+I)' 
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y entonces 
ISn - ti :::; Itm+l - ti + lan+1 + an+2 + ... + ap(m+1)1 

:::; Itm+l - ti + lap(m)+11 + la p(m)+21 + ... + la p(m+1)1 

e ) e e e 
< 2: + (p(m + 1) - p(m) 2M < '2 + '2 = e. 

Ello demuestra que límn~ oo Sr> = t. 

8.7 SERIES ALTERNADAS 

Definición 8.15. Si an > O para cada n, la serie L::'=1 (_1)"+1 an se llama 
una serie alternada. 

Teorema 8.16. Si {an } es una suceSlOn decreciente que converge hacia O, 
la serie alternada L( _1)n+ 1 an converge. Si s designa su suma y s" su suma 
parcial n-ésima, se verifica la desigualdad 

O < (_I)n(s - sn) < an+ l' para n = 1, 2, .. , (3) 

NOTA. La desigualdad (3) nos dice que al «aproximarnos» a s por medio de 
las Sn, el error que se comete tiene el mismo signo que el primer término des- ~, 
preciada y es menor que el valor absoluto de dicho término. 

Demostración. Introducimos paréntesis en L( _1)n+1 an> a fin de agrupar los 
términos de dos en dos. Esto es, tomamos p(n) = 2n y formamos una nueva 
sene "'Sb,n de acuerdo con la definición 8.12, haciendo 

Como que a" -4 O Y p(n + 1) - p(n) = 2, el teorema 8.14 nos asegura que 
L( _I)n+ 1 a

n 
converge si ¿,b'n converge. Pero ."2,bn es ?na serie de térm~nos no 

negativos (puesto que a" ""), y sus sumas parciales estan acotadas supenormen-
te, ya que 

n L: b
k 

= al - (a 2 - a3) - ••• - (a2n-2 - a2n-l) - a2n < al' 
k= 1 

Por lo tanto ¿,b,n converge, y L( _1)n+ 1 an también converge .. 
La desigualdad (3) es consecuencia de las siguientes relacIOnes: 

00 00 

(-I)"(s - sn) = L: (-I)k+lanH = L: (an+2k-t - an+2k) > 0, 
k=1 k=1 
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y 
00 

(-1)"(s - Sn) = an+l - L (an+2k - an+2k+l) < an+1• 
k~1 

B.8 CONVERGENCIA ABSOLUTA y CONDICIONAL 

I)f'finición 8.17. Una serie ¿all es absolutamente convergente si 2:lanl con­
\'l'rge. Se llama condicionalmente convergente si ¿all converge pero ¿Ianl di­
\'I'rge. 

'I'f'orema 8.18. La convergencia absoluta de ¿all implica la convergencia. 

¡)¡oll/ostración. Basta aplicar la condición de Cauchy a la desigualdad 

lan+1 + ... + an+pl ::::; lan + 11 + ... + lan+pl. 

Pura ver que el recíproco es falso, basta considerar el ejemplo 

t (_1)n+l 

n~1 n 

Hsla serie alternada es convergente, en virtud del teorema 8.16, pero no es 
nhsolulamente convergente 

'I','orf'ma 8.19. Sea ¿an una sere de términos reales dada y definamos 

/\'I/tOl/C{'S: 

• 1 a~n~I_-_a-"n qn = -
2 

(n = 1,2, ... ). (4) 

i) Si ~:an es condicionalmente convergente, 2Pn y ¿qn son ambas divergentes. 
11) Si ~1(f,1I1 converge, ¿Pn y ¿qn son ambas convergentes y se tiene 

NOTA. 1711 = an y qn = O si an ¿ O, mientras que qn = - all Y Pn = O si an < 
. o. 

¡"'/l/ostración Tenemos an = Pn - qn' lanl = Pn + qn' Para probar (i), supon­
IlUIl10S que 2PIl/ converge y 21anl diverge. Si ¿qn converge, entonces ¿Pn tam­
hién convergerá (en virtud del teorema 8.8), ya que Pn = an + qn. Análoga-

\ 
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mente, si ¿P'n converge, entonces ¿qn también convergerá. De lo que se deduce 
que, si ¿Pn o ¿nn convergen, convergerán las dos y entonces ¿Ianl convergerá, 
ya que la,,1 = Pn + qn' Esta contradicción prueba (i). 

Para probar (ii), basta utilizar (4) junto con el teorema 8.8. 

8.9 PARTE REAL Y PARTE IMAGINARIA DE UNA SERIE 
COMPLEJA 

Sea ¿cn una serie de términos complejos y escribámosla en = an + ibn , en donde 
an y bon sean números reales. Las series 2:a", y ¿bn se llaman, respectivamente, 
partes real e imaginaria de la serie ¿cn . En aquellas situaciones en que interven­
gan serie complejas es, a menudo, conveniente tratar las partes real e imaginaria 
por separado. Es claro que la convergencia de las series ¿o.. y ¿bn implica la 
convergencia de la serie ¿en' Recíprocamente, la convergencia de la serie ¿c", 
implica simultáneamente la converg·encia de las series ¿an y ¿bono Idénticas ob­
servaciones son válidas para la convergencia absoluta. Sin embargo, si ¿cn es 
condicionalmente convergente, una (pero no ambas) de las series ¿an o ¿bln pue­
de s'er absolutamente convergente. (Ver el ejercicio 8.19.) 

Si ¿cn converge absolutamente, podemos aplicar la parte (ii) del teorema 8.19 
a las partes real e imaginaria, por separado, para obtener la descomposición 
siguiente: 

LCn = L(Pn + iun) - L(qn + ivn), 

en donde ¿Pn, ¿qn, ¿Un> ¿vn son series convergentes de términos no negativos . 

8.10 CRITERIOS DE CONVERGENCIA PARA LAS SERIES 
DE TÉRMINOS POSITIVOS 

l'eorema 8.20 (Criterio de comparación). Si an > O Y bn > O para n = 
= 1, 2, ... y existen dos constantes positivas c y N tales que 

an < ebn para n > N 

la convergencia de ¿bn implica la convergencia de ¿ano 

Demostración. Las sumas parciales de ¿a" están acotadas si las de ¿bn lo es­
tán. Aplicando el teor'ema 8.9, el teorema queda demostrado. 

Teorema 8.21 (Criterio de comparación por paso al límite). Suponga­
mos que all > O Y bn > O para n = 1,2, ... , Y supongamos que 

¡im an = 1. 
n--+ 00 bn 
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Entonces 2;an converge si, y sólo si, 2;bn converge. 

Demostración. Existe un N tal que n < N implica 1- < anlbn < t. El teorema 
queda demostrado si aplicamos dos veces el teor'ema 8.20. 

NOTA., El teorema 8.21 también se verifica si limn_ro anlbn = c, siempre que 
e =1= O. Si limn_ro anlbn = O,sólo se puede afirmar que la convergencia de 2;b", 
implica la convergencia de 2;an . 

8.11 LA SERIE GEOMÉTRICA 

Para que el criterio de comparación sea efectivo es preciso disponer de algunos 
ej'emplos de series de comportamiento conocido. Una de las series más impor­
tantes en relación con el criterio de comparación es la serie geométrica. 

Teorema 8.22. Si !x! < 1, la serie 1 + x + X2 + ... conVerge y su suma vale 
l/O - x). Si !x!;::." 1, la serie diverge. 

Demostración. (1 - x) LZ=o Xk = LZ=o (xk - Xk+ 1) = 1 - Xn+ l. Cuando !x! 
< 1, tendremos quelimn _ oo xn+1=0.Si !x! > 1, el término general no tiende a 
cero y por lo tanto la serie no converge. 

8.12 EL CRITERIO DE LA INTEGRAL 

Otros ejemplos de series de comportamiento cmocido pueden obtenerse fácil­
mente aplicando el criterio de la integral. 

Teorema 8.23 (Criterio de la integral). Sea f una función decreciente de­
finida en [1, + (0) tal que limx_+oof(x) = O. Para n = 1, 2, ... , definimos 

n 

Sn = Lf(k), 
k=l 

tn = f f(x) dx, 

Se tiene entonces: 

i) O < f(n + 1) ~ dn+ ¡ ~ dn ~ f(l), para n = 1, 2, 

ii) límn->oo dn existe. 

iii) Le;'= ¡ f(n) converge si, y sólo si, la sucesión {tn} converge. 

iv) O ~ dk - limn_ro dn ~ f(k), para k = 1, 2, ... 
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Demostración. Para probar (i), escribimos 

1
n+1 n fk+1 n fk+1 

tn+ 1 = 1 f(x) dx = ~'. Jk f(x) dx :-:; ~ Jk f(k) dx 

n 

= Lf(k) = Sn' 
k=l 

Esto implica que f(n + 1) = Sn+1 - Sn ~ Sn+1 - tn+1 = dn+¡, Y obtenemos 

O <f(n + 1) ~ dn + 1 • 

Pero tenemos también 

dn - dn+1 = tn+1 - tn - (Sn+1 - Sn) = Ln+1 f(x) dx - f(n + 1) (5) 

~ f+ 1 f(n + 1) dx - f(n + 1) = O, 

y por consiguiente dn+ 1 ~ dn ~ di = f(l)· Esto demuestra (i). Pero ahora es 
evidente que (i) implica (ii) y que (ii) implica (iii). 

Para demostrar (iv), utilizamos de nuevo (5) y escribimos 

f
n+1 

O :-:; dn - dn + 1:-:; n f(n) dx - f(n + 1) = f(n) - f(n + 1). 

Si sumamos con respecto de n, obtenemos 

00 00 

O ~ L (dn - dn +1) :-:; L (J(n) - f(n + 1)), 
n=k n=k 

si k > 1. 

y cuando calculamos las sumas de estas series telescópicas, tenemos (iv). 

NOTA. Sea D = lím.._oo dn . Entonces (i) implica O <D< f(1), mientras que 
(iv) nos da 

O :-:; ~f(k) - f f(x) dx - D :-:; f(n). (6) 

Esta desigualdad es verdaderamente útil a la hora de aproximar ciertas sumas 
finitas por medio de integrales. 
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11.13 LAS NOTACIONES O GRANDE Y o PEQUEÑA 

De ¡inició n 8.24. Dadas dos sucesiones {an } y {bn } tales que bn > O para 
lodo n, escribimos 

(se lee: «an es O grande de bn »), 

.\'i existe una constante M> O tal que IOnl < Mbn para todo n. Escribimos 

an = o(bn ) cuando n-+co (se lee: (<an es o pequeña de bnll), 

NI ITA. Una ecuación de la forma an = Cn + O(bn) significa an - Cn = O(bn). 

Análogamente, an = Cn + oCbn) significa que an - Cn = oCbn). La ventaja de 
eslu notación consiste en el hecho de que permite reemplazar cierto tipo de de­
sigualdades por ecuaciones. Por ejemplo, (6) implica 

'tt f(k) = r f(x) dx + D + O(J(n»). (7) 

lejt'mplo J. En el teorema 8.23 hacemos f(x) = 1 Ix. Encontramos t", = In n y por 
111 lanto ~ l/n diverge. Sin embargo, el apartado (ii) establece la existencia del límite 

lim (t -k~ - In n) , 
n-+oo k=l 

m\mcro famoso llamado constante de Euler, que se designa 
(11 ~or yl. La ecuación (7) se convierte en 

¿ - = In /1 + e + o - . n 1 (1) 
k=1 k /1 

normalmente por e 

(8) 

IeJemplo 2. Sea f(x) = x- s , s =fo 1 en el teorema 8.23. Obtenemos que 2; n-S con­
VC'l'lIc si s> 1 Y diverge si s < 1. Para s> 1, esta serie define una función muy 
1111~ortante conocida como función zeta de Riemann: 

00 1 
C(s) = ¿--; 

n= 1 /1 
(s > 1). 

Pa ra ,1' > O. s =fo 1, podemos aplicar (7) para escribir 

n 1 /11-5 - 1 ( 1 ) ¿ -~ = --- + CCs) + O -. , 
k= 1 k 1 - S /1 

dondcC(s) = limn_oo 0:::;:=1 k-S - (/11-5 - 1)/(1 - s». 

I 

\ 
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8.14 EL CRITERIO DEL COCIENTE Y EL CRITERIO 
DE LA RAíZ 

235 

Teorema 8.25 (Criterio del cociente). Dada una serie 2:an de términos 
complejos no nulos, sea 

r = lim inf lan
+

1 1 ' 
n-+ 00 an 

R = lim sup lan+ll. 
n-+oo an 

a) La serie 2;an converge absolutamente si R < 1. 
b) La serie 2;an diverge sI' r > 1. 
c) El criterio no permite llegar a ninguna conclusión si r < 1 < R. 

Demostración. Supongamos que R < 1 Y elijamos x tal que R < x < l. La 
definición de R implica la exist'encia de un N tal quelan+l/anl < x si n;;-> N. 
Como que x = xn+l/xn, esto significa que 

si n> N, 

y entonces lanl :::;; cxn si n ¿ N, en donde c = laNlx- N. La afirmación (a) se 
deduce ahora aplicando el criterio de comparación. 

Para probar (b), obsérvese simplemente que r > 1 implica lan + 1I > lanl para 
n ¿ N para un cierto N y por lo tanto no es posible que limn_ 00 an = O. 

Para probar (c), considerar los dos ejemplos siguientes 2:n-1 y 2;n-2. En 
ambos casos, r = R = 1 pero 2:n-1 diverge, mientras que 2:n- 2 converge. 

Teorema 8.26 (Criterio de la raíz). Dada una serie 2;an compleja, sea 

p = lim sup ~Ianl. 
n-oo 

a) La serie 2:.an converge absolutamente si p < 1. 
b) La serie 2;an diverge si p > l. 
e) Si p = 1, el criterio no permite llegar a ninguna conclusión. 

Demostración. Supongamos que p < 1 Y elijamos x tal que p < x < 1. La 
definición de p implica la existencia de N tal que lan [ < ,X'n para n ¿ N. Por lo 
tanto, 2:lan l converge en virtud del criterio de comparación. Esto demuestra (a). 

Para demostrar (b), obsérvese que p > 1 implica lanl > 1 para una infinidad 
de términos y por tanto es imposible que limn->oo an = O. 
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Finalmente, para probar (c) basta utilizar el mismo ejemplo que en el teore­
ma 8.25. 

NOTA. El criterio de la raíz es más «potente» que el criterio del coCiente. Es 
decir, si el criterio de la raíz no permite llegar a ninguna conclusión el del co­
ciente tampoco lo permitirá. Pero existen ejemplos en los que el criterio del 
cociente da resultado dudoso y en cambio el criterio de la raíz es concluyente. 
(Ver ejercicio 8.4.) 

8.15 CRITERIOS DE DIRICHLET y DE ABEL 

Los criterios dados en el apartado anterior nos permiten determinar la conver­
gencia absoluta de una serie de términos complejos. Es importante también 
disponer de criterios que permitan decidir si una serie es convergente cuando 
no lo es absolutamente. Los criterios de este apartado son particularmente úti­
les en este sentido. Todos ellos radican en la fórmula de sumación parcial de 
Abel (ecuación (9) del próximo teorema.) 

Teorema 8.27. Si {an } y {bn } son dos sucesiones de números complejos, se 
define 

A. = al + ... + a •. 

Entonces se tiene la identidad 

• 
L akbk = Anb.+ 1 
k=1 

• 
L Ak(bk+ 1 - bk)· 
k=1 

(9) 

Por consigUl'ente, ¿:'= 1 akbk converge si tanto la serie ¿:': 1 Ak(bk+ 1 - bk) como 
la sucesión {Anb.+ I} convergen. 

Demostración. Haciendo Ao = O, tenemos 

n n n n 

L akbk = L (Ak - Ak- 1)bk = L Akbk - L Akbk+l + Anb.+l· 
k=1 k=1 k=1 k=1 

La segunda afirmación se sigue inmediatamente de esta identidad. 

NOTA. La fórmula (9) es análoga a la fórmula de la integración por partes de 
una integral de Riemann-Stieltjes. 

Teorema 8.28 (Criterio de Dirichlet). Sea 2:a", una serie de términos com­
plejos cuyas sumas parciales constituyen una sucesión acotada. Sea {bn } una 
sucesión decreciente de términos reales que converja hacia O. Entonces ',5.anbn 

converge. 
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Demostración. Sea An = al + ... + G,n Y supongamos que IAnl '< M para 
todo n. Entonces 

lim A.bn + 1 = O. 

Por consiguiente, para establecer la convergencia de 2f1nbn basta probar sola­
mente que ¿Ak(bk+ 1 - bk) es conv-ergente. Como que bn \¡, tenemos 

Pero la serie ¿(bk+ 1 - bk) es una serie telescópica convergente Luego el crite­
rio de comparación de series implica la convergencia absoluta de 'LAk(bk+ 1 -

- bk )· 

Teorema 8.29 (Criterio de Abel). La serie 'J.,Gnb n converge si ~an con­
verge y si {bn } es una sucesión monótona convergente de números reales. 

Demostración. La convergencia de ~;a,n y de {bn} establec-e la existencia del 
límite lim.~oo A.b.+ 1 , en donde A. = al + ... + an° Además, {An} es una su­
cesión acotada. El resto de la demostración es análogo a la del teorema 8.28. 
(En el ejercicio 8.27 se dan dos criterios más, parecidos a los anteriores.) 

8.16 SUMAS PARCIALES DE LA SERIE GEOMÉTRICA ¿zn 
SOBRE EL CíRCULO UNIDAD Izl = 1 

Para poder utilizar correctamente el criterio de Dirichlet, es preciso disponer 
de algunas series cuyas sumas parciales estén acotadas. Naturalmente, todas las 
series convergentes gozan de esta propiedad. El teorema que sigue nos propor­
ciona un ejemplo de una serie divergente cuyas sumas parciales están acotadas. 
Este ejemplo lo constituye la serie geométrica 2;tn con Izl = 1, es decir con 
z = ei'" en donde x es real. La fórmula de las sumas parciales de esta serie es 
de importancia fundamental en la teoría de las series de Fourier. 

Teorema 8.30. Para cada x real #: 2mIT (m es un entero), tenemos 

n . 1 _ ei•
x sen (nxj2) i(n+l)x/2 L eikX = elX 

. = e . 
k= 1 1 - e'x sen (xj2) 

(10) 

NOTA. Esta identidad genera la siguiente aproximación: 

eikx < . I
n I 1 ~ - I sen(xj2)I 

(11) 

APOSTOL, análisis - 9 
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I',s\o establece la primera igualdad de (10). La segunda se obtiene de la iden­
tidad 

ix 1 - einx 

e . 
1 - e'x 

einx/2 _ e- inx/2 
--,-_ ____ ei(n+ l)x/2 
eix/2 _ e- ix/2 

NOTA. Considerando las partes real e imaginaria de (lO), obtenemos 

n '"' nx xl x L,¡ cos kx = sen - cos (n + 1) - sen-
k=' 2 2 2 

1 1 - - + - sen(2n + 
2 2 

1) - sen - , xl x 
2 2 

n 

¿ sen kx = sen ~x sen (n + 1) ~/sen:': . 
k=' 2 2 2 

Utilizando (10), podemos también escribir 

n n 

¿ ei(2k-I)X = e-ix ¿ eik(2x) = sen nx einX, 
k=' k=' sen x 

(12) 

(13) 

(14) 

Identidad válida para cada x =1= m" (m es un entero). Considerando las partes 
rcul e imaginaria de (14) obtenemos . 

n ) s-en 2nx 
¿ cos (2k - lx=--- (15) 
k=' 2 sen x' 

n sen2 nx 
¿sen (2k - l)x = --o (16) 
k=' sen x 

l.lIS f6rmulas (12) y (16) aparecen en la teoría de las series de Fourier. 

".17 REORDENACIóN DE SERIES 

Recordemos que Z+ designa el conjunto de los enteros positivos, Z+ = 

{l. 2.3 . ... }. 

\ 

L 
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Definición 8.31. Sea f una función cuyo dominio es Z+ y su recorrido es Z+, 
y supongamos que f es uno a uno. Sean ~Gn y ~bn dos series tales que 

bn = af(n) para n = 1 2, '" (17) 

Entonces se dice que ~bn es una reordenada de ~a" . 

NOTA. La ecuación (17) implica que an = bf -l( n)Y por lo tanto ~an es también 
una reordenada de '2.b". 

Teorema 8.32. Sea 2ft", una serie absolutamente convergente de suma s. 
Entonces cada reordenada de 2.Gn es también absolutamente convergente y 

su suma es s. 

Demostración. Sea {b .. } definida por (17). Entonces 

00 

laf (1)1 + ... + laf(n)1 :$; ¿ lakl, 
k=l 

Por lo que ~llbnl tiene sumas parciales acotadas. ' 
Para demostrar que ~b .. = s, sea t. = b, + .. . + b., Sn = a, + ... + an° 

Dado é > O, elegimos N tal que ISN - si < 8/2 Y tal que L.I:'=, laN+k1 :$; 8/2. 
Entonces 

Elijamos M de modo que 

{1,2, ... ,N} S {f{l),f(2), . . . ,f(M)}. 

Entonces n > M implica f(n) > N, Y por tanto para ese n tenemos 

Il. - sNI = lb, + ... + bn - (a, + ... + aN)1 

= laf(1) + ... + af(n) - (a, + ... + aN)1 

ya que todos los términos al> ... , aN se destruyen entre sí en la sustracción. Por 
lo que n > M implica It. - si < e y esto significa que L.bn = S. 
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n.18 TEOREMA DE RIEMANN PARA SERIES 
CONDICIONALMENTE CONVERGENTES 

La hipótesis de la convergencia absoluta es esencial en -el teorema 8.32. Rie­
mllnn descubrió que una serie de términos reales condicianalmente convergente 
puede reordenarse de tal suerte que la serie obtenida converja hacia una suma 
prelijada. Este hecho notable es una consecuencia del teorema que sigue: 

1"'orf'lnn 8.33. Sea ~a" una serie condicianalmente convergente de términos 
rt'a!t'.\·. Sean x e y números del intervalo [- 00, + 00], dados de antemana, con 
.1" y . Entonces existe una reordenada "Lb,,, de 2:a", tal que 

lim inf tn = x y lim sup tn = y, 

t'1I donde 1" = b¡ + ... + bn . 

n"/l/ostración. Descartemos los términos de la serie que son nulos puesto que 
dichos términos no afectan ni a su convergencia ni a su divergencia. Por 10 
tllnto podemos perfectamente suponer que la serie 2:a" carece de términos nulos. 
Sr:n JI .. el n-ésimo término positivo de ¿an y sea - qn el n-ésimo término nega­
tivo de 2'lI". Entonces ¿p" y "Lq" son ambas series de términos positivos di ver­
!lentes. r i, Por qué?] A continuación construimos dos sucesiones de números 
rellles. (,x,,, } e {Yn}, tales que 

lim X n = x, lim Yn = y, con Xn < Yn, YI > O. 
n- OO 

I.n idea de la demostración es ahora realmente simple. Tomemos el número 
de términos positivos (digamos k ,) estrictamente necesario para que 

PI + ... + Pk, > YI' 

"e~uid() de los términos negativos precisos (digamos rl ) para que 

PI + . .. + Pk , - ql - ... - q" < XI' 

Ahora. incorporamos el mínimo bloque de términos positivos pasteriores para 
qlle 

PI + ... + Pk, - ql - .. . - q,¡ + Pk, + I + ... + Pk, > Y2' 

Nr)1.lIido de los términos negativos sigui'entes indispensables para que 

PI + .. . + Pk¡ - q¡ - ... - q" + Pk, + I + ... 

po 

\ 
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Estos pasos son posibles dado que "2,p,,, y 'iqn son ambas series de términos 
positivos divergentes. Si proseguimos este mismo proceso, obtenemos eviden­
temente una reordenación de ¿ano Se deja como un ejercicio para el lector 
probar que las sumas parciales de esta reordenación tienen límite superior y 
y límite inferior X. 

8.19 SERIES PARCIALES 

Definición 8.34. Sea f una función cuyo dominio es Z+ y cuya recorrido es 
un subconjunto infinito de Z+, y supongamos que f es una aplicación una a 
una. Sean ~an y ~bn dos series tales que 

bn = af(n), si n E Z+. 

Entonces 2.bn se llama serie parcial de 2.0.". 

Teorema 8.35. Si 2:,on canverge absalutamente, cada serie parcial ~bn tam­
bién canverge absalutamente. Además, tenemos 

Demostración Dado n, sea N el mayor entero del conjunto {f(l), ... , f(n)} . 
Entonces 

La desigualdad L:Z= I Ibd ~ L:f'= liad implica la convergencia absoluta de ~b" . 

Teorema 8.36. Sea {tI' f2' . .. } una calección numerable de funciones, cada 
una definida en Z+, que satisface las siguientes propiedades: 
a) Cada fn es uno a uno en Z+ 

b) El recarrido fn(Z+) es un subconjunto Qn de Z+. 

e) {Q¡, Q2' ... } es una colección de conjuntos disjuntas cuya reunión es Z+. 

Sea 2;a", una serie absalutamente convergente y definamas 

b (n) - a SI' n E Z+, k E Z+. k - f.(n)' 
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Elltonces: 
i) Para cada k, L::'= 1 bk(n) es una serie parcial de ~an absolutamente conver­

gente. 
i i) Si Sk = 2.,% 1 bk(n), la serie L:f= 1 Sk converge absolutamente y tiene la misma 

suma que L:f= 1 ak' 

IklllosfraciÓn. El teorema 8.35 implica (i). Para demostrar (ii), sea tk = !sl l + 
, . ... + ISk l. Entonces 

ro 00 00 

Ik :::; L Ibl(n)1 + ... + L IMn)1 
n= I n= 1 

= L (lbl(n)1 + ... + IMn)l) 
n=1 

ro 

L (la fl(n)1 + ... + la h(n)l)· 
n=1 

!'ero L;~~ I (laf1 (n)1 + . . . + laf.(n)1) ~ L:'= I lanl. Esto demuestra que la serie 
~I .\'J. 1 posee sumas parciales acotadas y por lo tanto ~Sk converge absolutamente. 

Para hallar la suma de 2:Sk, procedemos como sigue: Fijado E > ° de ante­
IlltlllO, elegimos N tal que n :::? N implique 

(18) 

1':ll'gilllos suficientes funciones f" ... , fr para que cada término a" ... , aN apa-
1'l'I.l'a alguna vez en la suma 

ro 00 

L a f1 (n) + ... + L afr(n)' 
'1= 1 n= 1 

El 1ll'lInero r depende de N y por consiguiente de c. Si n > r y n > N, tenemos 

puesto que los términos al' a2, ... , as se destruyen en la sustracción. Ahora \ 
( I K) implica 

F 
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Al combinar este resultado con (19) obtenemos 

si n > r, n > N. Esto termina la demostración de (ii). 

8.20 SUCESIONES DOBLES 

Definición 8.37. Llamaremos sucesión doble a toda función f de dominio 
z+ X Z+. 

NOTA. Sólo nos interesamos por las sucesiones dobles de términos reales o 
complejos. 

Definición 8.38. Si a E e, escribimos limp,q_oof(p, q) = a y decimos que /a 
sucesión doble f converge hacia a, cuando se satisface la siguiente condicilíll: 
Para cada e > O, existe un N tal que If(p, q) - al < e siempre que p > N Y 
q>N. 

Teorema 8.39. Supongamos que limp,q _cyó f(p, q) = a. Supongamos ademtÍ.\' 
que, para cada p fijo, el límite Iimq_ oo f(p, q) existe. Entonces tendremos que 
el límite limp_ oo (limq_ oo l(p, q») también existe y tiene valor a. 

NOTA. A fin de distinguir limp,q_ oo f(p, tJ) de limp_ oo (limq_ ro f(p, q»), al 
primero lo llamamos límite doble y al segundo, límite reiterado. 

Demostración. Sea F(p) = limq_ cyJ(p, q). Dado e> 0, elegimos NI tal que 

e 
If(p, q) - al < 2' si p > N 1 Y q > NI' (20) 

Para cada p podemos elegir N 2 tal que 

e 
IF(p) - f(p , q)1 < '2' si q > N 2 • 

(21) 

(Observemos que N 2 depende tanto de p como de te.) Para cada p > N, elegi­
mos N 2 , y entonces elegimos un q fijo mayor que N, y que N 2 • Entonces se ve­
rifican simultáneamente (20) y (21) y por lo tanto 

IF(p) - al < e, si p > NI ' 

Por consiguiente, limp--> oo F(p) = a. 



244 Series infinitas y productos infinitos 

N( ITA. Si intercambiamos los papeles de p y q se verifica un resultado similar. 
Así pues,la existencia del límite doble limp,q_ oo f(p, q) y de limq-> oo f(p, q) 

i 111 pI ica la existencia del límite reiterado 

¡im (lim f(p, q»). 
p- OC) q-' oo 

11.1 ejemplo que sigue prueba que el recíproco es falso. 

If.j&'mplo. Sea 

I(p, q) = ~P5_ , 
p2 + q2 

(p = 1,2, .:., q = 1,2, .. . ). 

J!.ntlll1t:<:s limq-> oo /(p, q) = O Y por lo tanto limp->oo (Iimq->a:J(p, q» = O. Pero 
11/', (O "" ~ cuando p = q y f(p, q) = ~ cuando p = 2q, Y entonces es claro que el 
IIl11lte doble no puede existir en este caso. 

Introduciendo la noción de convergencia uniforme es posible establecer un re­
"Iproco conveniente del teorema 8.39. (Esto lo veremos en el capítulo siguiente, 
In el teorema 9.6.) 

En el ejercicio 8.28 pueden verse otros ejemplos que ilustran el comporta­
mltlnto de las sucesiones dobles. 

11.2 1 ~ER1ES DOBLES 

""/'''¡''iúII 8.40. Sea f una sucesión doble y sea s la sucesión doble definida 
1'0/' /IIcdio de la ecuación 

p q 

s(p, q) = L: L: f(m, n). 
m= I n = 1 

Uf /11/1' (J, .\') se Llama serie doble y se designa por medio del símbolo '2,m,nf(m, n) 
ti, /11th' hrevemente, por '2,f(m, n). La serie doble es convergente hacia la 
,\'1111/11 ti si 

¡im s(p, q) = a. 
p,q- 00 

( 'ada uno de los números f(m, n) es un término de la serie doble y cada 
,\'1/', (/) una suma parcial. Si ¿t(m, n) tiene sólo términos positivos, es fácil de­
tIIostrar que es convergente si, y sólo si, el conjunto de las sumas parciales está 
al'olado. (Ver el ejercicio 8.29.) Diremos que '2,f(m, n) converge absolutamente 

\ 
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si '2,lf(m, n)1 converge. El teorema 8.18 es válido para series dobles . (Ver el 
ejercicio 8.29.) 

8.22 TEOREMA DE REORDENACIóN PARA SERIES DOBLES 

Definición 8.41. Sea f una sucesión doble y sea g una función uno a uno 
definida en Z+ y con recorrido Z+ X Z+. Sea G la sucesión definida por 

G(n) = f[g(n)] si n E Z+. 

Entonces g es una reordenación de la sucesión doble f en la sucesión G. 

Teorema 8.42. Sea ¿t(m, n) una serie doble dada y sea g una reordenación 
de la sucesión doble f en la sucesión G. Entonces 

a) 2;G(n) converge absolutamente sI', y sólo si, '2fCm, n) converge absoluta­
mente. Suponiendo que '2f(m, n) converja absolutamente, con suma S, se tiene 
además: 

b) L:'=I G(n) = S. 

c) L:'= 1 f(m, n) y L':= 1 f(m, n) son ambas absolutamente convergentes. 

d) Si Am = L:'=1 f(m, n) y Bn = L':=l f(m , n), las series 2;Am Y '2,B", son 
ambas absolutamente convergentes y su suma es S. Esto es, 

0000 00 C() 

L: L: f(m, n)= L: L: f(m , n) = S. 
m=1 n=1 "=1 m=1 

Demostración. Sea T,. = IGCI)I + .. . + IG(k)1 y sea 

p q 

S(p, q) = L: L: /f(m , n)/. 
m= 1 n=1 

Entonces, para cada k, existe un par (p, q) tal que Tk < S(p, q) y, recíproca­
mente, para cada par (p, q)existe un entero r tal que S(p, q) < T r • Estas desi­
gualdades nos dicen que 2;.IG(n)1 tiene sumas parciales acotadas si, y sólo si, 
¿If(m, n)1 tiene sumas parciales acotadas. Esto prueba (a). 

Supongamos ahora que 2;!f(m, n)1 converge. Antes de demostrar (b), pro­
baremos que la suma de la serie :¿G(n) es independiente de la función g uti-

http://libreria-universitaria.blogspot.com
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lizada para construir G a partir de f. Para ver esto, sea h otra reordenación 
de la sucesión doble f en una sucesión H. Entonces tenemos 

G(n) = f[g(n)] y H(n) = f[h(n)]. 

I'cm esto significa que G(n) = H[k(n)], en donde k(n) = h-1 [g(n)]. Puesto que 
A es una aplicación uno a uno de Z+ sobre Z+, la serie ¿H(n) es una reorde­
lIul'i(ln de ¿G(n), y por lo tanto tienen la misma suma. A esta suma común 
111 designaremos S'. Más adelante probaremos que S' = S. 

Ohsérvese ahora que cada serie de (e) es una serie parcial de 2;O(n). Por lo 
1111110 (e) se deduce inmediatamente de (a). Aplicando el teorema 8.36, se con­
L'luye que SAm converge absolutamente y tiene suma S'. El mismo resultado 
~N vl'rdadcro para ¿B.,.. Queda por demostrar que S' = S. 

A este respecto s'ea T = limp.q~ oo S(p, q). Dado g > 0, elegimos N tal que 
0 - T S(p, q) < « 2 siempre que p > N Y q > N. Ahora escribimos 

k p q 

tk = ¿ G(n), s(p, q) = ¿ ¿!(m, n). 
,,;::1 m=1 01=1 

f!1t'lIi 1110S M tal que t M incluya todos los términos f(m, n) con 

l :s; m :s; N + 1, l:S;n:s;N+1. 

Hlllollces l." - s(N + 1, N + 1) es una suma de términos f(m, n) con m > N 
(1 COIl 1/ > N. Por consiguiente, si n ~ M, tenemos 

11" - seN + 1, N + 1)1 

AlUUO!{a mente, 

¡¡ 
:s; T - SeN + 1, N + 1) < -. 

2 

¡¡ 
IS - seN + 1, N + 1)1 :$; T - SeN + 1, N + 1) < -. 

2 

F.mollecs. dado < > 0, podemos encontrar siempre un M tal que It.,. - SI < é 

.1t'l1lpre que Il > M. Dado que limn~ oo tn = S', se sigue que S' = S. 

NOTA. I.as series L:= 1 L:'= 1 f(m, n) y L:'= 1 1:.:= 1 f(m, n) se llaman «series 
reileradas)). La convergencia de las dos series reiteradas no implica su igual­
dad, Por ejemplo, supongamos 

{ 1, 
si m = n + 1, n= 1, 2, ... , 

f(m, n) = -1, si m = n - 1, n= 1, 2, . . . , 

0, en otros casos. 

i 

\ 
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Entonces 

ex) ex) ex) ex) 

¿ ¿!(m, n) = -1 , pero ¿ ¿ !(m, n) = 1. 
m= 1 n = 1 01=1 m=1 

8.23 UNA CONDICIÓN SUFICIENTE PARA LA IGUALDAD 
DE SERIES REITERADAS 

247 

Teorema 8.43. Sea f una sucesión doble de términos complejos. Supongamos 
que L:'= 1 f(m, n) converge absolutamente para cada m fijo y que 

ex) ex) 

¿ ¿ I!(m, n)l, 
m=1 .=1 

converge. Entonces: 

a) La serie doble Lm,nf(m, n) converge absolutamente. 

b) La serie L:= 1 f(m , n) converge absolutamente para cada n. 

e) Las dos series reiteradas L:'= 1 1:.:= 1 f(m, n) y L:= 1 L:'= 1 f(m, n) conver­
gen abolutamente y se tiene 

00 00 00 00 

¿ ¿!(m, n) = ¿ ¿!(m, n) = ¿!(m, n). 
m=l n=.l n=1 m==l m,n 

Demostración. Sea g una reordenación de la suceslOn doble f en una suce­
sión G. Entonces 2:G(n) es absolutamente convergente ya que todas las sumas 
parciales de 2:IG(n)1 están acotadas por L:= 1 L:'= 1 If(m, n)l· Por el teore­
ma 8.42(a), la serie doble 2m.'n t(m, n) converge absolutamente, y las proposi­
ciones (b) y (e) se obti-enen también del teorema 8.42. 

Como aplicación del teorema 8.43 se demuestra el teorema que sigue que 
trata de series dobles ¿m,1> f(m , n) cuyos términos pueden factorizarse en una 
fl1nción que es m veces una cierta función de n. 

Teorema 8.44. Sea ¿am y ¿b .. dos series ábsolutamente convergentes de su­
mas A y B, respectivamente. Sea f la sucesión doble definida por la ecuación 

si (m, n) E Z+ X Z+. 

Entonces ¿mm f(m, n) converge absolutamente y tiene suma AB. 
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l)ellloslración. Tenemos 

J1.lItonces, por el teorema 8.43, la serie doble ¿m,n amb" converge absolutamente 
.v ticne suma AB. 

n,21, MULTIPLICACIóN DE SERIES 

I>lIdlls dos series 2P" y ¿b", es posible formar la serie doble '¿f(m, n), en don· 
do /(111, n) = Gmb" . Para cada reordenación g de f en una suc-esión G obtene-
111\111 una nueva serie ¿G(n). Por analogía con las sumas finitas, parece natural 
rorerirse a '2.!(m, n) o a ¿G(n) como al «producto» de ¿an y de 2..bn, y el teo­
r,mll H.44 justifica esta terminología cuando las dos series ~an y '2.,b" son 
ahNolutumente convergent·es. Sin embargo, si .La" o '2.b" es condicionalmente 
olll1vcrgcnte, no es posible garantizar la convergencia de la serie '2..t(m , n), ni 
h. de In serie '2.,G(n) . Además, si una de ellas converge, su suma no es necesa­
rhullente A R. La convergencia y la suma dependen de la reordenación g. Dis­
tlnlll'" reordenaciones g pueden originar distintos valores del producto. Existe 
un CIINO muy importante en el que los términos f(m, n) son ordenados «en dia­
.unlll" pura producir '2.,G(n), y entonces los paréntesis se introducen para agru-
1'"1' jUlltos aquellos términos a.mb", para los que m + n tiene un valor fijo . Este 
producto se llama producto de Cauchy y se define como sigue: 

IIffll,,'dóI/ 8.4.5. Dadas dos series L~o an y L:'=o bm definimos 

" 
Cn = L akbn - k> 

k=O 
si n = 0, 1, 2, ... 

',ti ,1't'rÍl' ¿:;;:. o Cn se llama el producto de Cauchy de ¿a" y '2.b"" 

(22) 

NOTA, El producto de Cauchy se presenta de manera espontánea al multipli­
CIII' do.~ series de potencias. (Ver el ejercicio 8.33.) 

EII virtud de los teoremas 8.44 y 8.13 , la convergencia absoluta de las dos 
NN'Ies ~',(/." y ~hll implica la convergencia del producto de Cauchy hacia el valor 

(23) 

\ 
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Esta igualdad puede fallar si las dos series ¿an y ¿bn son condicionalmente 
convergentes. (Ver el ejercicio 8.32.) Sin embargo, es posible probar que (23) 
es válida si una, por lo menos, de las series ¿ an , '2.b n es absolutamente con­
vergente. 

Teorema 8.46 (Mertens). Supongamos que L:'=o an converge absolutamente 
y que su suma es A, y supongamos que L:'=o bn converge con suma B. Enton­
ces el producto de Cauchy de estas dos series tiene suma AB. 

Demostración. Definamos An = L~=o ak, Bn = L~=o bk , Cn = L~=o Ck, en don­
de Ck está dado por (22). Sea d" = B - Bn Y en = LZ=o akdn - k • Entonces 

en donde 
si n > k, 

si n < k. 

Entonces (24) se convierte en 

p 

= L ak(B - dp- k) = ApB - ep' 
k=O 

(24) 

Para completar la demostración, es suficiente probar que ep - O cuando p - oo. 

La sucesión {d,,} converge hacia 0, ya que B = ¿b",. Elegimos M > O tal que 
Id,,1 < M para todo n,-y sea K =L:'=o lanl·Dado E> O, elegimos N tal que n > N 
implique Id,,1 < E/(2K) Y además que 

Entonces, para p > 2N podemos escribir 
N p N P 

lepl =:; ~ lakdp-d + k~ I lakdp_kl ::; 2~ ~ ¡ad + M k=~ I lakl 

00 00 e E ::; ~ L lakl + M L lakl < - + - = e. 
2K k=O k=N+l 2 2 

Esto demuestra que ep - O cuando p - 00, y por lo tanto que Cp - AB cuan­
do p -oo. 
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Un teorema relacionado con éste (debido a Abel), en el que no se supone 
la convergencia absoluta, será demostrado en el capítulo siguiente. (Ver teo­
rema 9.32.) 

Otro producto, conocido como el producto de Dirichlet, es particularmente 
importante en la teoría de números. H acemos ao = bo = O y, ·en vez de definir 
r i", por medio de (22), usamos la fórmula 

(n = 1, 2, ... ), (25) 

e~ donde ~d/n significa que la suma está extendida sobre todos los divisores posi­
(¡VOS de n (mcluyendo a 1 ya n). Por ejemplo, Cs = albo + a2 b3 + a

3
b

2 
+ aijb" y 

(', = alb, + a,b l • El teorema análogo al teorema de Mertens vale también para 
este producto. El producto de Dirichlet aparece de forma natural al multiplicar 
series de Dirichlet. (Ver el ejercicio 8.34.) 

8.25 SUMABILIDAD DE CESARO 

IJefinición 8.47. Sea Son la suma parcial n-ésima de la serie ,La" y sea {IT .. } 
/a sucesión de las medias aritméticas definidas por 

(I = SI + ... + S" 

" n 
si n = 1, 2, '" (26) 

La serie ,La" es sumable de Cesaro (o (C, 1) sumable) si {(T n} converge. Si 
lim..-. o> (T n = S, entonces S se llama suma de Cesaro (o suma (C, 1)) de ¿an , 

y se escribe 

(C, I). 

Ejemplo 1. Seaa" = z", Iz I = J, z #- 1. Entonces 

1 z" 
sn = - - - . _-

J - z J - z 
y 

Por consiguiente, 

En particular, 

f zn-I = _1_ 
n= 1 1 - z 

00 

_ 1 1 z(l - zn) 
G n - - - - - - -- -- • 

1 - z n (1 - z? 

(C,1). 

L: (_1)n-l =f ~ (C,1). 
n= 1 
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Ejemplo 2. Sea an = (_1)n+ 1 n. En este caso, 

Iim sup <In = t, lim inf <In = 0, 
n"" ro n .... 00 

y, por lo tanto, ¿ (- t)n+ln no es (C, 1) sumable. 

Teorema 8.48. Si una serie es convergente con suma S, entonces es (C, 1) 
sumable con suma de Cesara S. 

Demostración. Sea S n la suma parcial n-eslma de la serie, definimos (l'n por 
medio de (26), e introducimos t'n = Sn - S, Tn = (Ton - S. Entonces tenemos 

ti + .. , + ttl 
'" = -~--- (27) 

n 

y debemos demostrar que T n ~ O cuando n ~ oo. Elegimos A > O tal que cada 
Itml < A. Dado . > O, elegimos N tal que n > N implique Itnl < •. Haciendo 
n > N en (27), obtenemos 

I I ~_. _. ~~ + ItN+II + ... + Itnl < NA + 'ti ~ C. 
n n 

Por consiguiente, lim sUPn ~oo jT,,1 < .. Al ser 
limn~ oo h.1 = o. 

arbitrario, se sigue que 

NOTA. Lo que realmente hemos demostrado es que si una sucesión {s", } con­
verge, entonces la sucesión {(Tln} de las medias aritméticas también converge y, 
además, hacia el mismo límite. 

La sumabilidad de Cesaro es precisamente uno de los numerosos «(métodos 
de sumabilidad» que pueden utilizarse para asignar una «suma» a una serie 
infinita. El teorema 8.48 y el ejemplo 1 (que sigue a la definición 8.47) prueban 
que el método de Cesaro tiene un alcance más amplio que la convergencia 
ordinaria. La teoría de los métodos de sumabilidad es una materia importante 
y fascinante, pero en la que, no obstante, no podemos entrar en estas páginas. 
Para un excelente tratamiento de la teoría, el lector puede recurrir al libro de 
Hardy Divergent Series (referencia 8.1). Más adelante veremos que la suma­
bilidad (C, 1) juega un papel importante en la teoría de las series de Fourier. 
(Ver el teorema 11.15.) 
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8.26 PRODUCTOS INFINITOS 

En este párrafo se da una introducción a la teoría de los productos infinitos. 

Definición 8.49. Dada una sucesión {un} de números reales o complejos, sea 

" 
Pl = UIUl ' p" = U¡U l ..• u" = TI U k· 

k; ¡ 
(28) 

El par ordenado de sucesiones ({un}, {Pn}) se llama producto infinito (o sim­
plemente, producto). El nÚmero p.,. se llama producto parcial n-ésimo y Un se 
llama factor n-ésimo del producto. Los símbolos que siguen sirven para desig­
nar el producto definido por (28): 

00 

u¡u l ... Un'" , TI Un' (29) 
n;¡ 

NOTA. El símbolo n:;N+I Un significa n:;¡ UN+n- Se escribe también nUn 
cuando no hay peligro de confusión. 

Por analogía con las series infinitas, parecería natural decir que el produc­
to (29) es convergente si {Pn} converge. Sin embargo, esta definición no es con­
veniente ya que todo producto con un factor igual a cero valdría cero inde­
pendientemente del comportamiento de los factores restantes. La definición 
que sigue resulta más útil: 

Definición 8.50. Dado Un producto infinito n~ ¡ Un' sea Pn = nz; ¡ U
k

. 

a) Si una infinidad de factores Un son cero, diremos que el producto es cero. 

b) Si ningún factor Un es cero, diremos que el producto converge si existe un 
número p =1= O tal que {Pn} converja hacia p. En este caso, p se llama valor 

del producto y se escribe p = n~ 1 Un' Si {p.,} converge hacia cero, diremos 
que el producto diverge hacia cero. 

c) Si existe un N tal que n > N implica un =1= O, diremos que n~ 1 Un con­

verge, siempre que n:;N+ 1 Un converja en el sentido descrito en (b). En este 

caso, el valor del producto n~ 1 Un es 

00 

u¡ul •.. UN n Un' 
n;N+¡ 
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d) n:; 1 Un es divergente si no converge en ninguno de los sentidos descritos 
en (b) o en Cc). 

Obsérvese que el valor de un producto infinito convergente puede ser cero. Pero 
esto sólo ocurrirá si un número finito de factor'es son cero. La convergencia 
de un producto infinito no se altera si introducimos o suprimimos un número 
finito de factores, nulos o no. Es este hecho el que hace sea conveniente la 
definición 8.50. 

Ejemplo. n~l (1 + 1/n) y n~2 (1 - l /n) son ambos divergentes. En el primer 
caso, Pn = n + 1, Y en el segundo caso, Pn = l/n. 

Teorema 8.51 (Condición de Cauchy para el producto). El producto in­
finito nUn converge si, y sólo si, para cada E > O existe un N tal que n > N 
implique 

para k = 1, 2, ... (30) 

Demostración. Supongamos que el producto nUn converge. Podemos suponer 
que ningún u'" es cero (suprimi'endo algunos términos, si es necesario). Sea 
p.,. = u , ' ... 'Un Y P = limn ... ~ p". Entonces p =1= O Y por lo tanto existe un M > O 
tal que Ip,,1 > M. Como {Pn} satisface la condición de Cauchy para sucesio­
nes, dado un E > O, existe un N tal que n > N implica Ip"+k - p,,1 < EM pala 
k = 1, 2, .. . Dividiendo por Ip.,.l , se obtiene (30). 

Supongamos ahora que (30) se verifica. Entonces n > N implica Un =1= O. 
[¿Por qué?] En (30) hagamos E = t, sea N o el N que le corresponde, y sea 
qn = UNo +¡UNo +2'" Un si n > No' Entonces (30) implica t < Iq.,.1 <~. Por con­
siguiente, si {q'n} converge, no puede converger hacia cero. Para probar que 
{qn} converge, sea E > O arbitrario y escribamos (30) como sigue: 

\
qn+k _ 11 < /l. 

q" 

Esto nos da Iq"+k - qnl < é Iq.,,1 < ~ E . Por consiguiente, {q,,} satisface la con­
dición de Cauchy para sucesiones y por lo tanto es convergente. Ello significa 
que el producto nUn es convergente. 

NOTA. Haciendo k = 1 en (30), tenemos que la convergencia de nu.,. implica 
limn ... ~ Un = 1. Por este motivo, los factores de un producto se escriben 
Un = 1 + a.n• Entonces la convergencia de n(l + an) implica limn ... ~ a.,. = O. 

Teorema 8.52. Supongamos cada a.,. > O; entonces el producto n(l + a.,.) 
converge si, y sólo si, la serie ~an converge. 
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Demostración. Parte de la demostración se base en la siguiente desigualdad: 

(31) 

Si bien (31) se verifica para todo x real, sólo precisamos de ella para x ¿ O. 
Cuando ,x> O, (31) 'es una simple consecuencia del teorema del valor medio, 
que nos da 

eX - 1 = xexo
, en donde O < x o < x. 

Dado que eX' > 1, (31) resulta inmediatamente de esta ecuación. 
Sea ahora s., = al + a2 + ... + an , p., = (l + a,) (1 + a2) ... (1 + a,,). Las 

sucesiones {sn} y {Pn} son crecientes, y por lo tanto para probar el teoremd 
basta demostrar que {sn} está acotada si, y sólo si, {Pn} está. acotada. 

En primer lugar, la desigualdad Pn > Sn es obvia. A continuación, hagamos 
x = ak en (31), donde k = 1, 2, .. . , n, y multiplicando obtenemos Pn < eS". Por 
consiguiente, {s,, } está acotada si, y sólo si, {Pn} está acotada. Obsérvese que 
{Pn} no converge hacia cero ya que cada p" > 1. Nótese también que Pn - +00 
si Sn - +00. 

Definición 8 .. 53. El producto n(l + an) es absolutamente convergente si 
n(l + la"l) es convergente. 

Teorema 8.54. La convergencia absoluta de n(l + an) implica la conver­
gencia. 

Demostración. Úsese la condición de Cauchy junto con la desigualdad 

1(1 + an + 1)(1 + 0n + 2)' " (1 + 0n+k) - 11 

:s; (1 + lan+ll)(I + lan+2 1> ' " (1 + lan+kl) - 1. 

NOTA. El teor'ema 8.52 nos dice que D(1 + an) converge absolutamente si, y 
sólo si, 2:a" converge absolutamente. En el ejercicio 8.43 se da un ejemplo en 
el que n (1 + a,,) converge y sin embargo ¿an diverge. 

Un resultado análogo al teorema 8.52 es el siguiene: 

Teorema 8.55. Supongamos que cada a" > O. Entonces el producto n(l- an) 

converge si, y sólo si, la serie ¿an converge. 
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Demostración. La convergencia de ¿an implica la convergencia absoluta (y por 
lo tanto la convergencia) de n(l - a",) . 

Para probar el r'ecíproco, supongamos que 2',an diverge. Si {an } no converge 
hacia cero, entonces n(l - an ) también diverge. Por consiguiente podemos su­
poner que a,. - O cuando n ...... oo. Eliminando algunos términos, si es nece­
sario, podemos suponer que cada an < t. Entonces cada factor 1 - an ¿ t (y por 
lo tanto =1= O). Sea 

Puesto que tenemos 

podemos escribir Pn ::;; 1 (qn' Pero en la demostración del teorema 8.52 se ha 
observado que q,n ...... +00 si 2,an diverge. Así pues, Pn - O cuando n ...... ,XJ y, en 
virtud de la parte (b) de la definición 8.50, s'e sigue que no - an) diverge 
hacia O. 

8.27 PRODUCTO DE EULER PARA LA FUNCIóN ZETA DE RIEMANN 

Para terminar este capítulo daremos un teorema de Euler que expresa la fun­
. ción zeta de Riemann (s) = L~ 1 n-s por medio de un producto infinito exten-

dido sobre todos los números primos. ' 

Teorema 8.56. Sea Pk el k-ésimo número primo. Entonces si s > 1 tenemos 

00 1 00 

(s) = L --; = II 1 
n=1 n k=1 1 _ Pi: s 

El producto converge absolutamente. 

Demostración. Consideremos el producto parcial P m = n~= 1 (1 - Pi: $) -1 Y 
veamos que p"' ...... ~(s) cuando m ...... oo. Si escribimos cada uno de los factores 
como una serie geométrica tenemos 

Pm = II 1 + - + - + . .. , m ( 1 1 ) 
k= 1 p~ p~$ 

con lo que P m queda expresado como producto de un número finito de series 
absolutamente convergentes. Si multiplicamos a la vez todas estas series y or­
denamos los términos de acuerdo con el crecimiento de los denominadores, ob-
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tenemos otra seri'e absolutamente convergente, cuyo término general es de la 
forma 

1 1 

n s ' 
en donde n = p~' ... p':"m, 

y cada Oi > O. Por consiguiente tenemos 

en donde 2, está extendida a aquellos n cuyos factores primos son todos < p"". 
En virtud del teorema de descomposición única (teorema 1.9), cada n aparece 
en ~, una vez y una sola. Restando P.m de ~(s) obtenemos 

00 1 1 1 
C(s) - P m = L - - L - = L - , 

n = 1 nS 
1 nS 

2 nS 

en donde 2:'2 está extendida a aquellos n que poseen por lo menos un divisor 
primo > p'm' Puesto que estos n se hallan entre los enteros > Pm, tenemos 

Cuando m ~ 00 la última suma tiende a O ya que 2:n- s converge, luego P m ~ ~(s). 

Para probar que el producto converge absolutamente usaremos el teorema 8.52. 
El producto tiene la forma n(1 + Ok), en donde 

1 1 
ak = - + - + ... 

pI, pfs 

La serie ~Ok converge absolutamente ya que está dominada por ~n-8. Por con­
siguiente, n(1 + Ok) converge también absolutamente. 

EJERCICIOS 

Sucesiones 

8.1 Dada una sucesión real {an } acotada superiormente, sea Un = Sup {ak : k ;::: n}. 

Entonces un'" y, en consecuencia, U = limn ... oo Un es finito o -oo. Demostrar que 

U = Iim sup an = Iim (sup {ak : k ;::: n}). 
n-oo n-+oo 
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b) Análogamente, si {Gn} es acotado inferiormente, probar que 

v = lim inf an = lim (inf {a ; k ;::: n}). 
n-oo n-oo 

Si U y V son finitos, probar que: 
c) Existe una subsucesión de {an } Que converge hacia U y una subsucesión 

que converge hacia V. 
d) Si U = V, .cada subsucesión de {a,,} converge hacia U. 

8.2 Dadas dos sucesiones reales {Gn} y {b,,}, acotadas inferiormente, probar que 

a) lim SUPn ... 00 (an + bn) ~ lim SUPn ... 00 an + Iim SUPn ... 00 bn. 

b) lim SUPn ... oo (anbn) ~ (Iim sUPn"'oo an)(Iim SUPn ... oo bn) si an > 0, b" > ° para 
todo n, y si los límites lim sUP'n-+oo an Y lim infn -+ oo Gn son ambos finitos o 
ambos infinitos. 

8.3 Demostrar los teoremas 8.3 y 8.4. 
8.4 Si cada Gn > 0, probar que 

lim inf an+ 1 ~ lim inf ~ an ~ lim Sup ~-;;;, ~ Iim sup ~n+ 1 • 

n-+oo an n-+oo n-+oo n-+oo an 

8.5 Sea an = nn/n!' Probar que Iimn ... oo an+l/an = e y utilizar el ejercicio 8.4 para 
deducir que 

lim _n_ = e. 
n'" 00 (n!) l/n 

8.6 Sea {Gn} una sucesión real y sea (Tn = (a, + ... + an)/n. Probar que 

Iim inf an ~ lim inf an ~ lim Sup an ~ lim Sup an0 
n ... 00 n'" 00 11-+00 n"'oo 

8.7 Calcular lim sUPn ... oo an y Iim infn ... oo an si a" está dado por 

a) cos n, 

d) Sen 1'/_n: cos /In: 
22' 

b) (1 + ~) cos mr, 

e) (-I)nn/O + n)n, 

NOTA. En (f), [x] designa el mayor entero :;:;; X. 

c) n sen mr 
. 3 ' 

8.8 Sea an = 2.J~ - Lk=l l/.Jk. Probar que la sucesión {an } converge hacia un 
límite p en el intervalo 1 < p < 2. 

En cada uno de los ejercicios que van del 8.9 al 8.14, probar que la sucesión real 
{Q,,} es convergente. Las condiciones que se dan se supone se verifican para todo n?l. 
En los ejercicios que van del 8.10 al 8.14, probar que {~} tiene el límite L que 
se indica. 



258 Series infinitas y productos infinitos 

8.9 10,,1 ::; 2, 

8.10 al ;::: O, 

8.11 al = 2, L = 4. 

8.12 al -t, 30n + 1 = 2 + o~, L = 1. Modificar a, para que L = -2. 

3(1 + an) 
8.13 al = 3, 0n + 1 = -~~---, L = -Ji 

3 + 0n 

8.14 0
11 

= ~n~ +_len dondeb l = b2 = 1, 
bn 

1 + -J5 
bn+ 2 = b" + bn+ l , L = --- . 

2 

Indicación. Probar que bn +2bn - h;,+ 1 = (-I)n+ 1 y deducir que 

Series 

8.15 Estudiar la convergencia (p y q son números reales fijos). 

00 

b) ¿ (Iog n)P, 
n=2 

(p > O), (O < q < p), 

00 

e) ¿ n- 1 - lln, 

tl=1 

00 1 
f) ¿-n --~ 

n= 1 p - q 
(O < q < p), 

00 1 
g) ,, - ._- -6-t n log (1 + l/n)' 

00 1 

h) ~ (Iog n)logn , 

00 ( 1 )IOilOgn 
j) ¿ 

n=3 log log n . ' 

00 1 
i) ¿ ~~-----

n=3 n log n (Iog log n)P' 

00 

k) ¿ (-JI + n2 - n), 
n= 1 

1) f: nP (_J __ -~) , 
n=2 -Jn - 1 -Jn 

00 00 

" n l -m) L..J (v n - 1)n, n) ¿ nP(-Jn + 1 - 2-J~ + -Jn - 1). 
n=! 11=1 

8.16 Sea S = {n" n
2

, ... } la colección de los enteros positivos que no contienen la 
cifra O en su representación decimal. (Por ejemplo, 7 E S pero 10 ~ S.) Probar que 
L~ 1 1/lIk converge y tiene una suma menor que 9ü. 
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8.17 Dados enteros a l' a2 , •. • tales que 1 ::;; a." ::;; n - 1, n = 2, 3, . . . , probar que 
la suma de la serie L~ 1 0n/n! es racional si, y sólo si, existe un entero N tal que 
an = n - 1 para todo n ~ N. Indicación. Para demostrar la suficiencia, probar que 
la serie L~2 (n - 1)/n! es una serie telescópica con suma 1. 
8.18 Sean p y q enteros fijos, p ~ q ~ 1, Y sea 

pn 1 

X
n 

= k=~1 k' 
n (_I)k+1 

Sn = ¿ ~-k - ' 
k=1 

a) Utilizar la fórmula (8) para demostrar que lim"~ ,,, X n = In (p /q). 

b) Cuando q = 1, p = 2, probar que Sen = X" Y deducir 

00 (-1) n+ 1 ¿ ---- = In 2. 
11 = I n 

c} Reordenar la serie (b), escribiendo alternativamente p términos positivos 
seguidos de q términos negativos y utilizar (a) para demostrar que esta 
reordenada tiene suma 

In 2 + t In (p/q). 
d) Hallar la suma de L~ I (-I)n+l(I/(311_ - 2) - 1/(311 - 1). 

8.19 Sea en = o" + ¡b", en donde o" = (-1)" /-J I1, hn = 1/112. Probar que ~ Cn es con­
dicionalmente convergente. 
8.20 Utilizar el teorema 8.23 para obtener las fórmulas siguientes: 

11 log k 1 (IOg n) a) ¿ -- = - log2 n + A + O --
k=1 k 2 n 

(A constante). 

b) ~ _1_ - log (Iog n) + B + 0(- 1
1
- ) 

~ k log k-n og n 
(B constante). 

8.21 Si O < a::;; 1, s > 1, definamos ,(s, a) = L~o (n + 0)-'. 
a) Probar que esta serie converge absolutamente para s > 1 Y probar que 

j;; '(s,~) = k',(s) si k = 1, 2, ... , 

en donde ~(s) = tes, l)es la función zeta de Riemann. 
b) Probar que L~1 (_1)"-1/n' = (1 - 21-'K(s) si s > 1. 

8.22 Dada una serie convergente ¿ an , en donde cada an > O. Probar que L-J~nll-P 
converge si p > l Dar un contraejemplo para p = l 
8.23 Si ~on diverge, demostrar que ¿nan también diverge. 
8.24 Suponiendo que ¿an converge y que cada an > 0, demostrar que 

L(anon + 1 )1/2 

también converge. Demostrar que el recíproco también es cierto si {an } es monótona. 
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8.25 SUPJngamos que ¿an converge absolutamente. Probar que cada una de las 
1Icries qUt siguen también converge absolutamente: 

a) t a;, (si an ==1= - 1), 

c) '"' a; 
~ 1 + a2 ' 

n 

11.26 Dcterminar todos los valores reales de x para los que la serie que sigue es 
I:llnverge~te : 

f.. (1 1) sen nx L..J 1+ - + .. · +- -- o .= 1 2 n n 

'.27 PrObar las siguientes proposiciones: 

11) ~Pllhn converge si 2;.a" converge y si "2(bn - bn+¡) converge absolutamente. 
h) ';i.CI"h", converge si 2;an tiene las sumas parciales acotadas y si 2;(bn - bn+¡) 

~()nverge absolutamente, con tal que b" ~ O cuando n ~ oo. . 

NuulIlClnClpj dobles y series dobles 

'.211 IIIV~stigar la existencia de los dos límites reiterados así como del límite doble 
do IIIN .~II~csi()ncs dobles f definidas por 

11) I'(P. q) '" 
JI + q 

l') 1(/1. q) = (- WP, 
P + q 

e) 1(/1. q) (-1)P 
q 

11) f( /1, q) ... cos p 
q 

b) I(p, q) = -P_ , 
P + q 

d) I(p, q) = (-1Y+
q (~ + ~) , 

f) I(p, q) =i' (- W+q, 

p q n 
h) I(p, q) = 2 ¿ sen - . 

q .=1 P 

U,.,I'{I/I,.,I'I(/, El Iflllite doble existe en (a), (d), (e), (g). Los dos límites reiterados exis-
11'11 ('11 (11), (h). (h). En (e), (e) sólo existe un límite reiterado. En (d), (f) no existe \ 
111111\1111 Irmite reiterado. 
H.l" "rllbar las proposiciones siguientes: 

a) ti na saie doble de términos positivos converge si, y sólo si, el conjunto 
de las sumas parciales está acotado. 

b) Ilna serie doble converge si converge absolutamente. 

l') Lm ,,,l' -. Im'·¡. ,,2) converge. 
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8.30 Supongamos que la serie doble Lm,. a(n)xm• converge absolutamente para 
!xl < 1. Llamemos a su suma S(x). Probar que cada una de las series que siguen 
también convergen absolutamente para Ixl < 1 Y que tienen suma S(x): 

00 xn 00 

~ a(n) 1 _ x. , ~ A(n)x", en dondeA(n) = ~ a(d). 

8.31 Si <X es real, probar que la serie doble Lm." (m + in)-a converge absolutamente 
si, y s610 si,a > 2. Indicación. Sea s(p, q) = 'L~=1 'L~=1 1m + inl- a. El conjunto 

{m + in: m = 1,2, .. . , p, n = 1,2, ... , p} 

consta de p 2 números complejos de los que uno tiene valor absoluto ..fi. tr~s sa­
tisfacen 11 + 2il ~ 1m + inl ~ 2v'2,cinco satisfacen 11 + 3i l ~ 1m + inl ~ 3v'2, etc. 
Verificar este resultado geométricamente y deducir la desigualdad 

p 2n - 1 p 2n - 1 
2-a/2 ¿ --a- ~ s(p, p) ~ ¿ (- --2 + 1)a/2' .= 1 n .= 1 n 

8.32 a) Probar que el producto de Cauchy de 'L:': o (-1)"+ 1 I v'~ +I por sí misma 
es una serie divergente. 

b) Probar que el producto de Cauchy de 'L:':o (-1)"+ I/(n + 1) por sí misma 
es la serie 

'" (_1)"+1 (1 1) 
2¿ 1+ - + .. ·+ - . 

.. =1 n + 1 2 n 
¿Converge? ¿Por qué? 

8.33 Dadas dos series de potencias absolutamente convergentes, a saber 'L:=o anx· 
y 'L:':o bnx·, con sumas A(x) y B(x), respectivamente, probar que 'L:=o c.xn = 
A (x)B(x ), en donde 

n 

en =' ¿ 0kbn-k' 
k=O 

8.34 Una serie de la forma 'L:':l 0nln' se llama serie de Dirichlet. Dadas dos series 
de Dirichlet absolutamente convergentes, a saber L::':1 o.ln' y L::=l b.ln', con su­
mas A(s) y B(s), respectivamente, probar que L::':l cnln' = A(s)B(s) en donde 
c. = L/. Odb./d· 

8.35 Si ,(s) = 'L:':1 l/n', s> 1, probar que ,2(S) = 'L:':1 d(n)/n', en donde den) es 
el número de divisores positivos de n (incluyendo a 1 y a n). 

Sumabilidad de Cesaro 

8.36 Probar que cada una de las series siguientes tiene suma (C, 1) igual a O: 

a) 1 - 1 - 1 + 1 + 1 - 1 - 1 + ] + ] - - + + ... . 

b) t - 1 + t + t - 1 + t + t - 1 + + - .... 

e) cos x + cos 3x + cos 5x + . . . (x real, x ==1= mrr). 
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8.37 Dada una serie ~a", sean 

Probar que 

a) t" = (n + 1)sn - nun. 
b) Si ~a'n es (C, 1) sumable, entonces :¿Pn converge si, y sólo si, (n = o(n) 

cuando n ~ oo. 

c) ¿,Qn es (C, 1) sumable si, y sólo si, L~l t"/n(n + 1) converge. 

N.38 Dada una sucesión monótona {a,.} de términos positivos tal que lim a = O 
l"Ilnsideremos ' ,,~OO n , 

n n 

Un = L (-l)ka).;, V" = L (-I)ks).; . 
).;=1 k=l 

Probar que 

a) Vn ,= ~1I. + (-1)"s./2. 

b) L~ 1 (-1)"S" is (C, 1) sumable y tiene suma de Cesaro igual a ~ L~ 1 (-1)"an. 

c) L~l (-1)"(1 + 1- + ... + l/n) = -log.J2 (C,1). 

Productos infinitos 

N.39 Determinar si convergen o no los productos infinitos siguientes. Encontrar el 
valor de cada uno de los que convergen. 

00 ( 2) a) TI 1 - , 
"=2 n(n + 1) 

00 

b) TI (l - n- 2
), 

n=2 

00 
d) TI (1 + z2") si Izl < 1. 

"=0 

8.40 Si cada una de las sumas parciales s" de la serie convergente ~a" es no nula y 
si la suma es asimismo no nula, probar que el producto infinito al n~2 (l + a"/s"_l) 
l'onvcrge y tiene el valor :L:'= 1 an° 

8.41 Hallar los valores de los siguientes productos estableciendo las siguientes iden­
tidadcs y sumando las series: 

OO ( 1) 00 
a) TI 1 + ~ = 2 L 2-". 

n=2 2 2 n=l 

00 ( 1) 00 1 
b) TI 1 + ~ = 2 L ( 1) . 

"=2 n "=lnn+ 

8.42 Determinar todos los números reales x para los que el producto n~ 1 cos (x/2") \ 
l'lll1vcrge y hallar el valor del producto cuando sea convergente. 

8.43 a) Se .. an = (-1)"/* para n = 1, 2, ... Probar que n(l + an) diverge pero 
que ,¿a" converge. 
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b) Sea a ""_1 = -1 / .J-;;, é" = I/.J~ + I/n para n = 1, 2, ... Probar que 
n(l + a~) converge pero que ~a" diverge. 

8.44 Supongamos que a" :2:: O para cada n = 1, 2, Supongamos, además, que 

a2 • 
a2n+2 < a2"+1 < -1--- - para n = 1, 2, ... 

+ a2n 

8.45 Una sucesión compleja (t(n)} se llama multiplicativa si 1(1) = J y si I(mn) = 
f(m)f(n) siempre que m y fI sean primos entre sí. (Ver sección 1.7.) Se llama com­

pletamente multiplicativa si 

l(l) = 1 y I(mn) = 1(111)/(n) para todo m y n. 

a) Si {ten)} es multiplicativa y si la serie '2J(n) es absolutamente convergente, 

probar que 

00 00 
L ¡(n) = TI {1 + ¡(Pk) + ¡(pi) + . .. }, 
n= 1 k= 1 

en donde Pk designa el k-éslmo número primo, siendo el producto abso­
lutamente convergente. 

b) Si, además, (ten)} es completamente multiplicativa, probar que la fórmula 
de (a) se transforma en 

00 00 1 ¿ ¡en) = TI ------ . 
"=1 ),;=1 1 - ¡(Pk) 

Obsérvese que el producto de Euler para ~(s) (teorema 8.56) es el caso par­
ticular en que I(n) = n-S. ' 

8.46 Este ejercicio esboza una demostración simple de la fórmula ~(2) = 7r
2

/ Ó. Par­
tamos de la desigualdad sen x < x < tg x, válida para O < x < 71"12, tomemos recí­
procos, y elevemos al cuadrado cada miembro, con 10 cual obtenemos 

Ahora hagamos x = k71"/(2m+ 1), en donde k y m son enteros, con 1::;; k ::;; m, y 

sumemos para k y obtenemos 

m kn (2m + 1)2 m 1 m kn 
"cot2 ---- < - " - < 111 + "COe ---
f;;-t 2m + 1 n 2 6i k 2 6i 2m + J 
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Usar la fórmula del ejercicio 1.47(c) para deducir la desigualdad 

m(2m - l)n2 ¿m 1 2m(m + 1)112 

< - < - -'---------'--
3(2m + 1)2 k= I k 2 3(2m + 1)2 

Ahora hagamos m ---+ 00 y obtenemos ~(2) = .rr2 f6. 
8.47 Usar un argumento análogo al esbozado en el ejercicio 8.46 para probar que 
~(4) = rr4f90. 
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CAPíTULO 9 

Sucesiones de funciones 

9.1 CONVERGENCIA PUNTUAL DE SUCESIONES DE FUNCIONES 

Este capítulo se refiere a sucesiones Un} cuyos términos son funciones reales 
o complejas que tienen todas un mismo dominio sobre la recta real R o sobre 
el plano complejo C. Para cada x del dominio podemos formar otra sucesión 
Un(x)} cuyos términos son los correspondientes valores imágenes. S desgina el 
conjunto de los x para los que esta segunda sucesión converge. La función f de­
finida por medio de la ecuación 

I(x) = lim I.(x), si x E S, 

se llama la función límite de la sucesión {in}, y se dice que Un} converge pun­
tualmente hacia f en el conjunto S. 

El interés primordial de est'e capítulo lo constituyen preguntas del tipo si­
guiente: Si cada una de las funciones de una sucesión Un} posee una cierta 
propiedad, tal como la continuidad, la diferenciabilidad, o la integrabilidad, 
¿hasta qué punto esta propiedad se transfiere a la función límite? Por ejemplo, 
si cada función f.n es continua en xo, ¿su función límite f es también continua 
en ~o? Veremos que, en general, esto no es así. Comprobaremos que la con­
vergencia puntual no es lo suficientemente fuerte para transferir las propieda­
des mencionadas de los términos individuales fn a la función límite f. Por con­
siguiente nos veremos obligados a estudiar métodos de convergencia más fuer­
tes que preserven estas propiedades. El más importante de ellos lo constituye 
la noción de convergencia uniforme. 

Antes de introducir la convergencia uniforme, formularemos de otra manera 
una de nuestras preguntas básicas. Cuando pr'eguntamos si la continuidad de 
cada una de las funciones fn en c implica la continuidad de la función f en e, 
lo que realmente estamos preguntando es si la ecuación 

lim I.(x) = I.(e) , 
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implica la ecuación 
lim f(x) = f(e). (1) 

Pero (1) se puede expresar también escribiendo: 

lim lim fn(x) = lim lim fn(x). (2) 
x-e n--+ CfJ 

Por consiguiente nuestra pregunta acerca de la continuidad equivale a la si­
guiente: ¿Es posible intercambiar los símbolos de límite en (2)? Veremos que, 
en general, no. En primer lugar, es posible que el límite de (1) no exista. En 
segundo lugar, incluso si existe, no es necesario que sea igual a f(e). Nos hemos 
encontrado ya en el capíulo 8 con una situación análoga en conexión con las 
"eries reiteradas cuando encontramos que L:= I L:'= I ¡(m, n) no es necesaria­
mente igual aL:': 1 L:= 1 ¡(m, n). 

La cuestión de si es posible inv·ertir el orden de paso al límite se presenta 
repetidas veces en Análisis matemático. Veremos que la convergencia uniforme 
eN una condición suficiente de gran alcance para la validez de la inversión 
del paso al límite, pero no constituye una respuesta completa a la cuestión 
I'IllInleada. Nos encontraremos con ejemplos en los que es posible intercam­
hill r el orden de los límites y sin embargo la sucesión no es uniformemente 
convergente. 

C).2. EJEMPLOS DE SUCESIONES DE FUNCIONES REALES 

I,os ejemplos que se exponen a continuación ilustran algunas de las posibilida­
des que pueden aparecer cuando se forma la función límite de una sucesión de 
funciones reales. 

X2n 
In (x) ~-~-2-' n ~ 1, 2, 3. 

1 + x n 
I (x) .~ lim In (x) . 

n~oc 

Figura 9.1 

.. 

\ 
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Ejemplo 1. Una sucesión de funciones continuas con función límite discontinua. 
Sea fn(x) = x 2n /(l + x2n ) si x E R, n = 1, 2, oo. Las gráficas Je algun?s de los tér­
minos están representadas en la figura 9.1. En este caso limn~oo fn(x) eXIste para cada 
x real, y la función límite está dada por 

[(xl ~ (; 

si !x! < 1, 
SI !x! = 1, 
si !x! > 1. 

Cada f n es continua en R, sin embargo f es discontinua en x = 1 Y en x = - 1. 

Ejemplo 2. U na sucesión de funciones para las que limn -> w S6 !,,(x) dx #­
#-JÓ1imn->ocf,,(x)dx.Sea lix)=n2x(l-x)n si xER,n= t,2, ... Si O~x~l el 
límite fex) = limn-> oc f,,(x) existe y es igual a O. (Ver fig. 9.2.) Por lo tanto, 

Jó f(x) dx = O. Pero 

11 

fn(x) dx = n2 11 

x(t - x)n dx 

(11 + 1)(11 + 2) 

n ~ 5 

Figura 9.2 

luego limn->co SÓ!"(x) dx = 1. En otras palabras, el límite de las integrales no es 
igual a la integral de la función límite. Luego, las operaciones de ,dÍmite)) y de 
((integración)) no pueden ser intercambiadas. 
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~~~::!~e~'s~7(:U)c::l'(ón d~ f)u/ n~ipn~s diferenciables con una función límite no dife-
n ' sen nx ,y n SI x E R n - 1 2 Ent r f ( 

para cada x . Sin embargo f (x) _..;- , -, , .... once s Imn~ oo n x) = O 
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todo x. (Ver fig. 9.3.) , '" - neos nx, luego lImn -+ oo f n(x) no existe para 

Figura 9.3 

C).3 DEFINICIóN DE CONVERGENCIA UNIFORME 

S, en U.~} una sucesión de funciones que converJ'a puntualmente ha . f 'ió r . f . . cm una un-
e n Imite en un CIerto conjunto S. Esto significa que para cada punto x de S 
y para cada E > O. existe un N (que depende a la vez de x y de l!) tal que 

n> N implica I/"(x) - f(x) I < e. 

Si u"n Emismo N sirve para todo punto de S, la convergencia se llama uniforme 
en ,J. sto es, tenemos 

~'.'.~i:,idón 9.1 Un~ sucesió~ de funciones Un} se llama uniformemente con­
lu,.;(nte a f en el conjunto S SI , para cada E > O, existe un N (que depend , '1 
de' ,) tal que n > N implica , e so o 

Ifn(x) - f(x)1 < e, para cada x de S. 

Expresamos esto simbólicamente escribiendo 

fn ~ f uniformemente en S. 

. ~uando cada .uno de lo~ ~érminos de la sucesión {tn} es una función real, es 
~()~.lbIC dar una mterpretaclOn geométrica útil de la convergencia uniforme. La \ 
( es Igualdad I/"(x) - f(x) I < e equivale entonces a las dos desigualdades 

f(x) - e < /,,(x) < f(x) + e. (3) 

--

Sucesiones de funciones 
269 

Si (3) se verifica para todo n > N Y para todo x de S, significa que la grá­
fica entera de fn (esto es, el conjunto {(x, y): y = f",(x), x E S} está todo él con­
tenido en una «banda» de altura 2. situada simétricamente en tomo a la grá-

fica de f. (Ver fig. 9.4.) 

y=f(X)+t7 

'~ p6~v 
Figura 9.4 

Una sucesión Un} se llama uniformemente acotada en S si existe una cons­
tante M> O tal que I f,,(x) I < M para todo x de S y todo n. El número M se llama 
cota uniforme de Un} ' Si cada función individual está acotada y si tn ~ f uni­
formemente en S, entonces es fácil demostrar que Un} está uniformemente acota­
da en S. (Ver el ejercicio 9.1.) Esta observación permite a veces concluir que una 
sucesión no es uniformemente convergente. Por ejemplo, una simple inspección 
a la figura 9.2 nos dice inmediatamente que la sucesión del ejemplo 2 no puede 
ser uniformemente convergente sobre ningún subconjunto que contenga un en­
torno del origen. Sin embargo, la convergencia en este ejemplo es uniforme 
en todo subintervalo compacto que no contenga al origen. 

9.4 CONVERGENCIA UNIFORME Y CONTINUIDAD 

Teorema 9.2. Supongamos que fn ~ f uniformemente en S. Si cada fn es con­
tinua en un punto e de S, entonces la función límite f también es continua en c. 

NOTA. 
Si e es un punto de acumulación de S, la conclusión implica que 

lim lim fn(x) = lim limfix). 

Demostración. Si e es un punto aislado de S, entonces f es automáticamente 
continua en c. Supongamos, entonces, que e es un punto de acumulación de S. 
Por hipótesis, para cada • > O existe un M tal que n > M implica 

e 
Ifn(x) - f(x) I <"3 para cada x de S . 

Como que fM es continua en e, existe un entorno B(c) tal que x 'E B(c) n S implica 

IfM(X) - fM(C)1 < ~ . 
3 

APOSTOL. análisis - 10 
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Pero 
If(x) - f(e) I ~ If(x) - fM(X) I + IfM(X) - fM(e) I + IfM(e) - f(e)l· 

Si x E B{c) Í\ S, cada término de la derecha es menor que ~/3 y por lo tanto 
If(x) - f(e)1 < e. Esto prueba el teorema. 

NOTA. La convergencia uniforme de Un} es suficiente pero no es necesaria para 
transmitir la continuidad de los términos individuales a la función límite. En el 
e.jemplo 2 (sección 9.2), teníamos una sucesión convergente pero no uniforme­
mente convergente de funciones continuas con función límite continua. 

9.5 LA CONDICIÓN DE CAUCHY PARA LA CONVERGENCIA 
UMFORME 

Teorema 9.3. Sea {In} una sucesión de funciones definidas en un conjunto S. 
Existe una función f tal que fn ~ f uniformemente en S si, y sólO" si, se satisface 
la siguiente condición (llamada la condición de Cauchy): Para cada e > O existe 
un N tal que m > N Y n > N implican 

Ifm(x) - f.(x) I < e, para cada x de S. 

Demostración. Supongamos que fn ~ f uniformemente en S. Entonces, dado 
~ > O, podemos hallar un N tal que n > N implique If.ex) - f(x)1 < e/2 para 
todo x de S. Tomando m > N, tendremós también Ifmex} - f(x)1 < e/2, y en­
tonces Ifm(x) - f,,(x)1 < e para cada x de S. 

Recíprocament'e, supongamos que se satisface la condición de Cauchy. Enton­
ces, para cada x de S, la sucesión {tn(x)} es convergente. Seaf(x) = limn .... oo f.{x) 
si x 'E S. Debemos probar que fn ~ f uniformemente en S. Dado e > O. podemos 
elegir N tal que n > N implique If.ex) - fn +k (x) I < e/2 para cada k = 1.2 •... 
y cada x de S. Entonces. Jimk .... oo If,,(x) - f.+k(x)1 = If,,(x) - ¡(x)1 ~ e/2. Lue­
go, n > N implica If.(x) - f(x)1 < e para cada x de S. Esto prueba que fn ~ f 
uniformemente en S. 

NOTA. La convergencia puntual y la convergencia uniforme pueden formularse 
en el escenario más general de los espacios métricos. Si fn y f son funciones de 
un conjunto no vacío S en un espacio métrico (T, dT). decimos que fn ~ f uni­
formemente en S, si. para cada E > O. existe un N (que depende sólo de e) tal 
que n > N implica 

d¡{fnex), f(x») < e para todo x de S. 

El teorema 9.3 es válido en este ámbito más general y. si S es un espacio mé­
trico; el teorema 9.2 también es válido. Valen exactamene las mismas demostra-
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ciones. cambiando adecuadamente las métricas euclídeas por las métricas ds Y 
dT • Dado que nosotros estamos interesados primordialmente en las funciones 
reales o complejas definidas en subconjuntos de R o de C, en adelante no pro­
seguiremos esta extensión de los conceptos excepto para describir el siguiente 
ejemplo. 

Ejemplo. Consideremos el espacio métrico (8(S) , d) de todas las funciones reales 
acotadas sobre un cierto conjunto S no vacío, provisto de la métrica d(f, g) = 111 - g il . 
en donde 11 / 11 = SUPXES I/(x ) I es la norma del supremo. (Ver ejercicio 4.66.) En­
tonces In ~ I en el espacio métrico (8(S), d) si, y sólo si, In - I uniformemente en S. 
En otras palabras, la convergencia uniforme en S coincide con la convergencia ordi­
naria en el espacio métrico (B(S). d). 

9.6 CONVERGENCIA UNIFORME DE SERIES INFlMTAS 
DE FUNCIONES 

Definición 9.4. Dada una sucesión {In} de funciones definidas en un conjun­
to S, para cada x de S se considera 

n 

sn(x) = LMx) (n = 1,2, ... ). (4) 
k = 1 

Si existe una función f tal que s" ~ f uniformemente en S, se dice que la sJrie 
'2.fn(x) converge uniformemente en S y se escribe 

00 

L fn(x) = f(x) (uniformemente en S). 
n=1 

Teorema 9.5 (Condición de Cauchy para la convergencia uniforme de 
series). La serie infinita '2.fn(x) converge uniformemente en S si, y sólo si. 
para cada ~ > O existe un N tal que n > N implique 

Demostración. Definir Sn por (4) y aplicar el teorema 9.3. 

Teorema 9.6 (Criterio M de W eierstrass). Sea {M,,} una sucesión de 
números no negativos tal que 

para n = 1, 2. ...• y cada x de S. 

Entonces '2.fn(x) converge uniformemente en S si '2.Mn converge. 
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Demosración. Aplicar los teoremas 8.11 y 9.5 junto con la desigualdad 

Teorema 9.7. Supongamos que '2J,,(x) = f(x) (uniformemente en S). Si cada 
f." es continua en un punto X o de S, entonces / también es continua en X

o
' 

Demostración. Definimos Su por (4). La continuidad de cada fm en X
o 

implica 
la continuidad de s .. en x o, y la conclusión se sigue inmediatamente del teore­
ma 9.2. 

NOTA. Si X o es un punto de acumulación de S, este teorema nos permite inter­
cambiar los límites y las sumas infinitas, como sigue: 

00 00 

¡im ¿ /,,(x) = ¿ lim f"(x) . 
x~xo n=l n=l X-Xo 

9.7 UNA CURVA QUE LLENA TODO EL ESPACIO 

Podemos aplicar el teorema 9.7 para construir una curva que llene todo el espa­
do. Es decir, una curva de R2 que pase por cada uno de los puntos del cuadrado 
unidad [0.1] X [0,1]. Peano (1890) fue el primero en dar un ejemplo de una 
curva de este tipo. El ejemplo que damos aquí se debe a l. J. Schoenberg (Bulle­
fin of the American Mathematieal Society, 1938) y es el siguiente: 

Sea ep una función definida en el intervalo [0,2] por medio de las fórmulas 
siguientes: 

cp(t) = 
( 

0, 
3t - 1, 

1, 
-31 + 5, 

si ° :::; t :::; t, 
si t :::; t :::; t, 
si t :::; t :::; 4-
si j- :::; I :::; l 

o si t :::; t :::; 2, 

Extendemos la definición de ep a todo R por medio de la ecuación 

cp(t + 2) = cp(t). 

- 2 - 1 O 

Figura 9.5 

2 3 4 

\ 

-
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De esta manera la función ep es periódica de período 2. (La gráfica de ep puede 
verse en la figura 9.5.) 

Ahora definimos dos funciones f, y f2 por medio de las siguientes ecuaciones: 

00 cp(3 2n - 2 t) 
I I(t) = ¿ - n-' 

n=1 2 

Ambas series convergen absolutamente para cada real t y su converge~cia 
es uniforme en R. En efecto, dado que lep(t)1 < 1 para todo t, pode~os aplIcar 
el criterio M de Weierstrass haciendo M n = 2-n . Como epes contmua en R, 
el teorema 9.7 nos dice que f l y /2 son también continuas en R. Sea f = (tl' t2) y 
sea r la imagen del intervalo unidad [0.1] por medio de t. Probaremos que r 
«llena» el cuadrado unidad, es decir que r = [0,1] X [0,1]. 

Es evidente, ante todo, que ° :::; II (/) :::; I yO:::; lit) :::; 1 para cada t, ya que 
L:,~= I 2 -" = 1. Luego, r es un subconjunto del cuadrado unidad. A continua­
ción, debemos probar que (a, b) E r siempre que (a, b) 'E [0,1] X [0,1]. A este 
fin expresamos a y b en el sistema binario. Esto es, escribimos 

00 

'"" a" a=,L..¿-, 
n= 1 2n 

b = f~ 
n= 1 2n 

' 

en donde cada an y cada bn es ° ó 1. (Ver el ejercicio 1.22.) Sea ahora 

00 

'"" en e=2,L..¿ - , 
n= 1 3" 

donde e2"-1 = an y e2n = bn, n = 1, 2, .. . 

Es claro que ° < c< 1 ya que 2L::'=1 r n = l. Demostraremos que f l (e) = a y 
f2(e) = b. 

Si podemos probar que 

para cada k = 0, 1, 2, ... , (5) 

'/"(3 2n - 2 ) - - a '/"(3 2n
- 1e) = e = b y esto entonces tendremos '1' e - e2n - \ - " y '1' 2n", 

nos dará II (e) = a,/2(e) = b. Para probar (5), escribimos 

en donde dk = 2 L:::': 1 en +k/3n . Puesto que <p tiene período 2, se deduce que 
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Si CH! = 0, entonces tenemos que ° ~ dk ~ 2:¿:;2 r n = t, y por tanto 
</l(dk) = 0: Por consiguiente, cfJ(3kc) = Ck+ 1 en este caso. El único caso que queda 
por conslderar es CHl = l. Pero entonces obtenemos t ~ dk ~ 1 Y por ello 
rp(dk ) = 1. Por consiguiente, cfJ(3k c) = CH 1 'en todos los casos y ello prueba que 
fl(C) = a,fzCc) = b. Luego, r llena el cuadrado unidad. 

9.8 CONVERGENCIA UNIFORME E INTEGRACIóN 
DE RIEMANN·STIELTJES 

Teorema 9.8. Sea ,(X de variación acotada en la, b]. Supongamos que cada tér­
mino de la sucesión Un} es una función real tal que tn E R((X) en [a, b] para 
cada n = 1. 2, ... Supongamos que fn -~ f uniformemente en fa, b] y definamos 
.lIn(X) = f~ fn(t) dex(t) si x E [a, b], n = 1, 2, ... Entonces tenemOs: 

a) fE R(a.) en [a, b]. 

b) Rn ~ g uniformemente en [a, b] en donde g(x) = f~ f(t) dex(t) . 

NOTA. La conclusión implica que, para cada x de [a, b], podemos escribir 

!~': r fn(t) dex(t) = r !~': !,,(t) dex(t). 

Esta propiedad se enuncia a menudo diciendo que una sucesión uniformemente 
convergente se puede integrar término a término. 

Demostración. Podemos suponer que (X es creciente con ex(a) < (X(b). Para pro­
bar (a), demostraremos que f satisface una condición de Riemann respecto 
de ,(X en [a, b]. (Ver teorema 7.19.) 

Dado E > 0, elijamos N tal que 

¡f(x) - fN(X)¡ < e , para todo x de [a, b] 
3[ex(b) - ex(a)] 

Entonces, para cada partición P de [a, b], se tiene 

¡U(P,f - fN' IX)¡ ~ !. 
3 

y ¡L(P, f - fN' IX)¡ < ~ - 3' 

(~tilizando la notación de la definición 7.14). Para este N, elegimos Pe tal que 
SI P es más fina que Pe se verifique U(P,fN, IX) - L(P,fN, ex) < e/3. Entonces 
para esa P se tiene 

\ 
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U(P, f, ex) - L(P, f, IX) ~ U(P, f - fN' ex) - L(P, f - fN , IX) 

+ U(P, fN' IX) - L(P, fN' IX) 
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< ¡ U(P, f - fN' IX)¡ + ¡L(P,! - fN' IX)¡ + !. ~ e. 
3 

Esto prueba la parte (a) . Para probar (b), sea E > ° fijo y elijamos N tal que 

e 
¡fn(t) - f(t)¡ < 2[IX(b) _ lX(a)] , 

para todo n > N Y todo t de [a, b]. Si x 'E [a, b], tenemos 

¡gn(x) - g(x)¡ ~ fX ¡InCt) - f(t)¡ dlX(t) ~ ~(x) - lX(a) !. ~ ~ < e. 
a lX(b) - lX(a) 2 2 

Esto demuestra que g'n ~ g uniformemente en [a, b]. 

Teorema 9.9. Sea (X de variación acotada en [a, b] y supongamos que '2,!.n(x) = 
= f(x) (uniformemente en [a, b]), en donde cada f" es una función real tal que 

f" E R«(X) en [a, b]. Entonces tenemos: 

a) f'E R«(X) en [a, b]. 
b) S'~ :¿:; I lnCt) dlX(t) = :¿:; I f~.{,.(t) dlX(t) (uniformemente en [a, b]). 

Demostración. Basta aplicar el teorema 9.8 a la sucesión de las sumas parciales. 

NOTA. Este teorema se enuncia diciendo que una seri·e uniformemente conver­
gente puede ser integrada término a "término. 

9.9 SUCESIONES CONVERGENTES CON CONVERGENCIA 
NO UNIFORME QUE PUEDEN SER INTEGRADAS 
TÉRMINO A TÉRMINO 

La convergencia uniforme es una condición suficiente pero no necesaria para la 
integración término a término, según puede verse en el ejemplo que sigue. 

Ejemplo. Sea f,,(x) = xn si O ~ x ~ 1. (Ver fig. 9.6.) La función límite f tiene va­
lor O en [O, 1) Y f(l) = 1. Dado que esta sucesión está formada por funciones con­
tinuas y la función límite no lo es, la convergencia no es uniforme en [O, 1]. A pesar 
de ello, la integración término a término en [O, 1] nos lleva, en este caso, a un resul-
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Figura 9.6 

lado correcto. En efecto, tenemos 

(l f.(X) dx = (l Xn dx = _1_ -> cuando n ~ oo. 
Jo Jo n + 1 

luc~o limn--+ oo f~f.(x) dx = f~f(x) dx = O. 

La sucesión del anterior ejemplo, a pesar de no ser uniformemente conver­
gente en [O, 1], es uniformemente convergente en todo subintervalo de [O, 1] que 
no contenga al 1. El teorema que damos a continuación es un resultado general 
que permite la integración término a término en ejemplos de este tipo. La hipó­
tesis que se añade es que {in} sea una sucesión uniformemente acotada en [a, b] 
y que la función límite f sea integrable. 

f)e/inición 9.10. Una sucesión de funciones {in} es acotadamente convergen­
te en T si {in} es puntualmente convergente y uniformemente acotada en T. 

Teorema 9.11. Sea {in} una sucesión acotadamente convergente en [a, b]. Su­
pOIlRamOS que cada fn E R en la, b], y que la función límite fE R en [a, b]. Su­
ponRamos también que existe una partición P de [a, b], a saber 

fal que la sucesión {in} es uniformemente convergente hacia f en cada subinter­
valo [c, d] que no contenga ninguno de los puntos Xk. Entonces tenemos 

lim lb fn(t) dt = lb lim f,,(t) dt = Ibf(t) dt. 
n--+oo Ja Ja n--+oo Ja (6) 

Demostración. Puesto que f está acotada y {in} es uniformemente acotada, 
existe un número positivo M tal que If(x)1 < M y 1 fn(x) 1 < M para todo X de 
[a, b] y todo n > 1. Dado E > O tal que 2E < IIPII, s'ea h = E/(2m), en donde m 

.. 

\ 
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es el número de subintervalos de P, y consideremos una nueva partición P' de 
fa, b] dada por 

P' = {xo, X o + h, Xl - h, Xl + h, ... 'Xm - l - h, X m - l + h, X m - h, Xm}' 

Dado que If - fn 1 es integrable en [a, b] Y acotada por 2M, la suma de las inte­
grales de If - fnl tomadas sobr'e los intervalos 

[Xo, X o + h], [Xl - h, Xl + h], ... , [Xm - l - h, X m - l + h], [Xm - h, X m], 

es a 10 sumo 2M(2mh) = 2ME. El subconjunto restante de [a, b] (llamémosle S) 
es la reunión de un número finito de intervalos cerrados, en los que {in} conver­
ge uniformemente hacia f. Por consiguiente, existe un entero N (que sólo depen­
de de E) tal que para cada X de S se verifica 

If(x) - fix) I < e siempre que n > N. 

Luego la suma de las integrales de If - fnl sobre los intervalos de S 'es a lo sumo 
E(b - a), luego 

r If(x) - fn(x) I dx :s; (2M + b - a)e siempre que n > N. 

Esto demuestra que S~f,,(x) dx ~ S~f(x) dx cuando n ~oo. 

Existe un t'eorema más fuerte debido a Arzela, que no hace ninguna referen­
cia a la convergencia uniforme. 

Teorema 9.12 (Arzelii). Supongamos que {in} es una sucesión acotadamen­
te convergente en la, b] y supongamos que cada fn es integrable de Riemann en 
[a, b]. Supongamos también que la función límite f es integrable de Riemann 
en [a, b]. Entonces 

!~~ r f,,(x) dx = r !~~ fn(x) dx = r f(x) dx. (7) 

La demostración del teorema de Arzela es mucho más difícil que la del teo­
rema 9.11 y la omitiremos. En el próximo capítulo demostraremos un teorema 
acerca de las integrales de Lebesgue que incluye al teorema de Arzela como 
caso particular (Ver teorema 10.29). 
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NOTA. Es fácil dar un ejemplo de una sucesión acotada mente convergente Un} 
de funciones integrables de Riemann cuyo límite f no sea integrable de Riemann. 
Si {r" r2 , ••• } designa el conjunto de los números racionales de [O,IJ, definimos 
¡,,(x) como la función que toma el valor 1 si x = rl; para todo k = 1,2, .. . , n, y el 
valor ° en cualquier otro caso. Entonces la integral SÓ/"(x) dx = ° para cada n, 
y en cambio la función límite puntual f no es integrable de Riemann en [O, 1]. 

9.10 CONVERGENCIA UNIFORME Y DIFERENCIACIÓN 

Por analogía con los teoremas 9.2 y 9.8, se puede esperar que se verifique el si­
guiente resultado: Si 1<" -+ f uniformemente en {a, bJ y si f~ existe para cada n, 
entonces f' existe y f~ ~ f' uniformement'e en [a, b]. Sin embargo, el ejemplo 3 
de la sección 9.2 prueba que no es así. A pesar de que la sucesión U", } del ejem­
plo 3 converge uniformemente en R, la sucesión {f~} no converge puntualmente 
en R. Por ejemplo, {f~(0)} diverge ya quef~(O) = J~. Por consiguiente el teore­
ma análogo a los teoremas 9.2 y 9.8 relativo a la diferenciación debe tomar una 
forma distinta. 

• 
'/','orm1la 9.13. Supongamos que cada término de {f.,,} es una función real con 
derivada finita en cada punto de un intervalo abierto (a, b). Supongamos que 
para UIl punto xo, por lo menos, de (a, b) la sucesión U.,(xo)} converge. Suponga-
1II0S además que existe una función g tal que f~ ~ 9 uniformemente en (a, b). 
1~'lIt(lllces: 

u) Ex iste una función f tal que fn -+ f uniformemente en (a, b). 
h) Para cada x de (a, b) la derivada f'(x) existe y es igual a g(x). 

1>t'lI1oslración. Supongamos que cE (a, b) y definamos una nueva sucesión {g,, } 
como sigue: 

{

l;'(X) - ~<!:2 
gn(x) = x - e 

f:'(e) 

six '" e, 
(8) 

si x = e. 

I.u sucesión {gn} así formada depende de la elección de e. La convergencia de 
(,I,'"k)} se sigue de las hipótesis, ya que gnCe) = f:'(e). Ahora veremos que {gn} \ 
converge uniformemente en (a, b). Si x =1= e, tenemos 

h(x) - h«(') g,,(x) - gm(x) = --- ___ o , 

x - e 
(9) 
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en donde h(x ) = f,,(x) - fm(x). Existe h'(x) para cada x de (a, b) yvalef:'(x)­
/;~(x)·Si aplicamos el teorema del valor medio en (9), obtenemos 

(10) 

con Xl comprendido entre x y e. Puesto que {f; } converge u~i~~rmemente 'en 
(a, b) (por hipótesis), podemos utilizar (10), junto con la condlclOn de Cauchy 
(teorema 9.3), para deducir que {g,,} converge uniformemente en (a, b). 

Ahora podemos demostrar que {in} es uniformemente convergen~e en (a, b). 
Formemos la sucesión particular {gn} couespondiente al punto particular e=xo 
para el que {in(xo)} se ha supuesto convergente. En virtud de (8) podemos 
escribir 

l/x) = /,,(xo) + (x - XO)gn(x), 

ecuación que se verifica para todo x de (a, b). Entonces tenemos 

f,,(x) - In/X) = In(xo) - Im(xo) + (x - Xo)[9n(X) - 9,"(Xo)]. 

Esta ecuación, con la ayuda de la condición de Cauchy, establece la convergen­
cia uniforme de {in} en (a, b). Esto termina la demostración de (a) . 

Para demostrar (b), volvamos a la sucesión L~n} definida por (8) para un 
punto arbitrario e de (a , b) y se~ G(x) = limn~ ", gnex). La hipótesis de qu~ I: 
existe significa que Iimx~c gix) = 9n(e). En otras palabras, cada g" es contlll~a 
en c. Como que g", -+ G uniformemente en (a, b), la función límite G es asimis­
mo continua en c. Esto significa que 

G(e) = Iim G(x), (11) 
x~ c 

y la existencia de este límite forma parte de la conclusión. Pero, para x =1= e, 
tenemos 

G() l· () ]' f,,(x) - j~(e) _ f(x) - f(e) 
x = 1m gn X = 1m - . 

n ..... oc> n ..... oc> X - e x - e 

Entonces, (11) establece que la derivada f'(c) existe y es igual a G(c). Pero 

G(e) = lim gn(e) = lim f:'(e) = g(e); 
n- oc n-oo 

por lo tanto f'(c) = g(c). Ya que e es un punto arbitrario de (a, b), la parte (b) 
queda demostrada. 

Si formulamos de nuevo el teorema 9.13 pero en términos de series, ob­
tenemos 
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Teorema 9.14. Supongamos que cada fn es una función real definida en 
(a, b) tal que la derivada f~(x) existe para cada x de (a, b). Supongamos que, 
para un punto X o de (a, b), por lo menos, la serie 2:'!",(xo) converge. Supongamos 
además que existe una función g tal que LJ~(X) = g(x) (uniformemente en 
(a, b»). Entonces: 

a) Existe una función f tal que 'L,fn(x) = f(x) (uniformemente en (a, b»). 

b) Si x 'E (a, b), la derivada (x) existe y es igual a 'Lf~(x) . 

(J.]] CONDICIONES SUFICIENTES PARA LA CONVERGENCIA 
UNIFORME DE SERIES 

La importancia de las series uniformemente conv'ergentes ha quedado amplia­
mente ilustrada en alguno de los teoremas precedentes. Parece pues natural 
buscar algunos métodos sencillos para decidir la convergencia uniforme de las 
Heries sin tener que recurrir a la definición en cada caso. Uno de tales criterios, 
el criterio M de Weierstrass, ha sido desarrollado en el teorema 9.6. Existen 
otros que pueden resultar útiles cuando el criterio M no es aplicable. Uno de 
ellos es análogo al teorema 8.28. 

T~orema 9.15 (Criterio de Dirichlet para la convergencia uniforme). 
Ot'si¡.:nemos por medio de Pn(x) la n-ésima suma parcial de la serie 2;fn(x), en 
clonde cada fn es una función compleja definida en un cierto conjunto S. Supon­
lIC1mos que {Pn } es uniformemente acotada en S. Sea {gn} una sucesión de fun­
('Iones reales tales que g,,+ 1 (x) ::;; g,,(x) para cada x de S y para cada n = 1, 
2. oo .. y supongamos que [;" --+ O uniformemente en S. Entonces la serie 
~fll(x)g,,(x) converge uniformemente en S. 

O/'lIIostración . Seasn(x) = 'LZ ; • .h.(X)gk(X), Por sumación parcial tenemos 

" 
s,,(x) = L Fk(x)(gk(X) - gk + • (x)) + g,,+ . (x)F,lx) , 

k;. 

y entonces si n > m, podemos escribir 

n 

,I,,(X) - - Sm(X) = L Fk(x)(gk(X) - gk+ .(x» + g,,+ 1 (x)F,,(x) - g", + • (x)Fm(x ) 
k; m+l 

\ 
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Por consiguiente, si M es una cota uniforme de {p .. } , tenemos 

n 

¡sn(x) - sm(x)¡ ~ M L (gk(X) - gk+l(X») + Mgn+1(x) + Mgm+¡(x) 
k; m+l 

= M(gm+¡(x) - g,,+¡(x») + Mgn+1(x) + Mgm+1(x) 

= 2Mgm +¡(x). 
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Dado que gn --+ O uniformemente en S, esta desigualdad (junto con la condición 
de Cauchy) implica que 'Lfix)gn(x) converge uniformemente en S. 

El lector no encontrará ninguna dificultad en extender el teorema 8.29 (cri­
terio de Abel) de modo análogo, resultando un criterio para la convergencia 
uniforme. (Ver ejercicio 9.13.) 

Ejemplo. Sea F,,(x) = 'L~;1 e ikx
• En el capítulo anterior (ver el teorema 8.30), hemos 

obtenido la desigualdad ¡F n(x)¡ ::;; l/¡sen (x/2)¡, válida para todo número real x =1=- 2m .. 
(m es un entero). Por consiguiente, si O < o < ;r, tenemos la aproximación 

IFn(X)¡ ::;1 /sen(b/2) si b ::; x ::; 2n - b. 

Luego, {Fn} es uniformemente acotada en el intervalo [o, 2IT - ÓJ. Si {gn} satisface 
la condición del teorema 9.15, podemos concluir que la serie 2;gn(x)ei" "" converge 
uniformemente en [o, 2IT - o). En particular, si hacemos gn(x) = l/n, obtenemos la 
convergencia uniforme de la serie 

en [o, 2 .. - ú] si O < o < ro . Obsérvese que el criterio M de Weierstrass no sirve 
para establecer la convergencia uniforme en este caso, ya que ¡ein ,,¡ = l. 

9.]2 CONVERGENCIA UNIFORME Y SUCESIONES DOBLES 

Otro tipo distinto de aplicaciones de la convergencia uniforme lo proporciona 
el teorema siguiente que trata de sucesiones dobles y puede considerarse como 
un recíproco del teorema 8.39. 

Teorema 9.16. Sea f una sucesión doble y sea Z+ el conjunto de los enteros 
positivos. Para cada n = 1,2, oo., definimos una función gn en z+ por medio de: 

g,,(m) = f(m , n), 

si In E Z +. 
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Supongamos que gn ~ g uniformemente en Z+, en donde g(m) = limn~ oo j(m, n) 
Si el límite reiterado limm~ GC (Iimn~ oo f(m, n») existe, entonces el límite doble 
limm.n~ oo f(m, n) también existe y tiene el mismo valor. 

Demostración. Dado e > 0, elegimos N l tal que n > N l implique 

/3 
If(m, n) - g(m)1 < - , para cada m de Z+ 

2 

Seu a = limm~ oo (limn~ oo f(m, n») = l¡mm_ oo g(m). Para el mismo e, elegimos un 
N~ tal que m> N 2 implique Ig(m) - al < e/2. Entonces, si N es el mayor de 
los números N l y N., tenemos If(m, n) - al < e siempre que m > N y n > N. 
nn otras palabras, limm.n_ oo f(m, n) = a. 

9.13 CONVERGENCIA EN MEDIA 

Lus funciones que se manejan en este apartado son o bien reales o bien com­
plejas. 

",.Ji"idón 9.17. Sea {t .. } una sucesión de funciones integrables Riemann 
,It/il/idas en {a, b]. Supongamos que fE.R en [a, b]. La sucesión {tn} converge 
"" media hacia f en [a, b], y se escribe 

l.e.m.!" =f en [a, b], 
n-+ 00 

,/ 

lim fb If'(x) - f(x)1 2 dx = O. 
n-+ 00 a 

Si la desigualdad If(x) - f,,(x) I < e se verifica para cada x de [a, b], enton­
eeN tenemos S: If(x) - f.(xW dx ~ /32(b - a). Por consiguiente, la convergen­
el" uniforme de {tn} hacia f en [a, b] implica la convergencia en media en el 
IlIIpuesto de que cada in sea integrable de Riemann en [a, b]. Un resultado que 
no deja de ser sorprendente es que la convergencia en media no implica necesa­
riamente la convergencia puntual en ningún punto del intervalo. Esto puede verse 
con el siguiente ejemplo: Para cada entero n > O, subdividimos el intervalo 
10. 11 en 2" subintervalos iguales y designamos por medio de 12"+1> el subintervalo 
cuyo extremo derecho es el punto (k + 1)/2n, en donde k = O, 1, 2, ... , 2"- 1. 
RPllo origina una colección {ll' 12 , • •• } de subintervalos de [O, 1], cuyos primeros 
términos son: 

11 = [O, 1], 

14 = [O, t], 

12 = [O, t], 

15 = [t, -H 

13 = [-!-, 1], 

16 = [1-, i], 

\ 
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y así sucesivamente. Definimos fn en [O, 1] como sigue: 

f.(x) = g si x E In, 
si x E [O, 1] - In' 

Entonces {tri} converge en media hacia 0, ya que S6 1f.(xW dx es la longitud 
de In, y estas longitudes tienden a cero cuando n ~ oo. Por otro lado, para cada x 
de [O, 1] tenemos 

tim supf,,(x) = 1 y lim inf f.(x) = O. 
n-+ 00 

[¿Por qué?] Luego {fn(¡x)} no converge para ningún punto x de [O, 1]. 
El teorema que damos a continuación pone de manifiesto la importancia 

de la convergencia en media. 

Teorema 9.18. Supongamos que l.e.m·n -+ oo fn = f en [a, b].Si g'ER en [a, b], 
definimos 

h(x) = f f(t)g(t) dt, hn(x) = f f.(t)g(t) dt , 

si x E [a, b]. Entonces hn -4 h uniformemente en [a, b]. 

Demostración. La demostración se basa en la desigualdad 

° ::; (f If(t) - fn(t)llg(t)1 dty 

::; (f If(t) - fn(tW dt)(f Ig(tW dt) , (12) 

que es una aplicación directa de la desigualdad de Cauchy-Schwarz para inte­
grales. (Ver el ejercicio 7.16 que establece la desigualdad de Cauchy-Schwarz 
y ofrece un esbozo de su demostración.) Dado e > 0, podemos elegir N tal que 
n > N implique 

f
b e2 

If(t) - f.(t)1 2 dt < -, 
a A 

(13) 

en donde A = 1 + S: Ig(tW dt. Sustituyendo (13) en (12), obtenemos que n > N 
implica ° ~ Ih(x) - hn(x)1 < e para cada x de [a, b] . 
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Este teorema es particularmente útil en la teoría de las series de Fourier. 
(Ver teorema 11.16.) También merece interés la siguiente generalización. 

'Teorema 9.19. Supongamos que I.e.m·n --+ ", f. = I y I.e.m·n .... oo gn = 9 en [a, b]. 
Definimos 

h(x) = r I(t)g(t) dt , 

_\./ x E [a, b]. Entonces hn ~ h uniformemente en [a, b]. 

Dc'mostración. Tenemos 

hn(x) - h(x) = r (f - In)(g - gn) dt 

+ (r f.g dt - r Ig dt) + (f Ign dt - f Ig dt) . 

Aplicando la desigualdad de Cauchy-Schwarz, podemos escribir 

1.11 demostración es ahora una consecuencia inmediata del teorema 9.18. 

'),ltI, SERIES DE POTENCIAS 

llnu scrie infinita de la forma 

00 

ao + L an(z - zo)", 
n;1 

o más brevemente 
00 

L an(z - zot, (14) 
n ; O 

NO lIul11a una serie de potencias en Z-Zo' En ella z, Zo y an (n = O, 1,2, ... ) 
Non míl11cros complejos. A toda serie de potencias (14) se asocia un círculo, 
III1I1lU(\O el círculo de convergencia, tal que la serie es absolutamente conver­
~Cl1tc en todo z del interior de este círculo y divergente en todo z de su exterior. 
1-:1 centro del círculo es Zo y su radio se llama el radio de convergencia de la 

\ 
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serie de potencias. (El radio puede tomar los valores O o + 00 en los casos 
extremos.) El próximo teorema establece la existencia del círculo de conver­
gencia y nos proporciona un método para calcular su radio. 

Teorema 9.20. Dada una serie de potencias L;:';o an(z - zo)\ sea 

le = lim sup ~Ianl , 
1 

r = ­
le ' 

(en donde r = O si A = + 00 y r = +00 si A = O). Entonces la serie converge 
absolutamente si Iz - zol < r y diverge si Iz - zol > r. Además la serie converge 
uniformemente en todo subconjunto compacto interior al círculo de convergenda. 

Demostración. Aplicando el criterio de la raíz (teorema 8.26), tenemos 

. nI Iz - zol 
hm sup V lan(z - zotl = -, 

n-+ O'J r 

y entonces 2;a,,(z - zo)n converge absolutamente si Iz- zol < r y diverge si 
Iz -zol > r. 

Para probar la segunda parte del teorema, basta observar que si T es un 
subconjunto compacto del círculo de convergencia, existe un punto p de T tal 
que z E T implica 

Iz - zol ::; Ip - zol < r. 

Luego lan(z - zotl ::; lan(p - zo)"l para cada z de T y entonces es aplicable el 

criterio M de Weierstrass. 

NOTA. Si el límite limn --+ oo lanlan + 1 1 existe (o si es + '00), su valor es igual al 
radio de convergencia de (14). (Ver el ejercicio 9.30.) 

Ejemplo 1. Las dos series L ;:;" o Z" y L;:'; ¡ z"/n2 tienen el mismo radio de conver­
gencia, r = 1. En la frontera del círculo de convergencia, la primera no converge 
en ningún punto, y la segunda converge en todos. 

Ejemplo 2. La serie L;:;"¡ z"/n tiene radio de convergencia r = 1, pero no converge 
en z = 1. Sin embargo, converge en todos los demás puntos de la frontera en virtud 
del criterio de Dirichlet (teorema 8.28). 

Estos ejemplos ponen de manifiesto porqué el teorema 9.20 no dice nada 
acerca del comportamiento de una serie de potencias en la frontera del círculo 
de convergencia. 

http://libreria-universitaria.blogspot.com
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Teorema 9.21 Supongamos que la serie de potenr;as L::'o a.(z - zo)" con­
verge para cada z de B(zo; r). Entonces la función f definida por la ecuación 

00 

f(z) = ¿ aiz - zo)" , si z E B(zo; r), (15) 
11;:::0 

es continua en B(zo; r). 

Demostración. Puesto que cada punto de B(zo; r) pertenece a algún subcon­
junto compacto de B(zo; r), la conclusión se deduce inmediatamente del teo-

rema 9.7. 

NOTA. Diremos que la serie (15) representa f en B(zo; r). Se llama también 
desarrollo de f en serie de potencias en torno de Zo. Las funciones que admiten 
un desarrollo en serie de potencias son continuas en el interior del círculo de 
convergencia. Sin embargo, se verifican mucho más que 'esto. Probaremos más 
ude1ante que tales funciones admiten derivadas de cualquier O'rden. en el interior 
del círculo de convergencia. Para demostrarlO' deberemos utilizar el siguiente 
teorema: 

T"orema 9.22. Supongamos que ~a,.(z - zo)n converge si z E B(zo ; r). Su­

pon~amos que la ecuación 
00 

fez) = L a,lz - Zo)", 
n=O 

rs válida para cada z de un cierto subconjunto abierto S de B(zo; r). Entonces, 
para cada punto Z, de S, existe un entorno B(z, ;R) ~ S en el que f tiene un 

de.Wlrrollo en serie de potencias de la forma 
00 

fez) = L bk(z (16) 
k=O 

en donde 

(k = 0, 1, 2, ' . . ). (17) 

Demostración. Si z 'E S, tenemos 

OC! 00 

fez) = ¿ a,,(z - zo)" = L an(z - Zl + Zl- zo)" 
n=O n=O 

00 00 

¿ ¿ cn(k), 
,,=0 k=O 
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en donde 

si k ::; n, 

si k > n. 

Ahora elegimos R tal que B(z,; R) ~ S Y suponemos que z E B(z,; R). Enton­
ces la serie reiterada L:: =o L::'=o c.(k) converge absolutamente, ya que 

00 00 00 00 

¿ ¿ Ic,,(k)/ = ¿ /a,,/(/z - Zl/ + /ZI 
n=O k=O ,,=0 

zo/)" = ¿ /a./(z2 - zo)", (18) 
n=O 

en donde 

Pero 
/Z2 - zol < R + IZl - zol ~ r, 

y por lo tanto la serie (18) converge. Entonces, por el teorema 8.43, podemos 
intercambiar el orden de sumación para obtener 

00 

¿ bk(z - z 1)\ 
k=O 

en donde bk está dado por (17). Esto termina la demostración. 

NOTA. En la demostración hemos visto que es posible utilizar cualquier R > ° 
con tal de que se verifique la condición 

B(z,; R) ~ S. (19) 

Teorema 9.23. Supongamos que :¿a,,(z - zoY' converge para cada z de B(zo ;r). 
Entonces la función f definida por medio de la ecuación 

00 

fez) = ¿ an(z - zo)", si z E B(zo; r), (20) 
n=O 

tiene una derivada fez) para cada z de B(zo; r) dada por 

00 

1'(z) = ¿ na,,(z - zo)"- l. (2]) 
11=1 
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NOTA. Las series dadas en (20) y en (21) tienen el mismo radio de conver­
gencia. 

Demostración. Supongamos que z, E B(zo; r) y desarrollemos f en serie de 
potencias en torno de z" tal como se indicó en (16). Entonces, si z E B(zl; R), 

Z:cF z" tenemos 

00 

'[~l~J(ZI2 = bl + ¿ bk+ 1(Z - Zlt. (22) 

Z - ZI k= I 

Por continuidad, el segundo miembro de (22) tiende hacia b, cuando z -+ z" 
Luego, fez ,) existe y es igual a b¡. Utilizando (17) para calcular b" obtenemos 

00 

b '" ( ),,-1 1 = L...J na" Z 1 - Zo • 
n = 1 

Puesto que z, es un punto arbitrario de B(zo; r), (21) queda del!!ostrado. Las 
dos series tienen el mismo radio de convergencia puesto que ::) n -> 1 cuando 

11 -- . oo. 

NOTA. Aplicando reiteradamente (21) obtenemos que para cada k = 1, 2, 
In derivada f<k )(Z) existe en B(zo; r) y viene dada por la serie 

00 , 

f(k)(z) = ¿ n. an(z - ZO)·-k. 
n=k (n - k)! 

Si en (23) hacemos z = Zo, obtenemos una fórmula realmente importante 

(k = 1, 2, _ . - ). 

(23) 

(24) 

Esta ecuación nos dice que si dos series de potencias Lan(z - zo}" y Lb.(z - zo}" 
representan ambas la misma función en un entorno B(zo; r), entonces an = bn 

para cada n. Esto es, el desarrollo en serie de potencias de una función f en 
torno de un punto dado Zo (si existe), es único y viene dado por la fórmula 

00 f(n)( ) 
fez) = ¿ -~ (z - Zo)", 

.=0 n! 

válida pan. todo z del círculo de convergencia. 
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9.15 MULTIPLICACIóN DE SERIES DE POTENCIAS 

Teorema 9.24. Dados dos desarrollos en serie de potencias en torno del ori­
gen, por ejemplo 

00 

fe z ) = ¿ a"z", si z 'E B(O; r) 
11 = 0 

y 
00 

g(z) = ¿ bnz", si z 'E B(O; r) 
11 = 0 

El producto f(z)g(z) viene dado por la serie de potencias 

en donde 

en 

f(z)g( z ) = ¿ c"z", 
Il = O 

n 

C" = ¿ akbn- k 
k= O 

si Z E B(O ; r ) n B(O; R), 

(n = O, 1, 2, . __ ). 

Demostración. El producto de Cauchy de las dos series dadas es 

y entonces la conclusión se sigue del teorema 8.46 (teorema de Mertens). 

NOTA. Si las dos series son idénticás, resulta 
00 

f( z )2 = ¿ c.z', 
n=O 

en donde c. = L~=o aka.-k = Lml+m2=' am¡am2· El símbolo Lm¡+m2=' indica 
que la suma -está extendida a todos los números enteros no negativos m, y m2 

cuya suma es n. Análogamente, para todo entero p > O, tenemos 

00 

f(z)P = ¿ c.(p)z', 
n=O 

en donde 
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9.16 EL TEOREMA DE SUSTITUCIóN 

Teorema 9.25. Dados dos desarrollos en serie de potencias en torno del ori­

~en, por ejemplo, 

00 

f(z) = ~ QnZn , si z E B(O; r) 
n=O 

y 00 

g(z) = ~ bnz
n
, si z E B(O; r) 

n=O 

,~/, para un Z fijo de B(O; R), tenemos L;:"=o Ibozol < r, entonces para este Z po­

dril/os escribir 

00 

f[g(z)] = ~ CkZk, 
k=O 

"n donde los coeficientes Ck han sido obtenidos como sigue: Definimos los nú· 

",{'ros bk(n) por medio de la ecuación 

NOTA. La serie ~f=o CkZk es la seri'e de potencias que se obtiene formalmente 
nI sustituir z por la serie g(z) en el desarrollo de f y al reordenar los términos 
en potencias crecientes de z. 

Di'lI/ostración. Por hipótesis, podemos elegir z de tal manera queL;:"=o Ibozol < r. 
Pura este z tenemos que Ig(z) I < r y entonces podemos escribir 

00 00 00 

f[g(z)] ~ Qng(z)" = ~ ~ anbk(n)zk. 
n=O n=O k=O 

Si podemos invertir el orden de sumación, obtenemos 
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que es pr'ecisamente lo que queremos demostrar. A fin de justificar el cambio 
en el orden de sumación, estableceremos la convergencia de la serie 

(25) 

Ahora bien, cada uno de los números bin) es una suma finita de la forma 

y entonces I bk(n) I :::; Lm, + ... +m"=k Ibm,1 . . . IbmJ Por otro lado tenemos 

(~ IbklZk)" = ~ Bk(n)zk, 

Volviendo a (25), tenemos 

y esto establece la convergencia de (25). 

9.17 RECíPROCA DE UNA SERIE DE POTENCIAS 

Como ~plicación d~l teorema de sustitución, probaremos que el recíproco de 
una serIe de potencIas en z es asimismo una serie de potencias en z en el su-
puesto de que el término constante no sea O. ' 

Teorema 9.26. Supongamos que 

00 

p(z) = ~ Pozo, si z E B(O; h), 
11=0 

con p(O) =1= O. Entonces existe un entorno B(O; S) en el que el recíproco de p 
posee un desarrollo en serie de potencias de la forma 

Además, qo = l/po· 

1 

p(z) 
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Demostración. Sin perder generalidad podemos suponer que Po = 1. [¿Por 
qué?] Entonces p(O) = 1. Sea P(z) = 1 + L~ 1 IPnznl si z E B(O; h). Por con­
tinuidad, existe un entorno B(O, 8) tal que IP(z) - 11 < 1 si z E B(O; 8). La con­
clusión se obtiene aplicando el teorema 9.25 a 

00 00 

f(z) = _ 1 --- = L zn 
1 - z n=O 

y g(z) = 1 - pez) = L Pnzn. 
n= 1 

9.18 SERIES REALES DE POTENCIAS 

Si x, x o, y a,. son números reales, la serie ~an(x - x o)n se llama serie real de 
I,o/encias. Su CÍrculo de convergencia determina en el eje real un intervalo 
(xlI-r. X o + r), llamado intervalo de convergencia. 

Cada serie real de potencias define una función real suma, cuyo valor en x, 
pura cada x del intervalo de convergencia, viene dado por 

00 

f(x) = L anCx - xo)"· 
n=O 

Se dice que la serie representa f en el intervalo de convergencia, y se denomina 
el ckmrrollo de f en serie de potencias en torno de X o• 

Dos problemas nos interesan ahora: 

1) Dada la serie, hallar las propiedades de la función suma f. 
2) Dada una función f. establecer si es posible o no desarrollarla en serie de 

potencias. 

Resulta que sólo cierto tipo especial de funciones admite un desarrollo en 
Herie de potencias. A pesar de esto, la clase de tales funciones incluye gran 
mlmero de las funciones que intervienen en la práctica; de ahí que su estudio 
Hea de gran importancia. 

La cuestión (1) se contesta por medio de los teoremas que ya hemos demos­
trado para series complejas de potencias. Una serie de potencias converge ab­
solutamente en cada x del sub intervalo abierto de convergenCia (xo-r, xo+r), y 
converge uniformemente en cada subconjunto compacto de este intervalo. Dado 
que cada término de la serie de potencias es continuo en R, la función suma f 
es continua en cada subconjunto compacto del intervalo de convergencia y por 
lo tanto f es continua en (xo - r. X o + r). 

A causa de la convergencia uniforme, el teorema 9.9 nos dice que podemos 
integrar una serie de potencias término a término en cada subintervalo cerrado 
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contenido en el intervalo de convergencia. Entonces, para cada x de (xo - r, 
X o + r) tenemos 

I
x 00 IX 00 

f(t) dt = ¡: an (t - X O)" dt = L ~ (x - XO)"+l. 
Xo n-O Xo n = o n + 1 

La serie obtenida por medio de la integración tiene el mismo radio de con­
vergencia. 

La función suma posee derivada de orden cualquiera en el intervalo de 
convergencia y ésta se obtiene derivando la serie término a término. Además 
f(n)(xo) = n lan y por lo tanto la función suma está representada por la serie 
de potencias 

00 f '(n)( ) 
f(x) = L ~ (x - xo)" . 

n=O nl 
(26) 

Volvamos ahora a la cuestión (2). Supongamos que nos han dado una fun­
ción real f definida en un cierto intervalo abierto (xo - r. X o + r), y suponga­
mos que f posee derivada de cualquier orden en este intervalo. Entonces pode­
mos formar ciertamente la serie de potencias que aparece en el miembro de la 
derecha en (26). La serie así obtenida, ¿es convergente en algún punto x ade­
más de x = x o? Si lo es, ¿su suma es igual a f(x)? En general, la respuesta a 
ambas preguntas es «No)). (Ver en el ejercicio 9.33 un contraejemplo.) Una 
condición necesaria y suficiente para que la respuesta a ambas preguntas sea 
afirmativa se da en la sección que sigue con ayuda de la fórmula de Taylor 
(teorema 5.19). 

9.19 SERIE DE TAYLOR GENERADA POR UNA FUNCIÓN 

Definición 9.27. Sea f una función real definida en un intervalo l de R. Si f 
tiene derivada de cualquier orden en cada punto de l. escribiremos fE COO en l. 

Si fE COO en un entorno del punto c. la serie de potencias 

~f(n)(e) 
L.J -- (x - e)", 
n=O n! 

se llama la serie de Taylor generada por f en torno de c. Para indicar que f 
genera esta serie, escribimos 

00 f(n )() 
f(x) ~ L _ e (x - e)". 

"=0 nl 
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La cuestión que nos interesa es la siguiente: ¿Cuándo es posible reemplazar 
el símbolo v-- por el símbolo =? La fórmula de Taylor establece que si fE CCO 
en el intervalo cerrado [a, b) y si e E [a, b), entonces, para cada x de {a, b) y 
para cada n, tenemos 

n- ¡ f(k)( ) f(II)( ) 
f(x) = L _ _ c (x - et + _ _ ~ 1_ (x - e)n, 

k=O k! n! 
(27) 

en donde Xl es un cierto punto comprendido entre x y c. El punto Xl depende 
de x, de c, y de n. Luego una condición necesaria y suficiente para que la serie 
de Taylor converja hacia f(x) es que 

. ¡<n)(x¡) 11 

11m ---- -- - (x - e) = O. 
n-+oo n! 

(28) 

En la práctica puede resultar bastante difícil manejar este límite dado que la 
rmsición de Xl es desconocida. En algunos casos, sin embargo. es posible hallar 
uno cota superior de j<n)(xJ conveniente y puede demostrarse que el límite 
eH cero. Puesto que A"'/n! -4 O cuando n -400 para todo A, la ecuación (28) se 
verificará si existe una constante positiva M tal que 

pum lodo .x de (a, b) . En otras palabras, la serie de Taylor de una función f 
converge si la n-ésima derivada f<n) no sobf'epasa la n-ésima potencia de algún 
número positivo. Esto se establece más formalmente !!n el siguiente teorema. 

7','ortllna 9.28. Supongamos que fE COO en la, b] y sea c E [a, b]. Supon­
l/milos que existe un entorno B(c) y una constante M (que puede depender de c) 
Itll que !f<")(x)1 < Mn para cada x de B(c) n [a, b) y cada n = 1, 2, ... En­
IOf/C'('S, para cada x de B(c) n {a, ~), tenemos 

00 f(II)( ) 
f(x) = 1: __ c (x - e)". 

11=0 n! 

C).20 TEOREMA DE BERNSTEIN 

En esta sección vamos a deducir otra condición suficiente para la convergen­
cia de la serie de Taylor de f, formulada por S. Bernstein. Para simplificar la 
dcmostración obtendremos ante todo otra expresión de la fórmula de Taylor 
cn la que el término complementario viene dado por una integral. 

f 
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Teorema 9.29. Supongamos que f tiene una derivada continua de orden 
n + 1 en un intervalo abierto 1 que contenga a c, y definamos En(x) para 
cada x de 1 por medio de la ecuación 

n ¡<k) 
f(x) = L ~ (x - ct + EII(x). 

k=O k! 

Entonces En(x) está dada también por la integral 

En(x) = - (x - t)"¡<n+l)(t)dt. 1 IX 
n! e 

(29) 

(30) 

Demostración. La demostración se hace por inducción sobre n. Para n = 1 
tenemos 

E¡(x) = f(x) - f(e) - f'(e)(x - e) = r [f'(t) - f'(e)] dt = r u(t) dv(t). 

en donde u(t) = f(t) - f(c) y v(t) = t - x. La integración por partes da 

r u(t) dv(t) = u(x)v(x) - u(e)v(e) - l~ v(t) du(t) = r (x - t)f"(t) dt. 

Esto prueba (30) para n = 1. Ahora supongamos que (30) es verdadero para n 
y lo probaremos para n + 1. De (29) tenemos 

Pongamos E,,(x) en forma de integral y observemos que (x - c)n+I = 
(n + 1) S: (x - t)" dt. Se obtiene 

En+l(X) = , (x - ttf(II+1)(t) dt - c (x - t)n dt 1 IX f(lI+ ¡)( ) IX 
n. e n! e 

= ~ IX (x - t)" [f(n+l)(t) - f(lI+l)(e)] dt = 1.- IX u(t) dv(t). 
n. e n! e 
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en donde u(t) = f<n+1)(t) - f<n+l)(e) y v(t) = -(x - t)n+lf(n + 1). La 
integración por partes nos da 

1 IX 1 IX En+l(X) = - , v(t) du(t) = ,(x - t)" +lf<n+2)(t) dt. 
n. e (n + 1). e 

Esto prueba (30). 

NOTA. El cambio de variables t = x + (e - x)u transforma la integral de (30) 
en la forma 

En(x) = - unf<n+ Il[x + (e - x)u] duo (X e)n+ 1 JI 
n! o 

(31) 

7','orema 9.30 (Bernstein). Supongamos que f y todas sus derivadas sean 
no neRativas en un intervalo compacto [b, b+r]. Entonces, si b < x < b+r, la 
.\'C'ríe de T ay/or 

00 L f(k) (b)(~_-bY' 
k=O k! 

,'Of/vage hacia f(x). 

I>r II/osl ración. Para una translación podemos suponer b = O. El resultado es 
trlvinl si x = O luego supondremos que O < x < r. Utilizaremos la fórmula de 
Tuylor con resto y escribiremos 

n ¡<k)(O) k 
f(x) = L .. _-x + En(x). 

k=O k! 
(32) 

('omprobaremos que el término complementario satisface las desigualdades 

(
x)n+ 1 

O :::; E.(x):::; -;. fe!") . (33) 

Fslo implica que En(x) - O cuando n -CJ:) ya que (~/r)" +l - O SI O < X < r 
Para probar (33) se usa (31) con c = O Y se obtiene 

n+ 1 JI E (x) = x -- un¡<n + ()(x - xu) du, 
11 , . 

n. o 

t 
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para cada x de [O, r]. Si x * O, sea 

Fn(x) =; _n_ = - unf<n+ I)(X - xu) duo E (x) 1 JI 
xn+1 n! O 

La función f<n+l) es monótona creciente en [O, r] ya que su derivada es no 
negativa. Por consiguiente tenemos 

f<n+l)(X - xu) = ¡<n+1)[x(l - u)] ~ f<n+1)[r(1 - u)], 

si O < u< 1, y esto implica Fn(x) <Fn(r) si' O < x < r. En otras palabras, 

EnCX)/X"+1 ~ En(r)/rn+1, 

o 

(
x)n+ 1 

En(x) ~ ~ En(r). (34) 

Haciendo x = r en (32), vemos que En(r) < f(r) ya que cada término de la 
suma es no negativo. Substituyendo en (34), se obtiene (33) que, a su vez, 
termina la demostración. 

9.21 LA SERIE BINóMICA 

A modo de ejemplo, que ilustre el uso del teorema de Bernstein, obtendremos 
el siguiente desarrollo, conocido con el nombre de serie binóml'ca: 

(1 + xt = t (a) 'xn
, 

n=O n 
si -1 < x < 1, (35) 

donde a es un número real arbitrario y 

(
a) = a( a - 1)'" (a - n + 1) . 
n n! 

El teorema de Bernstein no es directamente aplicable en este caso. Sinem­
bargo, podemos argumentar como sigue: Sea f(x) = (1 - x)-C, en donde c > O 
Y x < 1. Entonces 

f<n)(x) = e(e + 1)'" (e + n - 1)(1 - x)- c-n, 
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y por 10 tanto f(nJ(x) ~ O para cada n, con tal que x < 1. Aplicando el teorema 
de Bernstein con b = -1 Y r = 2, hallamos que f(x) tiene un desarrollo en 
serie de potencias en torno al punto b = -1, convergente para -1 < x < 1. 
Por 10 tanto, en virtud del teorema 9.22, f(x) tiene también desarrollo en serie 

de potencias en torno a O, f(x) = 1: ¡<kJ(O)xkjk!, convergente para -1 < x < 1. 
k=O 

Pero f(kJ(O) = (~c) (_l)kk!; luego 

~1_ = 1: (-e) (-IYx\ 
(1 - xy k=O k 

si O <x < 1 (36) 

Sustituyendo en (36) e por -a y x por -x, encontramos que (35) es válida 
también para cada a < O. y ahora, por integraciones sucesivas, la ecuación (35) 
se puede extender a todo a real. 

Es evidente que si a es un entero positivo, por ejemplo a = m, entonces 
(::,) = O para n > m y (35) se reduce a una suma finita (teorema del binomio). 

.).22. TEOREMA DEL LíMITE DE ABEL 

Si - 1 < x < 1, la integración de la serie geométrica 

1 00 

_ =¿xn 
1 - x n=O 

nos da el desarrollo en serie 
00 ., 

In (l-x)= - ¿~, 
• = 1 n 

(37) 

v:Hido también para -1 < x < 1. Si hacemos x = -1 en el segundo miem­
hro de (37), obtenemos una serie alternada convergente, ~(-1)n+l/n. ¿Pode­
mos también hacer x = -1 en el primer miembro de (37)? El teorema que 
sigue responde a esta pregunta afirmativamente. 

7','ormnn 9.31 (Teorema del límite de Abel). Supongamos que tenemos 

00 

f(x) = ¿ a.xn
, si -r < x < r. (38) 

n=O 

Si la serie converge también en x = r, entonces ellimx -><- f(x) existe y se tiene 

r 
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00 

lim f(x) = ¿ anr
n

. 
x-+r- n=O 

Demostración. Para simplificar, suponemos que r = 1 (esto equivale a un 
cambio de escala). Entonces tenemos que f(x) = ~a"xn para -1 < x < 1 Y 
que ~an converge. Hagamos f(1) = :L:'=o an° Probaremos que lim.2Hc f(x) = f(1), 
o, en otras palabras, que f es continua por la izquierda en x = 1. 

Si multirlicamos la serie de f(x) por la serie geométrica y aplicamos el teo­
rema 9.24, obtenemos 

Luego tenemos 
00 

f(x) - f(l) = (1 - x) ¿ [cn - f(l)]xn
, si -1 < x < 1. (39) 

n=O 

Por hipótesis, limn -> 00 en = f(1). Por consiguiente, dado E > O, podemos hallar 
un N tal que n > N implique len - f(1)1 < E/2. Si dividimos la suma (39) en 
dos partes, obtenemos 

N-l 00 

f(x) - f(1) = (1 - x) ¿ [cn - f(I)]xn + (1 - x) ¿ [cn - f(1)]xn
• (40) 

n=O n=N 

Sea M el mayor de los N números len - f(1)I, n = O, 1, 2, ... , N -1. Si 
O < x < 1, de (40) se obtiene 

00 

If(x) - f(l)1 :S ~l - x)NM + (1 - x) ~ ¿ x' 
2.=N 

e x N e 
= ' (1 - x)NM + (1 - x) - - - < (1 - x)NM + - . 

21 - x 2 

Ahora sea ~ = E/2NM. Entonces O < 1 - x < ~ implica If(x) - f(1)1 < E, que 
significa limx ->¡" f(x) = f(1). Esto termina la demostración. 

Ejemplo. Si hacemos x = - 1 en (37) obtenemos 

00 (_1)'+1 
In 2 = ¿-'---'--

n=1 n 

(Véase en el ejercicio 8,18 otra deducción de esta fórmula .) 
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Como aplicación del teorema de Abel podemos deducir el siguiente resultado 
referente a la multiplicación de series: 

Teorema 9.32. Sean ¿~o an y ¿~o bn dos series convergentes y sea ¿~o Cn 

su producto de Cauchy. Si ¿~o Cn converge, tenemos 

NOTA. Este resultado es análogo al teorema 8.46 salvo en el hecho de que no 
suponemos que una de ambas series tenga que ser absolutamente convergente. 
Sin embargo, debemos suponer que su producto de Cauchy es convergente. 

Demostración. Las series de potencias ~anX" y ~bnxn son ámbas convergen­
tes para x = 1. Y por tanto convergen en el entorno B(O; 1). Mantenemos Ixl < 1 
Y escribimos 

ulili/,ando el teorema 9.24. Ahora hacemos que x~ 1- y aplicamos el teo­
rema de Abe!. 

C).2:¡ TEOREMA DE T AUBER 

ni recíproco del teorema del límite de Abel. en general. es falso . Esto es. si f 
vienc dada por (38). el límite f(r-) puede existir sin que la serie ~an1'" tenga 
lluC scr convergente. Por ejemplo. hagamos a,. = (-1)". Entonces f(x) = 1/(1 +x) 
NI - I < x < 1 Y f(x) ~ t cuando x ~ 1-. Sin embargo. ~(-1)" diverge. 
A. Tauber (1897) descubrió que imponiendo ciertas restricciones a los coefi­
cientes a,,, es posible obtener un recíproco del teorema de Abe!. Actualmente 
HC conoce gran número de tales resultados y reciben el nombre de teoremas 
tal/heril/nos. El más sencillo de ellos. conocido a veces como primer teorema 
di' Tl/uher, es el siguiente: 

'/'f'oremn 9.33 (Tauber). Sea f(x) = ¿:=o an~ para -1 < x < l. Y supon-
1:(1/1/0$ que limn-+ oo na,. = O. Si f(x) ~ S cuando x ~ 1-. entonces ¿ := o all con­
I'('r1:(' y tiene suma S. 

-- --
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Demostración. Sea nuo = ¿Z=o klakl . Entonces CTn -+ O cuando n -+ oo. (Ver la 
nota que sigue al teorema 8.48.) También. limn-+ oo f(x",) = S si Xn = 1 - I/n. 
Luego. dado E > O. podemos elegir N tal que n > N implique 

e 
u < -

11 3 ' 

Ahora sea Sil = ¿~=o ak • Entonces, para -1 < x < 1, podemos escribir 

11 00 

s" - S = f(x) - S + L ak(1 - Xk) - L akxk
• 

k=O k=n+l 

Mantenemos ahora x en (O. 1). Entonces 

(1 - Xk) = (1 - x)(1 + x + ... + Xk-I) :::; k(1 - x), 

para cada k. Por consiguiente. si n > N Y O < x < l. tenemos 

ISII - SI :::; If(x) - SI + (1 - x) ~ klad + 3n(1 e_ x) 

Haciendo x = X n = 1 - l/n, obtenemos ISn - SI < eJ3 + eJ3 + eJ3 = e. Esto 
termina la demostración. 

NOTA. Ver en el ejercicio 9.37 otro teorema tauberiano. 

EJERCICIOS 

Convergencia uniforme 

9.1 Supongamos que in ~ i uniformemente en S y que cada in está acotada en S. 
Probar que {fn} es uniformemente acotada en S. 

9.2 Definimos dos sucesiones Un} y {gn} como sigue: 

f.(X)=X(I+~) sixER, n=1.2 ..... 

{ 

1 si x = O o si x es irracional, 

g.(x) = ~ 1 . l a 
b + si x es racional, por eJemp o x = -, b > O. 

n b 

Sea hn(x) = in(x)gn(x), .' 
a) Probar que tanto U,,} como {gn} convergen umformemente en cada mter-

valo acotado. 
b) Probar que {h,.} no converge uniformemente en ningún intervalo acotado. 

APOSTOL, análisis - 11 
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9.3 Supongamos que fn ~ f uniformemente en S, g" ~ g uniformemente en S. 
a) Probar que f" + Rn ~ f + g uniformemente en S. 
b) Sea h"(x) = j~(x)gn(x), h(x) = f(x)g(x), si x E S. El ejercicio 9.2 prueba que 

la afirmación h" ~ h uniformemente en S, en general, es falsa. Probar que 
es correcta si cada fn y cada g" está acotada en S. 

9.4 Supongamos que fn ~ f uniformemente en S y supongamos que existe una 
constante M > ° tal que If,,(x)1 s M para todo x de S y todo n. Sea g una función 
wntinua en la frontera del círculo B(O; M) Y definamos h,,(x) = g[f,,(x)], h(x) = 
gfl(x)] si x E S. Probar que hn ~ h uniformemente en S. 
9.5 a) Sea fl/(x) = l/(nx + 1) si 0< x < 1, n = 1, 2, ... Probar que Un} converge 

puntualmente pero no converge uniformemente en (0, 1). 
b) Sea g,,(x) = x/(nx + 1) si 0< x < 1, n = 1, 2, ... Probar que gn ~ ° uni­

formemente en (0, 1). 
9.6 Sea f,,(x) = x". La sucesión U,,} converge puntualmente pero no uniforme­

I1ll:nte en [0, 1]. Sea g continua en [O, 1], con g(l) = O. Probar que la sucesión 
f,l.'(x).r"} converge uniformemente en [O, 1J. 
9.7 Supongamos que fn ~ f uniformemente en S, y que cada fn es continua en S. 

Si .r ( . S. sea {x,, } una sucesión de puntos deS tal que x" ~ x. Probar que 
!,,(.X,,) -~ f(x). 

9.8 Sea {f,,} una sucesión de funciones continuas definidas en un conjunto com­
~1Ic(O S y supongamos que Un} converge puntualmente en S hacia una función 
limite f. Probar que t,n ~ f uniformemente en S si, y sólo si, se cumplen las dos 
l'ondiciones siguientes: 

i) La función límite f es una función continua en S. 
ii) Para cada ~ > 0, existe un m > ° y un <') > O tales que n> m y It,.,cx) - f(x)1 

<.~ implican Ih+n(x) - f(x)1 < s para todo x de S y todo k = 1, 2, , .. 
/1II!inll'i¡}lI . Para probar la suficiencia de (i) y (ii), demuéstrese que para cada Xo 
de S existe un entorno B(xo) y un entero k (dependiente de x o) tal que 

Ifk(x) - f(x) 1 < b si x E B(xo). 

F.n virtud de la compacidad existe un conjunto finito de enteros, por ejemplo 
A = (1.:, .... , k r }, que verifica la propiedad de que, para cada x de S, algún k de A 
NIItisf:n;c Ih(x)- f(x)1 < O. La convergencia uniforme es una consecuencia inmediata 
de este hecho, 

9.9 a) Usar el ejercicio 9.8 para demostrar el siguiente teorema de Dini: Si U",} 
es una sucesión de funciones reales continua que converge puntualmente 
hacia una función límite continua f en un conjunto S. y si f .. (x) ¿ fn +1 (x) 
para cada x de S y cada n = 1, 2, .. " entonces fn ~ f uniformemente en S. 

b) Utilizar la sucesión del ejercicio 9.5(a) para demostrar que la compacidad 
de S es esencial en el teorema de Dini. 

9.10 Sea fn(x) = nCx(l- x2)n para x real y n ¿ 1. Probar que Un} converge pun­
tu:dmente en [O, 1] para cada número real c, Determinar aquellos c para los que la 
convergencia es uniforme en [0, 1] Y aquellos en los que la integración término 
a término en rO, 11 conduce a un resultado correcto. 
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9.11 Probar que ~xn(l - x) converge puntualmente pero no uniformemente en 
[0, 1], mientras que ~(-I)"x"(1 -x) converge uniformemente en [0, 1]. Este hecho 
ilustra que la convergencia uniforme de ~f,n(x) junto con la convergencia puntual 
de :¿lfn(x)1 no implica necesariamente la convergencia uniforme de ~lf,,(x)l, 
9.12 Supongamos que gn+,(x) ~ g • .(x} para cada x de T y cada n = 1, 2, , .. , Y su­
pongamos que g" ~ ° uniformemente en T. Probar que 2;( _l)nHg",(x) converge 
uniformemente en T. 
9.13 Probar el criterio de Abel para la convergencia uniforme : Sea {g,,} una su­
cesión de funciones reales tales que g",+ ,(x) ~ g,,(x) para cada x de T y cada 
n = l, 2, ... Si {gn} es uniformemente acotada en T y si 2;fn(x) converge unifor­
memente en T, entonces ~f,,(x)g .. (x) también converge uniformemente en T. 
9.14 Sea f,,(x) = x/(l + nx2

) si x E R. n = 1, 2, ... Hallar la función límite f de la 
sucesión {f,n} y la función límite g de la sucesión {f",}. 

a) Probar que f'(x) existe para cada x pero que 1'(0) *' g(O). ¿Para qué valores 
de x se tiene f'(x) = g(x)? 

b) ¿En qué subintervalos de R. f n ~ f uniformemente? 
c) ¿En qué subintervalos de R. t'" ~ R uniformemente? 

9.15 Sea f ,,(x) = (l /n)e-n':C' si x E R. n = l, 2, .. . Probar que f" ~ O uniformemente 
en R. que f '" ~ ° puntualmente en R. pero que la convergencia de {f',,) no es uni­
forme en ningún intervalo que contenga al origen. 
9.16 Sea Un} una sucesión de funciones reales continuas definidas en [0, 1] Y su­
pongamos que f.n ~ f uniformemente en [0, l]. Demostrar si es cierta o no la 
igualdad 

J
l-1 /" JI 

lim /,,(x) dx = f(x) dx. 
n-+OO o o 

9.17 Matemáticos de Slobbovia decidieron que la integral de Riemann era dema­
siado complicada y la reemplazaron por la integral Slobboviana, definida como si­
gue: Si f es una función definida en el conjunto Q de los números racionales de 
[O, 1], la integral Slobboviana de f. designada por Se!), es el límite 

1" (k) S(!) = lim - L f - , 
" ... '" n k= 1 n 

en el supuesto de que este límite exista. Sea U,,} una suceslOn de funciones tales 
que sCt,,) existe para cada n y tal que fn ~ f uniformemente en Q. Probar que {SCt,,)} 
converge, que S(f) existe, y que S(f,,) ~ S(f) cuando n~· oo. 
9.18 Sea f,,(x) = 1/(1 + n2 x2

) si ° ~ x ~ 1, n = 1, 2, ... Probar que Un} converge 
puntualmente en [O, l] pero no uniformemente. ¿Es posible la integración término 
a término? 
9.19 Probar que L:;,"'= 1 x/n"(l + nx2

) converge uniformemente en cada intervalo 
finito de R si ct > t. ¿Es uniforme la cOl}ver!?encia en R? 
9.20 Probar que la serie L:;,"'=1 ( -l)n/ --.ln) sen(1 + (X/II») converge uniformemente 
en todo subconjunto compacto de R. 
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9.:U Probar que la serie L~o (x 2.+ 1 /(2n + 1) - x·+ 1/(2n + 2») converge puntual­
mente pero no uniformemente en [0, 1]. 
9.22 Probar que L~ 1 a. sen nx y L::':l an cos nx son uniformemente convergentes 
en R si L::': 1 la.1 converge. 
9.23 Sea {an} una sucesión decreciente de términos positivos. Probar que la serie 
~(/11 sen nx converge uniformemente en R si, y sólo si, na" ~ O cuando n ~ oo. 

9.24 Dada una serie convergente 'L:'= 1 an , probar que la serie de Dirichlet 
~:.:. I u.n- s converge uniformemente en el semiintervalo infinito O::;; s < +00. Utili­
:.',IIT este resultado para demostrar que lims-+o+ L~ 1 a.n- s = L~ 1 a •. 
9.25 Probar que la serie C(s) = L~l n- S converge uniformemente en todo semiin­
tervalo infinito de la forma 1 +h::;; s < +óo, en donde h > O. Probar que la ecuación 

00 In n 
e'(s) = - L-s 

.=1 n 

e~ vdlida para cada s> 1 Y obtener una fórmula análoga para Ola k-ésima deri­
vlldll Vk )(S). 

('onverKencia en media 

9.26 Sea f,,(x) = n' /2xe - n'X'. Probar que {f,,,} converge puntualmente hacia O en 
r l. 11 pero que l.e.m. ,,_00 ~n.:i= O en [-1, 1]. 
9.27 Supongamos que {fn} converge puntualmente hacia I en [a, b] y que l.e.m.,,_oo In 
- ~, t'n [l/, h] . Probar que t = g si ambas funciones son continuas en [a, b]. 
9.2" Sea ¡,,(x } = cos" x si O::;; x::;; rr. 

u) Probar que l.e.m. n_oo tn = O en [O, rr] pero que {fn(rr)} no converge. 
h) Probar que {fn} converge puntualmente pero no uniformemente en [O, rr/2]. 

9.29 Sea ¡,,(x} = O si O::;; x ::;; l /n o si 2/n ::;; x ::;; 1, y sea t ,,(x) = n si I/n < x < 2fn. 
I'ruhur que {f",} converge puntualmente hacia O en [O, 1] pero que l.e.m.n -+oo t" =1=- O 
l'11 ¡O. 1]. 

Nl'rlcM de potencias 

9.JO Si ,. es el radio de convergencia de 2;a .. (z - zo )n, siendo a" =1= O, probar que 

lim inf I~I ~ r ~ lim sup I~I· 
n-+ OO Qn+1 n~oo an + 1 

9.JI En el supuesto de que la serie de potencias L~o a"z" tenga radio de conver­
v,¡'IKia 2. hallar los radios de convergencia de cada una de las series siguientes: 

u) L a~z", 
" .: () 

FII (a) y (h). k es un entero positivo fijo . 

00 

c) L a.z n 2
• 

n=O 

-
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9.32 Considérese una serie de potencias L:'=o a.x· cuyos coeficientes están relacio­
nados por una ecuación de la forma 

(n = 2,3, ... ). 

Probar que para todo x para el que la serie converge, su suma es 

ao + (al + Aao)x 
1 + Ax + BX2 

9.33 Sea I(x) = r 1/:C' si x =1=- 0, 1(0) = O. 

a) Probar que 1(")(0) existe para todo n;::: l. 

b) Probar que la serie de Taylor en torno de Xo = O generada por I converge 
en todo R, pero sólo representa a f en el origen. 

9.34 Probar que la serie binómica (1 + xt = L'%o (:) x· presenta el siguiente 

comportamiento en los puntos x = ± l . 

a) Si x = -1 , la serie converge para a > 0 Y diverge para ct < O. 

b) Si x = 1, la serie diverge para ct ::;; -1, converge condicionalmente en el 
intervalo - 1 < ct < O, Y converge absolutamente para ct ;::: o. 

9.35 Probar que 2;a"X" converge uniformemente en [O, 1] si 2;a" converge. Utilizar 
este resultado para dar otra demostración del teorema del límite de Abe!. 
9.36 Si cada an ;::: O Y si 2;an diverge, probar que 2;a",X" ~ +00' cuando x -41-. 
(Suponer que 2;a.nX" converge para Ixl < l.) 
9.37 Si cada an ;::: O Y si limx_ 1 - 2;a"xn existe y es igual a A, entonces 2;an con­
verge y su suma es A . (Comparar con el teorema 9.33.) 
9.38 Para cada número real t, definimos tt(x)=xe"t/(e"-I) si xER, x=l=-0, 
tt(O} = 1. . 

a) Probar que existe un círculo B(O; ó) en el que cada tt admite un desarrollo 
en serie de potencias en x. 

b) Definir Po(t), PI(t), P 2(t), ... , por medio de la ecuación 

00 x" 
¡;(x) = L p.(t) , ' 

.=0 n. 
si x E B(O; <5) 

y usar la identidad 

00 x" 00 x" L Pit) , = e1x L P.(O) I 
.=0 n. n=o n. 

para probar que P,,(t) = LZ=o (:) Pk(O)t n
-

k. Esto demuestra que cada fun­

ción P n es un polinomio. Éstos son los polinomios de Bernoulli. Los núme-

http://libreria-universitaria.blogspot.com
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ros Bn = P,,(O), (n = O, 1, 2, ... ) se llaman números de Bernou/li. Deducir 
las propiedades siguientes: 

c) Bo = 1, Bl = -!, 'i: (;) Bk = O, si n = 2,3, ... 
k=O 

d) P~(t) = nPn_1(t), si n = 1,2, .. . 

e) Pn(t + 1) - Pn(t) = nt n - 1 si n = 1,2, ... 

f) PnC1 - t) = (-l)nPnCt) g) B2n +1 = O si n = 1,2, ... 

h) In + 2n + ... + (k - l)n = ~n+.l(k) - Pn+1(O) (n = 2,3, ... ). 
n + 1 
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CAPíTULO 10 

La integral de Lebesgue 

10.1 INTRODUCCIóN 

La iIitegral de Riemann J~f(x) dx, tal como fue desarrolla en el capítulo 7, 
está bien motivada, es fácil describirla, y es útil a todas las necesidades del 
Cálculo elemental. Sin embargo, esta integral no cubre todas las necesidades 
del Análisis superior. En este capítulo daremos la integral de Lebesgue, que es 
una extensión de la integral de Riemann. La integral de Lebesgue permite 
integrar funciones más generales, trata simultáneamente funciones acotadas y no 
acotadas, y permite reemplazar el intervalo [a, b] por conjuntos más generales. 

En la integral de Lebesgue se cumplen un mayor número de teoremas de 
convergencia. Si una sucesión de funciones {in} converge puntualmente hacia 
una función límite f en la, b], sería deseable poder concluir que 

liro fb fn(x) dx = fb f(x) dx 
n- C() a a 

con un mínimo de hipótesis adicionales. El resultado definitivo en este sentido 
es el teorema de convergencia dominada de Lebesgue, que permite integrar tér­
mino a término si cada {in} es una función integrable de Lebesgue y si además 
la sucesión está dominada por una función integrable de Lebesgue. (Ver teo­
rema 10.27.) En este teorema las integrales de Lebesgue son esenciales. El 
teorema es falso para integrales de Riemann. 

En el método de Riemann, el intervalo de integración se subdivide en un 
número finito de subintervalos. En el de Lebesgue, el intervalo se subdivide 
en conjuntos de un tipo más general llamados conjuntos medibles. En un tra­
bajo clásico, Integral, longuer, aire, publicado en 1902, Lebesgue da la defini­
ción de medida para un conjunto de puntos y lo aplica al desarrollo de esta 
nueva integral. 

Desde este primer trabajo de Lebesgue, tanto la teoría de la medida como 
la teoría de la integración han sufrido muchas generalizaciones y modificaciones. 
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Los trabajos de Young, Daniell, Riesz, Stone y otros han probado que la in­
tegral de Lebesgue puede introducirse de tal manera que no dependa de la 
leoría de la medida sino que esté orientada directamente a las funciones y sus 
inlegrales. En este capítulo se sigue este método, tal como fue iniciado en la 
referencia 10.10. El único concepto de la teoría de la medida que necesitare­
mos es el de conjunto de medida cero, que es un concepto muy simple que 
ya fue introducido en el capítulo 7. Más adelante, indicaremos brevemente 
cl\mo. por medio de la integral de Lebesgue, es posible desarrollar la teoría 
de la medida. 

10.2 INTEGRAL DE UNA FUNCIÓN ESCALONADA 

El método que presentaremos aquí consiste en definir primeramente la 
illlegral de las funciones escalonadas, después para una clase más amplia de 
funciones (llamadas funciones superiores) que contiene los límites de ciertas su­
cesiones crecientes de funciones escalonadas, y finalmente para una clase igual­
mente más amplia, la de las funciones integrables de Lebesgue. 

Recordemos que una función s, definida en un intervalo compacto [a, b], se 
lIU1ll1l función escalonada si existe una partición P = {x o' XI' .. . , x,, } de [a, b] 
tul que s es constante en cada subintervalo abierto, por ejemplo 

t Inll función escalonada es integrable de Riemann en cada subintervalo [Xk- l' Xk] 
y HU integral sobre el mismo viene dada por 

independientemente de los valores de s en los extremos. La integral de Rie­
munn de s en ¡(a, b] es por consiguiente igual a la suma 

lb s(x) dx = ~ Ck(Xk - x k - 1)' (1) 

NOTA . La teoría de Lebesgue puede desarrollarse sin necesidad de tener un 
conocimiento previo de la integración de Riemann, utilizando la ecuación (1) 
como definición de la integral de una función escalonada. 

Debe observarse que la suma en (1) es independiente de la elección de P 
mientras s sea constante en los subintervalos abiertos de P. 

Es conveniente eliminar la restricción que supone exigir que el dominio de 
una función escalonada sea compacto. 

• 
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Definición 10.1. Supongamos que l designa un intervalo cualquiera (acotado, 
no acotado, abierto, cerrado o semiabierto). Una función s es una función es­
calonada en l si existe un sub intervalo compacto [a, b] de l en el que s sea una 
función escalonada en [a, b], si además s(x) = O para x E 1- [a, b]. La inte­
Rral de s en 1, designada por JI s(x) dx o por JI s, es la integral de s en [a, b], 
dada por (1). 

Existen, naturalmente, muchos intervalos compactos fuera de los cuales la 
funr¡ón s se anula, pero la integral de s es independiente de la elección de [a, b]. 

La suma y el producto de dos funciones escalonadas es una función esca­
lonada. Las propiedades de la integral de funciones escalonadas que se dan a 
continuación se deducen inmediatamente de la anterior definición: 

f, (s + t) = f, s + f, l, 

f,s~ f,t 
f, cs = C f, s para toda constante e, 

si s(x) < t(x) para todo x de 1. 

Además, si se expresa l como la reunión de un conjunto finito de subinterva­
los, por ejemplo 1 = U ~ = 1 [a" br ], en la que dos subintervalos carecen de 
puntos interiores comunes, entonces 

r P fb. 
JI s(x) dx = ~ Q. s(x) dx. 

10.3 SUCESIONES MONÓTONAS DE FUNCIONES ESCALONADAS 

Una sucesión de funciones reales {I,,} definida en un conjunto S es creciente 
en S si 

fnCx) ~ J.+l(X) para todo x de S y todo n. 

Una sucesión decreciente es la que verifica la desigualdad invertida. 

NOTA. Recuerde el lector que un subconjunto T de R tiene medida O si, para 
cada E > O, es posible recubrir T por medio de una colección numerable de 
int-ervalos, la suma de cuyas longitudes es menor que E. Se dice que una pro­
piedad se verifica casi en todo un conjunto S (y se escribe : c.e.t. S) si se veri­
fica en todo S salvo en un conjunto de medida O. 
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NOTACIÓN. Si {in} es una suceSlOn creciente de funciones definidas en S tal 
que fin -+ f casi en todo S, escribiremos 

c.e.t. S. 

Análogamente, la notación fn '\¡ f c.e.t. S significa que Un} es una sucesión 
decreciente en S que converge hacia f casi en todo S. 

El teorema que sigue está relacionado con las sucesiones decrecientes de 
funciones escalonadas en un intervalo cualquIera 1. 

"'f'or(~rna 10.2. Sea {s",} una sucesión decreciente de funciones escalonadas 
"0 neKativas tal que Sn '\¡ O c.e.t. un intervalo l. Entonces 

()t'lIIostración. La idea de la demostración consiste en escribir 

en donde tanto A como B es la reunión finita de intervalos. El conjunto A se 
ohtiene eligiendo aquellos intervalos en los que el integrando es pequeño cuan­
do n es suficientemente grande. En B el integrando no necesita s'er pequeño, 
pero en cambio la suma de las longitudes de sus intervalos será pequeña. Para 
lIevur a cabo 'esta idea procederemos como sigue. 

Existe un intervalo compacto {a, b] fuera del cual SI se anula. Dado que 

o ~ snCx) ~ s,(x) para todo x de 1, 

elida '\~n se anula fuera de [a, b]. Ahora bien, Sn es constante en cada subinter­
vulo abierto de una cierta partición de [a, b]. Designemos Dn al conjunto de 
los extremos de estos subintervalos, y sea D = U'% 1 Dn. Puesto que cada Dn es 
un conjunto finito, la reunión D es numerable y por 10 tanto tiene medida cero. 
Seu E el conjunto de puntos de [a, b] en los que la sucesión {sn} no converge 
hucia O. Por hipótesis, E tiene medida oero, luego el conjunto 

F=DuE 

tendrá también medida o. Por 10 tanto, dado E > O podemos recubrir F por 
medio de una colección numerable de intervalos abiertos F

" 
F 2 , ••• , la suma 

de cuyas longitudes es menor que E. 
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Ahora supongamos que x E [a, b] - F. Entonces x $. E, luego Sn(X) ~ O 
cuando n ~ oo. Por consiguiente existe un entero N = N(x) tal que SN(X) < E. 

Además, x $. D luego x es interior a alguno de los intervalos en los que SN es 
constante. Así pues, existe un intervalo abierto B(x) tal que SN(t) < E para todo t 
de B(x). Como {s .. } es decreciente, tenemos, pues, 

para todo n > N Y todo t de B(x). (2) 

El conjunto de todos los intervalos B(x) obtenidos cuando x recorre 
[a, b] -F, junto con los intervalos F

" 
F 2 , ••• , forman un recubrimiento abierto 

de i(a, b]. Puesto que [a, b] es compacto existe un subrecubI'imiento finito, 
por ejemplo 

p q 

[a, b] ~ U B(x;) u U Fr· 
i= 1 r=' 

Sea No el mayor de los enteros N(x,), ... , N(xp). De (2) se deduce que 
p 

Sn(t) < E para todo n > No y todo t de U B(xJ (3) 
i == 1 

Ahora definimos A y B como sigue: 

q 

B = U F" A = [a, b] - B. 
r= 1 

Entonces A es una r'eunión finita de intervalos disjuntos y se tiene 

Primeramente calcularemos la integral sobre B. Sea M una cota superior de s] 
en [a, b]. Ya que {sn} es decreciente, tenemos sn(x) < s](x) < M para todo x 
de (a, b]. La suma de las longitudes de los intervalos que pertenecen a B es 
menor que E, luego tenemos 

I Sn ~ Me. 

A continuación calcularemos la integral sobre A. Puesto que A ~ Uf= 1 B(x¡), 
la desigualdad de (3) prueba que sn(x) < E si x E A y n > No. La suma de las 
longitudes de los intervalos de A no exoede a b - a, luego tenemos 

t sn ~ (b - a)e 
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Las dos estimaciones nos conducen a JI Sn < (M + b - a)E si n > No'y esto 
prueba que limn-+oo JI Sn = O. 

7"'orema 10.3. Sea {tn} una sucesión de funciones escalonadas en un inter­
va/o 1 tal que: 

u) Existe una función f tal que tn J" f c. e.t. l, 
y 

h) la sucesión {JI tn} converge. 

1~'lItollces toda función escalonada t tal que t(x) < f(x) c.e.t. l verifica 

J t ::s; lim r tn• 

1 n-oo JI 
(4) 

O('lIIostración. Se define una nueva sucesión de funciones escalonadas no 
negativas {s,,} en l como sigue: 

( ) = {t(X) - tn(x) 
s" x . O 

si t(x) > t.,(x), 

si t(x) < t.,(x). 

N,\tcse que snCx) = máx {t(x) - tn(x), O}. Entonces {sn} es decreciente en l 
puesto que {tn} es creciente, y sn(x) -4 máx {t(x) - f(x), O} c.e.t. l. Pero 
t(x)' !(x) c.e.t. 1, y por consiguiente Sn '" O c.e.t. l. Luego, en virtud del 
teorema 10,2, limn-+oo JI s" = O. Pero s,,(x) > t(x) - t,,(x) para todo x de 1, 
luego 

A hora hagamos que n -400 Y obtendremos (4). 

IO.tI· FUNCIONES SUPERIORES Y SUS INTEGRALES 

Sea SU) el conjunto de todas las funciones escalonadas en un intervalo l. He­
mos definido la integral para todas las funciones de S(/). Ahora deseamos ex­
tender la definición a una clase V(l) más amplia que contenga los límites de 
ciertas sucesiones crecientes de funciones escalonadas. Las funciones de esta 
clase las llamaremos fun.ciones superiores y se definen como sigue: 

-
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Definición 10.4. Vna función real f definida en un intervalo 1 se llama 
función superior en l, y se escribe f E V(/), si existe una sucesión creciente de 

funciones escalonadas {sn} tal que: 

a) s .. J" f c.e.t l. 
y 

b) lim" .... oo JI Sn es finito. 

Se dice que la sucesión {s,,} genera f. La integral de f en l se define por 

la ecuación 

JI
! = lim f Sn-

n-+ 00 1 

(5) 

NOTA. Puesto que {JI s,,} es una sucesión de números reales creciente, la con­
dición (b) equivale a afirmar que la sucesión {JI s,,} está acotada superiormente. 

El próximo teorema demuestra que la definición de integral dada en (5) no 
es ambigua. 

Teorema 10.5. Supongamos que f E V(/) Y sean {s.n} y {tm} dos sucesiones 
que generen f. Entonces 

lim r Sn = ¡im r tm• 

n--+oo JI m-+oo JI 

Demostración. La suceSlOn {tm} satisface las hipótesis (a) y (b) del teore­
ma 10.3. Además, para cada n tenemos 

s,,(x) < f(x) c.e.t. l, 

Por consiguiente, (4) nos proporciona 

Esto se verifica para cada n, y por lo tanto tenemos 

¡im J Sn ::s; lim r tm• 
n-+oo 1 m-oo JI 
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El mismo razonamiento, con las sucesiones {sn} y {tm} intercambiadas, nos lleva 
a la desigualdad contraria y la demostración queda completada. 

Es fácil ver que toda función escalonada es una función superior y que su 
integral, dada por (5), es la misma que la dada por la definición anterior de 
la sección 10.2. En el siguiente teorema se dan otras propiedades de la integral 
de las funciones superiores. 

T,'orema 10.6. Supongamos que fE V(l) y que g E V(l). Entonces: 
Q) (f + g) E V(l) y 

L (f + g) = L f + L g. 

h) el E V(l) para cada constante c > 0, y 

e) f¡f:;JIg si f(x) < g(x) c.e.t. 1. 

NOTA. En (b) el requisito c > O es esencial. Hay ejemplos para los que fE V(l) 
y en cambio -f $ V(l). (Ver el ejercicio 10.4.) Sin embargo, si fE V(l) y si 
,1' E S(l). entonces f - s E V(l) ya que f - s = f + (-s). 

j)('/IIostración. Las partes (a) y (b) son consecuencias inmediatas de las pro­
piedades correspondientes a las funciones escalonadas. Para probar (e), sea {sm} 
una sucesión que genere f, y sea {t,,} una sucesión que genere g. Entonces Sm 7' f 
y ~n 7' g e.e.t. 1, y 

lim f Sm = f 1, 
m--+ 00 1 1 

lim f tn = f g. 
n-+oo 1 1 

Pero para cada m tenemos 

Sm(X) ::; f(x) ::; g(x) = lim t"(x) C.e.t. l. 

Luego. aplicando el teorema 10.3, 

f Sm ::; lim f tn = f g. 
I n--+ 00 1 1 

y hacendo m~oo obtenemos (e). 
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El teorema que sigue nos proporciona una consecuencia importante de la 
parte (e). 

Teorema 10.7. Si fE V(l) y g E V(l), y si f(x) = g(x) casi por todo en 1, en­
tonces JI f = JI g. 

Demostración. Tenemos las desigualdades f(x) < g(x) y g(x) < f(x) casi en todo 
1, y entonces el teorema lO.6(c) nos da JI f < JI g e JI g < JI f· 

Definición 10.8. Sean f y g funciones reales definidas en l. Definimos 
máx (1, g) y mÍn (1, g) como las funciones cuyo valor en eadª x de 1 es, res­
pectivamente, máx {f(x), g(x)} y mÍn {f(x), g(x)}. 

El lector puede verificar fácilmente las siguientes propiedades de las fun­
ciones máx y mÍn. 

a) máx (1, g) + mÍn (1, g) = f + g. 
b) máx (I+h, g+h) = máx (1, g) + h, y mÍn (I+h, g+h) = mÍn (1, g) + h. 
Si fn 7' f e.e .t. 1, y si g'n 7' g e.e .t. 1, entonces 
e) máx (~n, g'n) 7' máx (1, g) c.e.t. 1, y mÍn (In, gn) 7' mÍn (1, g) C.e.t. l. 

Teorema 10.9. Si fE V(l) y g E V(l), entonces máx (1, g) E V(l) y 
mÍn (1, g) E V(l). 

Demostración. Sean {sn} y {t,,} sucesiones de funciones escalonadas que ge­
neren, respectivamente, f y g, y sean Un = máx (sn, tn), v" = mÍn (sn, tn). En­
tonces Un Y v", son funciones escalonadas tales que Un 7' máx (f, g) y 
V n 7' mÍn (f, g) e.e .t. l. 

Para probar que mÍn (1, g) E V(l) es suficiente probar que la sucesión UI vn } 

está acotada superiormente. Pero Vn = mÍn (s"' tn ) < f, c.e.t. 1, luego JI v" < 
JI f· Por consiguiente, la sucesión UI v,,} converge. Pero la sucesión UI un} 
también converge puesto que, por la propiedad (a), Un = s" + tn - V n y entonces 

L u" = L s" + L tn - L Vn -+ L f + L g - L min (1, g). 

El teorema que sigue nos da una propiedad aditiva de la integral respecto del 
intervalo de integración. 

Teorema 10.10. Supongamos que el intervalo 1 es la reunión de dos subinter­
valos, por ejemplo 1 = 1, U 12 , en donde 1, e 12 carecen de puntos interiores 
comunes. 
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a) Si f E U(n y además f ::2: O c.e.t. 1, entOnces fE U(/,), fE U(/2)' y 

rf=rf+f f J[ J[, [ 2 

(6) 

b) Supongamos que f, E U(/,) , f2 E U(/2)' y sea f la función definida en I como 
sigue: 

EI/lonces fE U(n y 

f(x) = {f¡(X) 
fzCx) 

si xE/, 

si x 'E 1-1,. 

DCII/ostración. Si {sn} es una sucesión creciente de funciones · escalonadas que 
genera f en 1, sea s;(x)=max{s"(x), O} para cada x de l . Entonces {s; } es una 
sucesión creciente de funciones escalonadas no negativas que genera f en 1 (ya 
que f ? O). Además, en cada subintervalo J de I tenemos SJ s; :::;; JI s; :::;; S[ f , 
por 10 que {s;} genera f en J. También, 

f s; = f S,; + f s,; , 
1 [ , 12 

y haci'endo n ~ 00 obtenemos (a). La demostración de (b) se deja como ejer­
cicio. 

NOTA. Existe el correspondiente teorema (que se demuestra por inducción) 
pura un intervalo que es expresado como la reunión de un número finito de 
subinl-ervalos, tales que ningún par de ellos posea puntos interiores comunes. 

10.;; LAS FUNCIONES INTEGRALES DE RIEMANN 
COMO EJEMPLO DE LAS FUNCIONES SUPERIORES 

El teorema que sigue prueba que la clase de funciones superiores incluye todas 
las funciones integrables de Riemann. 

7't'orema 10.11. Sea f una función definida y acotada en un intervalo com­
pacto [a, b], y supongamos que f es continua casi en todo [a, b]. Entonces 
I'E U([a, b]) y la integral de t, como función de U[(a, b]), es igual a la integral 
de Riemann S~f(x) dx. 

-
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Demostración. Sea p" = {xQ, Xl' ... ,XZ"} una partición de [a, b] en 2'" sub­
intervalos iguales de longitud (b - a)/2". Los sub intervalos de P"+l se obtienen 
dividiendo en dos los de P n. Sea 

mk = inf {f(x) : x E [xk -¡, xkJ} para 1 <k< 2''', 

y definamos una función escalonada Sn en la, b] como sigue: 

Entonces sn(x) < f(x) para todo x de [a, b]. Además, {s,,} es creciente ya que 
el ínf de f en un subintervalo de [Xk -1' XkJ no puede ser menor que en [Xk - ¡, Xk]. 

A continuación vemos que sn(x) -- f(x) en cada punto de continuidad de f. 
Puesto que el conjunto de discontinuidádes de f en [a, b] tiene medida cero, esto 
demostrará que s" ~ f c.e.t. [a, b]. Si f es continua en x, entonces para cada 
E > O existe un S (que depende de x y de 10) tal que 

f(x) - e < f(y) < f(x) + 6 

siempre que 

x - ¡j < y < x + ¡j. 

Sea meó) = inf {I( y ) : y E (x - ¡j, x + ¡j)} . Entonces f(x) - 6 :::;; m(¡j), por lo 
que f(x) < meó) + E. Existe una partición PN que posee un subintervalo 
[Xk_iO Xk] que contiene a x y está contenido en el intervalo (x - ó, x + S). Por 
consiguiente, 

SN(X) = mk :::;; f(x) :::;; meó) + 6 :::;; mk + e = SN(X) + 6. 

Pero s"(x) :::;; f(x) para todo n Y SN(X) :::;; s"(x) para n > N. Luego 

s.(x) :::;; f(x) :s; s"(x) + 6 si n> N, 

que prueba que sn(x) ...... f(x) cuando n ~ oo. 
La sucesión de integrales {J~ s"} converge puesto que es una sucesión cre­

ciente, acotada superiormente por M(b - a),er. donde M = sup {f(x):x E [a, b]}. 
Además, 

en donde L(P n, f) es una suma inferior de Riemann. Dado que el límite de una 
sucesión creciente es igual a su supremo, la sucesión n: s"} converge hacia la 
integral de Riemann de f en [a, b]. (La integral de Riemann f!f(x) dx existe 
en virtud del criterio de Lebesgue, teorema 7.48 .) 
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NOTA. Como ya hemos indicado anteriormente, existen funciones f de V(l) 
tales que - f rj; V(I). Por consiguiente la clase V(I) es ahora más amplia que la 
clase de las funciones integrables de Riemann en 1, ya que - f 'E R en 1 si 
fe R en l. 

10,6 LA CLASE DE LAS FUNCIONES INTEGRABLES 
DE LEBESGUE EN UN INTERVALO GENERAL 

Si 11 Y v son funciones superior'es, la diferencia u - v no es necesariamente una 
función superior. Eliminaremos esta propiedad indeseable ampliando la clase 
de las funciones integrables. 
#)"/i"idón 10,12, Designaremos por L(l) al conjunto de todas las funcio­
m'o\" f de la forma f = u - v, en donde u E V(l) y v'E V(l). Cada función f de 
1,(/) se llamará función integrable de Lebesgue en 1, y su integral se defi­
,,¡r(í por medio de la ecuación 

(7) 

Toda función f E L(l) se puede 'escribir como diferencia de dos funciones 
Nupcriorcs y no necesariamente de forma única. El próximo teorema prueba 
que la integral de f no depende de la elección de las funciones superiores u y v. 

""'or"IIl(l 10,13. Sean u, v, u" y v, funciones de V(l) tales que u - v = 
"'" 11, - V,. Entonces 

1 u - 1 v = 1 U 1 - 1 v1 • 
(8) 

n('lI/ostración. Las funciones u + v, Y u, + v pertenecen a V(l) y u + v, = 
= 11, + v. Luego, por el teorema 10.6 (a), tenemos que SI u + SI V1 = SI U1 + SI v, 
que prueba (8). 

NOTA. Si el intervalo 1 tiene por extremos los puntos a y b del sistema am­
pliado de los números reales R*, con a < b, escribiremos también 

o r f(x) dx 

pura designar la integral de Lebesgue JI f· Definimos también Hf = - S:f 
Si [a, b] es un intervalo compacto, toda función integrable de Riemann en 

[a, h] pertenece a V([a, b]) y por lo tanto también pertenece a L([a, b]). 
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Teorema 10.14. Supongamos que fE L(l) Y gE L(l). Entonces tenemos: 

a) (af + bg) E L(l) para cada par de números reales a y b, Y 

b) SI f ~ O 

e) SI f ~ SI g 

d)SIf=SIg 

1 (af + bg) = a 1 f + b 1 g. 

si ¡(x) ~ O c.e.t. l. 

si f(x) ~ g(x) c.e .t. l. 

si f(x) = g(x) c.e.t. l. 

Demostración. La parte (a) se obtiene fácilmente a partir del teorema 10.6. 
Para probar (b) ponemos f = u - v, en donde uE V(/) y vE V(l). Entonces 
u(x) > v(x) c.e.t. 1 luego, por el teorema 1O.6(c), tenemos JI u:2: JI v, y 
entonces 

La parte (e) se sigue aplicando (b) a f - g, y la parte (d) se sigue aplicando dos 
veces (e). 

Definición 10.15. Si f es una función real, su parte positiva, designada por 
f+, y su parte negativa, designada por f-, se definen por medio de lªs ecuaciones 

f+ = max (1, O), f- = max ( -f, O). 

Nótese que f+ y f- son funciones no negativas y que 

Ifl = f+ + f-· 

\ I , / 
\ I 
'-./ 

Figura 10.1 
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En la figura 10.1 pueden verse algunos ejemplos. 

Teorema 1016. Si f y g son funciones de L(I)' entonces también lo son f+ 
f-. Ifl, máx (f, g) y mín (f, g). Además, tenemos 

(9) 

Demostración. Pongamos f = u - v, en donde u E V(I) y v E V(I). Entonces 

/+ = max (u - v, O) = max (u, v) - v. 

Pero máx (u, v) E V(I). en virtud del teorema 10.9. y v E V(I). luego f+ E L(l). 
Dado que f- = f+ - f, vemos que f- E L(I). Fina1mente Ifl = f+ + f-. luego 
Itl E L(I). 

Puesto que -1/(x)1 ~ /(x) ~ I/(x) I para todo x de I tenemos 

que prueba (9). Para terminar la demostración usaremos las relaciones 

max (1, g) = !(/ + 9 + 1/ - gl), min (1, g) = 1(/ + 9 - 1/ - gl). 

El próximo teorema describe el comportamiento de una integral de Lebes­
gue cuando el intervalo de integración se traslada, se dilata o contrae, o se 
refleja respecto del origen. Usaremos la siguiente notación, en donde e desgina 
un número r'eal: 

/ + e = {x + e: x E I}, el = {ex: x El}. 

7'f'orema 10.17. Supongamos que fE L(I). Entonces tenemos: 

a) /nvariancia por traslaciones. Si g(x) = f(x - c) para x pertenecientes a 
/ + e, entonces g E L(l + c). y 

f g=fl 
f+ c [ 

b) Comportamiento de la integral bajo una dilatación o una contracción. Si 
R(x) = f(x /c) para x pertenecientes a el, en donde c > O. entonces g E L(c)/ y 

f g=efl 
el [ 

-
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c) Invariancia por reflexión. Si g(x) = f(- x) para x pertenecientes a -l. en­
tonces g E L(-I) Y 

f 9 = r 1 
-1 JI 

NOTA. Si I tiene extremos a < b, en donde a y b pertenecen al sistema amplia­
do de los números reales R*, la fórmula de (a) se puede escribir también como 
sigue: 

f
b+C fb 

/(x - e) dx = /(x ) dx. 
a+c a 

Las propiedades (b) y (e) se pueden combinar en una sola fórmula que incluya 
tanto valores positivos como negativos de c: 

l:b 

/(x/e) dx = lel r /(x) dx si c =1= o. 

Demostración. Para demostrar un teorema de esta índole se sigue siempre el 
mismo procedimiento. En primer lugar se verifica el teorema para funciones 
escalonadas, después para funciones superiores, y finalmente para funciones 
integrables de Lebesgue. La demostración es, en cada caso, directa por lo cual 
omitimos los detalles. 

Teorema 10.18. Sea I un intervalo unión de dos subintervalos, por ejemplo 
I = /, U 12 , en donde 1, e 12 no tienen puntos interiores comunes. 

a) Si fE L(I), entonces fE L(l,). tE L(l2)' Y 

r /= r /+ r 1 
j[ JI, j[2 

b) Supongamos que /1 E L(/1),f2 E L(/2), Y sea f una función definida en / 
como sigue: 

si xE 1" /(x) = {/1(X) 
/2(X) si xEI-I,. 

Entonces fE L(I) Y J[ / = J[. /1 + J[J2. 
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Demostración. Pongamos f = u - v en donde u E V(T) y vE V(T). Entonces 
u = u+ - u- y v = v+ - v-, luego f = u+ + v- - (u- + v+). Apliquemos 
ahora el teorema 1O.l0 a cada una de las funciones no negativas u+ + v- y 
,,- + v+ para deducir la parte (a). La demostración de la parte (b) se deja al 
lector. 

NOTA. Existe una extensión del teorema 10.18 para intervalos que se puedan 
expresar como unión de un número finito de subintervalos tales que dos a dos 
carezcan de puntos interiores comunes. El lector puede' comprobar esto por 
sr mismo. 

Terminemos esta sección con dos teoremas de aproximación que necesita­
remos más adelante. El primero nos dice que cada función f integrable Le­
hesgue es igual a una función superior u menos una función superior no nega­
tiva v cuya integral es pequeña. El segundo nos dice que f es igual a una fun­
l'i(~n escalonada s más una función integrable R cuya integral .es pequeña. Con 
mayor precisión, tenemos: 

1','ornna 10.19. Supongamos que fE L(T) Y sea E > O dado. Entonces: 

11) Existen funciones u y v de V(T) tales que f = u - v, en donde v es no ne­
glllil'a c.e.t. 1 e JI V < E. 

h) Existe una función escalonada s y una función g de L(/) tal que f = s + R, 
donde J r Igl < E. 

nell/ostración. Puesto que f 'E L(/), podemos escribir f = u, - VI' en donde 
11, y VI son funciones de V(/). Sea {tn} una sucesión que genere VI' Ya que 

JI 'n -4 JI VI' podemos elegir N tal queO ~ Jr (VI - tN) < e.Sea ahora v =v, -
-IN Y u = u, - tN • Entonces, tanto u como v pertenecen a V(/) y u - v = 

1/ I l' I = f. Además, v es no negativa c.e .t. 1 e JI V < s. Esto prueba (a). 
Para probar (b) se utiliza (a) para elegir u y v de V(l) tal que v >0 c.e.t. 1, 

f=u-v y O ~ r v < .~ . 
JI 2 

Ahora elegimos una función escalonada s tal que O < JI (u - s) < E/2. En·· 
tunees 

f=u-v=s+~-~-v=s+~ 

en donde R = (u - s) - v. Luego g 'E L(/) y 

1191 ~ llu - si + l1V' < ~ + ~ E. 

... 
La integral de Lebesgue 323 

10.8 INTEGRACIóN DE LEBESGUE 
y CONJUNTOS DE MEDIDA CERO 

Los teoremas en esta sección dan a conocer que el comportamiento de una fun­
ción integrable Lebesgue en un conjunto de medida cero no afecta su integral. 

Teorema 10.20. Sea f una función definida en l. Si f = O casi en todo 1, 
entonces fE L(l) Y Slf = O. 

Demostración. Sea s .. (x) = O para todo x en l. Entonces {s.,.} es una suceSIOn 
creciente de funciones escalonadas convergentes a O el! todo l. De aquí {sn} 
converge a f casi en todo l. Puesto que JI S" =0, lá sucesión {f 1 sn} con­
verge. Por tanto f es una función superior, así fE L(l) e Jrf = limn~ oo Jr Sn = O. 

Teorema 10.21. Supongamos f y g definidas en l. Si f E L(l) Y si f = g casi 

en todo 1, entonces g E L(l) e JI f = SI g. 

Demostración. Aplicando el teorema 10.20 en f - g, entonces f - 9 E L(l) e 
JIU - g) = O. En consecuencia, 9 = f - U - g) E L(!) Y 

JI 9 = J d - J df - g) = J r f 

Ejemplo. Definir f en el intervalo ro, 

¡(x) = {~ 

11 como sigue: 

si x es racional 
si x es irracional. 

Entonces f = ° casi por todo en [0, 1], luego f es integrable de Lebesgue en [0, 1] 
Y su integral de Lebesgue es O. Como hemos observado en el capítulo 7, esta función 
no es integrable de Riemann en [0, 1]. 

NOTA. El teorema 10.21 sugiere una definición de la integral para funciones que 
están definidas casi por todo en l . Si g es una de esas funciones y si g(x) = f(x) 
casi por todo en 1, donde f E L(l), decimos que g E L(l) y que 

10.9 TEOREMAS DE CONVERGENCIA MONóTONA DE LEVI 

Volvemos ahora a los teoremas de convergencia concernientes a la integración 
término a término de sucesiones monótonas de funciones Empezamos con tres 
versiones de un teorema famoso de Beppo Levi. El primero concierne a suce­
siones de funciones escalonadas, el segundo a sucesiones de funciones superio­
res, y el tercero a sucesiones de funciones integrables de Lebesgue. A pesar de 
que los teoremas los hemos establecido para sucesiones crecientes, existen re­
sultados análogos para sucesiones decrecientes. 
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Teorema 10.22 (Teorema de Levi para funciones escalonadas). Sea {sn} 
una sucesión de funciones escalonadas tal que 

a) {sn} crece en un intervalo J, 
y 

b) lim,, _oo SI s" existe. 

Entonces {Sn} converge casi en todo J hacia una función límite f perteneciente 
el V(I), y 

Drlllostración. Podemos suponer, sin perder generalidad, que las funciones es­
calpnadas Sn son no negativas. (De no ser así, consideraríaÍn03 1& sucesión 
{.I',,, - s,}, Si el teorema es cierto para {s", - SI} ' entonces también lo es para 
(.\'.,}.) Sea D el conjunto de los x de l para los que {sn(x)} diverge. y :lea E> O 
un número real dado de antemano. Probaremos que D tiene medida O mos­
trando que D se puede recubrir por medio de una colección numerable de in­
tervalos, cuya suma de longitudes es < E. 

Puesto que la sucesión {f J sn} converge, está acotada por alguna constante 
positiva M . Sea 

t,,(x ) = L~ S,,(x>] si x 'E/. 

en donde [y] designa la parte entera < y. Entonces {t,,,} es una sucesión cre­
ciente de funciones escalonadas tales que cada uno de los valores tn(x) es un 
enlcro no negativo. 

Si (s,, (x)} converge. entonces {sI/(x)} _está acotada. luego {tn(x)} está aco­
tada y entonces tn+¡(x) = t,,(x) para n suficientemente grande. puesto que cada 
(,,( x ) es un entero. 

Si {Sn(x)} diverge. entonces {tn(x)} también diverge y tn + ¡ (x) - t,,(x) 2: 1 
para infinitos valores de n. Sea 

Dn = {x : x E l Y 

Entonces D", es reunión de un número finito de intervalos. la suma de cuyas 
longitudes designaremos por IDnl. Ahora 

00 

D ~ U Dn , 
,,= I 

La integral de Lebesgue 325 

y si vemos que L.,':"= I ID"I < e, habremos demostrado que D tiene medida O. 
Para ello integramos la función escalonada no negativa 1"+1 - tn sobre J y 

obtenemos las desigualdades 

Luego para cada m > 1 tenemos 

Por consiguiente L.:= ¡ ID~I :$; e/2 < e, luego D tiene medida O. 
Esto prueba que {Sn} converge casi en todo l . Sea 

si x 'E/-D. 
si xED. 

Entonces f está definida caSi en todo l y Sn --+ f casi en todo l. Por con­
siguiente, fE V(I) e SI f = lim,,_ 00 SI sn' 

Teorema 10.23 (Teorema de Levi para funciones superiores). Sea Un} 
una sucesión de funciones superiores tales que 

a) Un} crece casi en todo un cierto intervalo 1, 
y 

b) limn_ oo fIf'" existe. 

Entonces Un} converge casi en todo J hacia una función límite f pertene­
ciente a V(I), y 

r f = lim r f". 
JI n- a) JI 

Demostradón. Para cada k existe una sucesión creciente de funciones escalo­
nadas {Sn,k} que genera fk. Definimos en J una nueva función escalonada tn en J 
por medio de la ecuación 

(n(x) = max {s",¡(x), s" ,zCx), . . . , s" ,n(x) }. 

Entonces {In} es creciente en l puesto que 

tn +l(x) = max {Sn+I,¡(X), .. . , Sn+I ,n+I(X)} > max {sn, ¡(x), . .. , sn,n+¡ex)} 
2: max {sn,¡(x), ... ,sn,ix)} = tnex) . 

http://libreria-universitaria.blogspot.com
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Pero S" ,k(X) :::;; h(x) y {h} crece casi en todo /, luego se verifica 

(,,(x) :::;; max {f¡(x) , ... ,fn(x)} = I,,(x) (10) 

casi en todo J. Por consiguiente, en virtud del teorema 1O.6(c), se obtiene 

11,,:::;; 1/". (11) 

Pero, por (b), Uf fn} está acotada superiormente y entonces la suceSlon cre­
ciente Uf tn} también está acotada superiormente y por lo tanto converge. 
Aplicando ahora el teorema de Levi para las funciones escalonadas, {t,,} 
converge casi en todo / hacia una función límite f perteneciente a V(I), e 
.1', I = lim,,_ ro SI tn· Ahora probaremos que fn"-7 f casi en todo l. 

La definición de t,,(x) implica s"ix) :::;; (n(x) para todo k <: n y todo x de J. 
Haciendo que n"-7(XJ obtenemos 

Ik(X) :::;; I(x) casi en todo l. (12) 

Por consiguiente la suceSlOn creciente {h(x)} está acotada superiormente por 
(el! casi en todo 1, luego converge casi en todo / hacia una función límite g 
que satisface R(X) < f(x) casi en todo l. Pero (lO) establece que t .. (x) < f"(x) 
l·;I.~i en todo J luego, haciendo n --700, obtenemos f(x) < g(x) casi en todo /. 
1':11 otras palabras, tenemos 

Iim j,,(x) = I(x) casi en todo J. 
,,- 0-.) 

foinalmente, vemos que SIl = limn_ ro SIj". Haciendo n--7= en (11) obte­
I1C 111 os 

f 1:::;; lim fin" 
1 n - 00 1 

(13) 

Ahora integrando (12) y utilizando de nuevo el teorema 1O.6(c), obtenemos 
\",/;. < I"J Si hacemos k "-7 00 obtenemos limk _ cc SIh :::;; SIl que, junto con 
i I j l. tcr"m ina la demostración. 

NI )TA . I.a clase V(l) de las funciones superiores se construyó a partir de la 
dasl' .'i( /) de las funciones escalonadas por un proceso que podemos llamar P. 
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El teorema de Beppo Levi nos muestra que si aplicamos el proceso P a V(l) 
obtenemos funciones de V(I). El teorema que sigue prueba que, si aplicamos 
el proceso P a L(/), obtenemos funciones de L(/). 

Teorema 10.24 (Teorema de Levi para sucesiones de funciones integra. 
bies de Lebesgue). Sea {In} una sucesión de funciones de L(/) tal que 

a) {In} crece casi en todo / , 
y 

b) limn_ ro Sdn existe. 

Entonces {In} converge casi en todo / hacia una función límite f de L(l) y 

f I = lim f j" . 
1 Ir- 00 J 

Deduciremos este teorema de un resultado análogo válido para series de 
funciones. 

Teorema 10.25 (Teorema de Levi para series de funciones integra. 
bies Lebesgue). Sea {g,, } una sucesión de funciones de L (/) tal que 

a) cada g" es no negativa casi en todo / , 
y 

b) la serie ¿::= ¡ SI9n converge. 

Entonces la serie ¿::= 1 911 converge casi en todo / hacia una función suma 
g de L(/), y tenemos 

(14) 

Demostración. Puesto que gn E L(/), el teorema 10.19 nos dice que para cada 
E > O podemos escribir 

en donde Un E V(I), Vn E V(I), Vn ~ O, c.e.t. / e Sr Vn < 1:. Elegimos Un Y Vn 

correspondientes a é = (t)n. Entonces 

u" = gn + v"' en donde 1 Vn < (t)n. 
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La desigualdad que verifica JI Vn nos asegura que la serie L:':1 J/'Vn converge. 
Ahora bien ¡Un ¿ O casi en todo l. luego las sumas parciales 

n 

Un(x) = L Uk(X) 
k=1 

forman una sucesión de funciones superiores {Un} que crece casi en todo l. 
Puesto que 

f UII = f t Uk = t f 'U k = t í gk + t í Vk, 
I I k=1 k=1 1 k=1 JI k=1 JI 

In sucesión de integrales {JI Un} converge,ya que tanto la serie L:': 1 JI gk como 
In serie L:'= 1 JI vk convergen. Por consiguiente, aplicando el teorema de Levi 
pnra funciones superiores, la sucesión {Un} converge casi en todo l hacia 
unn función límite U de U(/), e JI U = lim,,_ro JI Un' Pero 

f UII = t f Uk, 
1 k= 1 I 

Análogamente, la sucesión de sumas parciales {Vn } dadas por 

• 
Vn(x) = L vk(x) 

k=1 

l'ollvcrge casi en todo l hacia una función límite V de U(/) e 

Por cOl1sgiuiente U - V E L(/) Y la suceSlOn {L~= 1 gk} = {Un - V.} conver­
lote l'asi en lodo 1 hacia U - V. Sea g = U-V. Entonces g E L(/) e 

hlo lermina la demostración del teorema 10.25. 
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Demostración del teorema 10.24. Supongamos que {!n} satisface las hipótesis 
del teorema 10.24. Sea g¡ = fl y sea g", = fn - fn-l para n ¿ 2, entonces 

" 
In = L gk' 

k=l 

Aplicando el teorema 10.25 a {gil}. obtenemos que L:'= 1 gn converge casi en 
todo l hacia una función suma g de L(l), y se verifica la ecuación (14). Por 
consiguiente fn ~ g casi en todo l e JI 9 = lim._ ro JI f". 

En la siguiente versión del teorema de Levi para series, no es necesario su­
poner que los términos de la serie sean no negativos. 

Teorema 10.26. Sea {g".} una sucesión de funciones de L(/) tal que la serie 

es convergente. Entonces la serie L:'= 1 g. converge casi en todo l hacia una 
función g de L(/) y se tiene 

í t gIl = t í g". 
JIII=I n=IJI 

Demostración. Hagamos gn = g: - g;; y apliquemos el teorema 10.25 a las 
sucesiones {gn+} y {gn-} por separado. 

Los siguientes ejemplos ilustran el uso del teorema de Levi para sucesiones. 

Ejemplo 1. Sea f(x) = x 8 para x> O, feO) = O. Probar que la integral de Lebesgue 
n ¡(x) dx existe y vale I/(s + 1) si s> -1. 

Solución. Si s 2: O, entonces f está acotada y es integrable de Riemann en [O, l] 
Y su integral de Riemann es igual a l/(s + 1). 

Si s < 0, entonces f no está acotada y por lo tanto no es integrable de Riemann 
en [O, 1]. Definimos una sucesión de funciones Un} como sigue: 

{
x S 

f.(x) = O 
si x ~ I/n, 

si O :5 x < I/n. 

Entonces Un} es creciente y fn ~ f en todo [0, 1]. Cada fn es integrable de Riemann 
y por lo tanto integrable Lebesgue en [O, 1] Y 

f' f.(x) dx = f' X
S dx = _1 - (1 - s: 1) . Jo Jl ln s + 1 n 
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Si s + 1 > O, la sucesión HA In} converge hacia l/(s + 1). Por consiguiente, el teo­
rema de Levi para sucesiones prueba que n f existe y es igual a l/(s + 1). 

Ejemplo 2. El mismo tipo de argumento prueba que la integral de Lebesgue 
.rb e-Xxy- 1 dx existe para cada número real y> O. Esta integral la utilizaremos más 
adelante para discutir la función Gamma. 

10.10 TEOREMA DE CONVERGENCIA DOMINADA 
DE LEBESGUE 

I.os teoremas de Levi dan lugar a muchas consecuencias importantes. La pri­
mcra consecuencia es el teorema de convergencia dominada de Lebesgue, piedra 
angular de la teoría de la integración de Lebesgue. 

l'('orema 10.27 (Teorema de convergencia dominada de Lebesgue). Sea 
( I,,} una sucesión de funciones integrables de Lebesgue en un intervalo T. Su­
pongamos que 

11) Un} converge casi en todo T hacia una función límite f, 
y 

h) existe una función no negativa g de L(l) tal que, para todo n > 1, 

I/"(x) I ~ g(x) c.e.t. T. 

Rntonces la función límite fE L(!), la sucesión {JI fn} converge e 

f f = lim f /". 
1 11- 00 1 

(15) 

NOTA. La propiedad (b) se enuncia diciendo que la sucesión {in} está domina­
da por g casi en todo l. 

Demostración. La idea de la demostración consiste en obtener cotas superio­
res e inferiores de la forma 

(16) 

cn donde {gn} crece y {G,n} decrece casi en todo 1 hacia la función límite f. 
Utilizaremos el teorema de Levi para demostrar que fE L(!) Y que JI f = 
limn~", SI gn = limn~oo SI Gn, de lo que se deduce (15). 

Para construir {gn} y {On}, hacemos uso repetido del teorema de Levi para 
sucesiones de L(!). Ante todo definimos una sucesión {On,,} como sigue: 

Gn.!(x) = max U¡(X),f2(X), ... ,/;'(x)}. 
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Cada función Gn" E L(!) en virtud del teorema 10.16, y la sucesión {Gn.l } es 
creciente en l. Dado que IGn,¡(x)1 ~ g(x) casi en todo 1, tenemos 

(17) 

Por consiguiente la sucesión creciente de números {JI Gn . l } ·está acotada supe­
riormente por JI g, luego limn~oo SI Gn ,¡ existe. Aplicando el teorema de Levi, 
la sucesión {Gn,,} converge casi en todo 1 hacia una función G, de L(I), e 

r G¡ = lim r Gn ,! ~ r g. 
JI n-oc; JI JI 

En virtud de (17) tenemos también la desigualdad - L 9 ~ SI G ¡. Obsérvese 
que si x es un punto de 1 para el que Gn,¡(x) -> G¡(x), entonces tenemos tam­
bién 

G¡(x) = sup U¡(x),fzCx), ... }. 

Asimismo, para cada r > 1 consideramos 

Gn.rCx) = max {.f..(x),.f..+ ¡ (x), ... ,/,,(x)} 

para n > r. Entonces la sucesión {Gn,r} crece y converge casi en todo 1 hacia 
una función límite G r de L(I) con 

Además, en todos los puntos en los que OnAx) ~ GrCx), tenemos 

luego 
Gr(x) = sup {.f..(x),.f..+¡(x), ... }, 

.f..(x) ~ Gr(x) c.e.t. 1. 

Examinemos ahora las propiedades de la sucesión {G n(x)}. Ya que A <;: B 
implica sup A <sup B, la sucesión {Gr(x)} decrece casi en todo y por tanto 
converge casi en todo l. A continuación vemos que Gn(x) ~ f(x) siempre que 

lim .(,,(x) = f(x). ( 18) 
n-ce 
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Si se verifica (18), entonces para cada E > O, existe un entero N tal que 

f(x) - e < fn(x) < f(x) + e para todo n :2: N 

I Juego, si m > N tenemos 

f(x) - e .:s; sup {!m(x),fm+ 1 (x), ... } .:s; f(x) + e. 

En otras palabras, 

m> N implica f(x) - e .:s; Gm(x) .:s; f(x) + e, 

y esto implica que 

lim Gm(x) = f(x) , casi en todo l. (19) 
m-->oo 

Por otro lado, la sucesión numérica decreciente {JI Gn } está acotada .inferior­
mente por - JI g, luego converge. Por (19) y por el teorema de LevI, vemos 
que fE L(!) Y que 

lim r Gil = r f 
n- oo JI JI 

Si aplicamos el mismo tipo de argumentación a la sucesión 

9n,.{X) = min {fr(x), fr+ 1 (x), ... ,f,,(x)}, 

para n :2: r, obtenemos que {gn,r} decrece y converge casi en todo hacia una 
runción límite gr de L(!), en donde 

g,(x) = inf {fr(x) , fr+ 1 (x) , .. . } c.e.t. l. 

Además. casi en todo 1 tenemos gr(x) < fr(x), {gr} crece,limn--> oo gn(x) =f(x), y 

lim f gil = f f 
n- C(J [ 1 

Puesto que (16) se verifica casi en todo 1, tenemos SIgn.:s; SIfn .:s; SI Gn· 
Si hacemos que n~oo tendremos que {JI f .. } converge y que 

lim f l., = f f 
tI- OO I I 

.. 
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La primera aplicación concierne a la integración término a término de series y 
es un r'esultado parecido al teorema de Levi para series. 

Teorema 10.28. Sea {gn } una sucesión de funciones de L(!) tal que: 
a) cada gn es no negativa casi en todo J, 

y 
b) la serie L,~~ 1 9n converge casi en todo 1 hacia una función g acotada 

superiormente por una función de L(!). 

Entonces g E L(I), la serie L:'= 1 SI9n converge, Y se tiene que 

Demostración. Sea 

n 

f,,(x) = L gk(X) si x E l. 
k = 1 

Entonces f" .1' g casi en todo 1, y Un} está dominada casi en todo l por la _ 
función de L(I) que acota superiormente a la función g. Por consiguiente, 
aplicando el teorema de la convergencia dominada de Lebesgue, g E L(l), la su­
cesión {JI fn} converge, e SI 9 = limn-->oo SIJ". Esto prueba el teorema. 

La siguiente aplicación, llamada a veces el teorema de convergencia acota­
da de Lebesgue, se refiere a un intervalo acotado. 

Teorema 10.29. Sea 1 un intervalo acotado. Supongamos que Un} es lIna 
sucesión de funciones de L(I) que es acotadamente convergente casi en todo l . 
Esto es, supongamos que admite una función límite f y una constante po­
sitiva M tales que 

lim f,,(x) = f(x) y Ifn(x)1 .:s; M , casi en todo l. 
11-00 

Entonces fE L (l) Y limn--> 00 S dn = SI f 

Demostración. Aplíquese el teorema 10.27 con g(x) = M para todo x de l. 
Entonces g 'E L(!), puesto que 1 es un intervalo acotado. 

APOSTOL, análisis - 12 
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NOTA. Un caso particular del teorema lO.2Y es el teorema de Arzelit estable­
cido ya anteriormente (teorema 9.12). Si Un} es una sucesión acotadamente 
convergente de funciones integrables de Riemann sobre un intervalo compacto 
[a, b), entonces cada fn 'E L([a, bJ), la función límite fE L([a, bJ), y se tiene 

Si la función límite f es integrable de Riemann (tal como se supone en el teore­
ma de Arzelit), entonces la integral de Lebesgue g¡ coincide con la integral de 
Riemann S~f(x) dx. . 

El próximo teorema es útil, a veces, para comprobar qué funciones son 
intcgrables de Lebesgue 

Tf'()rf~ma 10.30. Sea Un} una sucesión de funciones de L(T) que converge 
casi en todo l hacia una función límite f. Supongamos que existe una fun­
eÍl)/! no negativa g de L(T) tal que 

I f(x) I < g(x) c.e.t. l. 
I~'"tonces f E L(T). 

[)Cllloslración. Se define una nueva sucesión de funciones {gn} en l como sigue: 

gn = max {min (fn, g), -g} . 

Gcométricamente la función g" se obtiene a partir de la función fn cortándole 
la parte de la gráfica que se halla por encima de g y la que se halla por debajo 
de -.1,', como muestra el ejemplo de la figura 10.2. 

j" 

/

- g -------....... -.., ---------
Figura 10.2 

nntonccs I g . ..(x) I < g(x) casi en todo 1, y es fácil verificar que gn ~ f casi en 
todo l. Por consiguiente, en virtud del teorema de convergencia dominada de 
1 .cbl'sguc. f E L(J). 

-

, 
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10.12 INTEGRALES DE LEBESGUE SOBRE INTERVALOS 
NO ACOTADOS COMO LíMITE DE INTEGRALES 
SOBRE INTERVALOS ACOTADOS 
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Teorema 10.31. Sea f una función definida en el semiintervalo infinito 
1 = [a, +(0). Supongamos que f es integrable de Lebesgue en el intervalo com­
pacto [a. b] para cada b ::;:::: a, y que existe una constante positiva M tal que 

f 'f' :::;M para todo b ::;:::: a. (20) 

Entonces· f E L(I), el límite limb --H 00 S: ¡ existe, y 

f+OO fb f = lim f 
a b- + 00 u 

(21) 

Demostración. Sea {bn } una sucesión credente de números reales con bn > a 
tal que limn .... oo b", = +00. Definimos una sucesión Un} en l como sigue: 

si a < x< b .. , 
en otro caso. 

Gada tn E L(T) '(en virtud del teorema 10.18) y tn ~ t en 1. Luego If,,1 ~ It l en l. 
Pero Itnl es creciente y, por (20), la sucesión UIlfnl} está acotada superiormente 
por M. Por lo tanto limn .... 00 JI Ifnl existe. Por el teorema t1e Levi, la función 
límite Ifl E L(I). Ahora bien, cada linl < Ifl y fn ~ f en 1, y entonces por el 
teorema de convergencia dominada de Lebesgue, fE L(T) y limn .... oo JI fn = JI f. 
Por consiguiente, 

fb" f +oo 
lim f= f 
,, - 00 a a 

para todas las sucesiones {bn } que crecen hacia +00. Esto termina la demos­
tración. 

Existe, además, un teorema análogo para el intervalo (-00, a] que afir­
ma que 

fa f = lim fa.f, 
- 00 c-' - C() e 



336 La integral de Lebesgue 

en el supuesto de que S~ Ifl ~ M para todo c < a. Si f~ Ifl ~ M para todo 
par de números reales c y b con c < b, los dos teoremas aplicados a la vez 
demuestran que f E L(R) Y que 

f+OO fa fb f= lim f+ lim f 
_ oc c - - 00 e b- + 00 a 

Ejemplo 1. Sea f(x) = l /O + X2) para todo x de R. Probaremos que fE L(R) Y que 
f 1/1 = ". Ahora f es no negativa y si c :S; b, tenemos 

I = -2 = arc tg b - arc tg e ::;: ". f
b fb dx 

e e 1 + X 

Por consiguiente, fE L(R} Y 

f+OO • 'fo dx . lb dx n n 1= hm ---2 + hm ---2 = - + - = n. 
_ 00 c-+ - 00 e 1 + X b-+ + 00 O 1 + X 2 2 

Vll'ml,lo 2. En este ejemplo el límite por la derecha de (21) existe pero f t¡:. L(/). Sea 
I [O. +cc] y definimos 1 en / como sigue : 

¡(X) = (-1)" if n - 1 ::::; X < n, para n = 1, 2, 
n 

Si ¡, > O. sca 111 = [h] el mayor entero ::;: b. Entonces 

lb 1m Jb m (_1)" (b-m)(_l)m+l 
1= 1+ 1= L - + -'--------'--------'----

O O m "= 1 n m + 1 

1'II~sto que h ~ +00 el último término tiende a O, y obtenemos 

lb 00 (-1)" 
lim 1= L -- = -log2. 

b-++ OO o n=l n 

Ahora suponemos que fE L(I) Y obtenemós una contradicción. Sea In definida por 

para O::;: X S n, 
para x> n. 

Fntol1l'cs {/,,) crece y In(x) ~ I/(x) ! en /. Ya que lE L(l) tenemos también I/[ E L(l). 
P"ro 11,,(.1)1 :::: I/(x)[ en / y, en virtud del teorema de convergencia dominada de Le­
hcsguc. la sucesión {J¡!n} converge. Pero esto es una contradicción, ya que 

In = [/[ = L - --> + 00 cuando n ~ oo. f I
n n 1 

I o k= 1 k 

-

.... 
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10.13 INfEGRALES DE RIEMANN IMPROPIAS 

Definición 10.32. Si f es integrable de Riema.nn en [a, b] para cada b 2': a, 
y si el límite 

lim fb f(x) dx existe, 
b-t' + 00 a 

entonces se dice que f es integrable de Riemann en sentido impropio en [a, + 00) 
y la integral impropia de Riemann de f, designada por S: 00 f(x) dx o S;:, f(x) dx, 
se define por la ecuación 

f 
+ 00 fb 

f(x) dx = lim f(x) dx. 
a b- + 00 a 

En el ejemplo 2 de la sección anterior, la integral impropia de Riemann 
Sci 00 f(x) dx existe pero en cambio f no es integrable de Lebesgue en [O, +00] . 

Este ejemplo se puede contrastar con el siguiente teorema. 

Teorema 10.33. Supongamos que f es integrable de Riemann en [a, b] para 
cada' b > a, y supongamos que ex iste una constante positiva M tal que 

r If(x) I dx ~ M para cada b > a. (22) 

Entonces tanto f como Ifl son funciones integrables de Riemann en [a, +(0) 
en sentido impropio. Además, f es integrable de Lebesgue en [a, +(0) y la in­
tegral de Lebesgue de f es igual a la integral impropia de Riemann de f. 

Demostración. Sea F(b) = S: [f(x) [ dx. Entonces F es una función creciente 
acotada superiormente por M, luego limb-++oo F(b) existe. Por consiguiente Ifi 
es integrable Riemann en sentido impropio en [a, +00]. Puesto que 

o ~ If(x) I - f(x) ~ 21f(x)I, 

el límite 

b~~OO f {¡f(x)[ - f(x)} dx 

también existe; luego el límite limb~ + 00 S: f(x) dx existe. Esto prueba que f 
es integrable Riemann en sentido impropio en [a, +00]. Ahora utilizamos la 
desigualdad (22), junto con el teorema 10.31, para deducir que f es integrable 
Lebesgue en [a, +00] y que la integral de Lebesgue de f es igual a la inte­
gral de Riemann de f en sentido impropio . 
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NOTA. Existen resultados análogos para integrales de Riemann impropias de 
la forma 

a~~oo f f(x) dx, 

r f(x) dx = bl~~_ f f(x) dx, y f f(x) dx ¡im lb f(x) dx, 
a--+c+ a 

que el lector puede formular por sí mismo. 
Si existen las integrales S~ 00 f(x) dx y S: 00 f(x) dx, diremos que la integral 

J ~~; f(x) dx existe, y su valor se define por la suma, 

Si la integral S~: f(x) dx existe, su valor es también igual al límite simétrico 

lim fb f(x) dx. 
b--++oo -b 

Sin embargo, es importante observar que el límite simétrico puede existir in­
cluso cuando J~: f(x) dx no existe (por ejemplo, hagamos f(x) = x para todo x). 
En este caso el límite simétrico se llama el valor principal de Cauchy de 
J I:J(X) e/x. Luego S~: x dx tiene valor principal de Cauchy 0, y en cambio 
111 integral no existe. 

E,templo 1. Sea f(x} = e-<VxY-t, en donde y es un número real fijo. Dado que 
l' W/2Xl/-- 1 ---'>0 cuando x---'> +00, existe una constante M tal que e-<V/2xy- 1 ::;; M para 
todo x? 1. Entonces e-lCxy- 1 ::;; Me- IC / 2, luego 

f If(x) I dx ~ M s: e- x
/
2 dx = 2M(1 - e-b/2) < 2M. 

En cons,ecuencia la integral. Si 00 e-Xxy
-

1 dx existe para cada número real y, como 
integral de Riemann impropia y como integral de Lebesgue. 

I<:jt'mplo 2. La función integral Gamma. Si a la integral del ejemplo 1 le añadimos 
la integral fó e-XxY

-
1 dx del ejemplo 2 de la sección 10.9 encontramos que la in­

tegral de Lebesgue 

rey) = L+OO e- Xx y- 1 dx 

l'xistc para cada número real y> O. La función r definida de esta manera se llama 
la flllwitÍn Gamma. En el ejemplo 4 se da su relación con la función zeta de Riemann. 
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NOTA. Muchos de los teoremas del capítulo 7 correspondientes a las integrales 
de Riemann se pueden convertir en teoremas sobre integrales de Riemann im­
propias. A fin de ilustrar el método directo en que alguna de estas extensiones 
puede realizarse, consideremos la fórmula de integración por partes: 

f f(x)g'(x) dx = f(b)g(b) - f(a)g(a) - f g(x)f'(x) dx. 

Puesto que b aparece en tres términos de esta ecuación, debemos considerar 
tres límites cuando b ---'> +00. Si dos de estos límites existen, el tercero también 
existe y se obtiene la fórmula 

fYJ f(x)g'(x) dx = b~~O') f(b)g(b) - f(a)g(a) - Ioo g(x)f'(x) dx. 

Otros teoremas acerca de las integrales de Riemann pueden extenderse por 
el mismo procedimiento a teoremas acerca de integrales de Riemann impropias. 
Sin embargo, no es preciso dar un desarrollo más detallado de estas extensio­
nes, puesto que en cada caso particular, basta aplicar el teorema requerido al 
intervalo compacto fa, b] y hacer que b ---'> +00. 

Ejemplo 3. La ecuación funcional rey + 1) = yr(y). Si O < a < b, la integración 
por partes nos proporciona 

Si hacemos que a ---'> 0+ Y que b ---'> +000, obtenemos rey + 1) == yr(y). 

Ejemplo 4. Representación integral para la función zeta de Riemann. La función 
zeta de Riemann ~ se define para s > 1 por medio de la ecuación 

00 1 
(s) = L s' 

n~1 n 

Este ejemplo nos demuestra que el teorema de convergencia de Levi para series 
permite deducir una representación integral, 

(s)r(s) = _x __ dx. l
oo 5-1 

o eX - 1 

La integral existe como integral de Lebesgue. 
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En la integral que define res) podemos efectuar el cambio de variable I = nx, 
1/ > O, Y obtenemos 

res) = 100 e- t /"'-1 dI = nS 100 e-nxxs- 1 dx. 

1.1Iego, si s > O, tenemos 

n-Sres) = Jooo 
e-nxxs - I dx. 

Si ,1' > 1, la serie L~1 n-S converge, por lo que se tiene 

rn donde la serie de .\a derecha es convergente. Dado que el integrando es no ne­
Ilativo, el teorema de convergencia de Levi (teorema 10.25) nos dice que la serie 
¿;; ' 1 e-nx x·- 1 converge casi en todo hacia una función suma que es integrable 
I ,ehesgue en [O, +00] Y que . 

Ahora bien, si x > O, tenemos que O < e-Z < 1 Y por lo tanto, 

~ -nx e-x 1 
~ e = 1 _ e-x = eX - 1 ' 

Illlcsto que la serie es una serie geométrica. Por consiguiente tenemos 

casI en 
IlIego 

]0.14 

00 5-1 

~ -nx s - 1 X L.,¿ e x = .;--
n= 1 e - 1 

todo [O, +(0), de hecho en todo el intervalo [O, +:xl) excepto en el O, 

'(s)1(s) = L e-nxxs- I dx = -{-- - dx. l oo '" 1'" s - 1 

o n = lOe - 1 

FUNCIONES MEDIBLES 

Toda función f integrable de Lebesgue en un intervalo 1 ·es el límite, casi en 
todo T, de una cierta sucesión de funciones escalonadas. Sin embargo, el re­
cfproco no es cierto. Por ejemplo, la función constante f = 1 es un límite de 
funciones escalonadas sobre la recta real R, pero esta función no está en L(R). 
Por consiguiente, la clase de funciones que son límites de funciones escalonadas 
es más amplia que la clase de funciones integrables de Lebesgue. Las funciones 
de esta clase más amplia se llaman funciones medibles. 

... 
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Definición 10.34. Una función f definida en 1 se llama medible en 1, y se 
escribe fE M(I), si existe una sucesión de funciones escalonadas {sn} en 1 
tal que 

lim sn(x) = f(x) casi en todo l. 
tJ -+ 00 

NOTA. Si f es medible en 1 entonces es medible en todo subintervalo de l. 

Como ya hemos observado, toda función de L(l) es medible en 1, pero el 
recíproco es falso. El teorema que sigue proporciona un recíproco parcial. 

Teorema 10.35. Si f E M(l) Y si If(x) I < g(x) casi por todo en 1 para la fun­
ción no negativa g de L(l), entonces f E L(l). 

Demostración. Existe una sucesión de funciones escalonadas {Sn} tal que 
s,,(x) -+ f(x) casi por todo en l. Ahora apliquemos el teorema 10.30 para de­
ducir que f E L(l). 

Corolario 1. Si lE M(l) Y Ifl E L(l), entonces fE L(l). 

Corolario 2. Si f es medible y acotada en un intervalo acotado 1, entonces 
lE L(I). 

Otras propiedades de las funciones medibles las proporciona el siguiente 
teorema. 

Teorema 10.36. Sea rp una función real continua en R2 . Si I E M(l) Y g E M(l), 
definimos h en 1 por medio de la ecuación 

h(x) = cp[J(x), g(x)]. 

Entonces h E M(l). En particular, f + g, f· g, If l, máx (j, g) y mÍn (/, g) perte­
necen a M(I). Además, ljf E M(l) si I(x) 0:/= O casi en todo l. 

Demostración. Sean {sn} y {tn} dos sucesiones de funciones escalonadas tales 
que s" -+ f y tn -+ g casi en todo l. Entonces la función Un =rp(sn, tn ) es una 
función escalonada tal que u" -+ h casi en todo l. Luego h E M(I). 

El teorema que sigue prueba que la clase M(l) no crece si se toman límites 
de funciones de M(l). 
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Tt'orema 10.37. Sea f una función definida en 1 y supongamos que {in} es 
l/l/U sucesión de funciones medibles en l tal que fn(x) ~ f(x) casi en todo 1. 
J~'lIlonces f es medible en l. 

lklllosfración. Elegimos una función positiva g de L(!), por ejemplo g(x) = 
1/( I + X2) para todo x de l. Sea 

Entonces 

Fn(x) = g(x) fn(x) 
I + 1f,,(x)1 

para x de l. 

F (x ) ~ g(x)f(x) 
n 1 + If(x)1 

casi en todo l . 

Seu F(x) = g(x)f(x)/ {1 + )f(x» )}. Dado que cada función F n es medible en l y 
que )F,,{x») < g(x) para todo x, el teorema 10.35 prueba que .cada En E L(l). 
Además, )F(x») < g(x) para todo x de l, luego, en virtud del teorema 10.30, 
F E U!) Y entonces F E M(!). Ahora tenemos 

f(x){g(x) - !F(x)1} = f(x)g(x) I - = --- --. -- = F(x) 
{ 

If(X)I} f(x)g(x) 

. 1 + If(x)1 1 + If(x)1 

para todo x de l, luego 

f(x) = F....:(x--'---) _ _ 
g(x) - !F(x)1 

Por consiguiente, fE l'v1-(!) ya que cada una de las funciones F, g Y !P) perte­
necen a M(!) y R(X) - )F(x») > O para todo x de l. 

NOTA. Existen funciones no medibles, pero el teorema anterior muestra que 
no es fácil construir un ejemplo. Las operaciones usuales del Análisis aplicadas 
n funciones medibles, producen funciones medibles. Por consiguiente, cada fun­
ci¡)n que encontremos en la práctica es muy probable que sea medible. (Ver 
el ejercicio 10.37 para un ejemplo de una función no medible.) 

10.1!l CONTINUIDAD DE FUNCIONES DEFINIDAS POR MEDIO 
DE INTEGRALES DE LEBESGUE 

Sea f una función real de dos variables definida en un cierto subconjunto de R2 
de la forma X X Y, en donde tanto X como Y son sub intervalos arbitrarios de R. 
Muchas funciones del Análisis son integrales de la forma 

F( y ) = t f(x, y) dx . 

.. -
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Discutiremos tres teoremas en los que se transmite la continuidad, la diferen­
ciabilidad y la integrabilidad de la función integrando f a la función F. El 
primer teorema concierne a la continuidad. 

Teorema 10.38. Sean X e Y dos subintervalos de R, y sea f una función defi­
nida en X X Y que satisfaga las siguientes condiciones: 

a) Para cada punto y de Y. la función fy definida en X por medio de la 
ecuación 

h(x) = f(x, y) 

es medible en X . 
b) Existe una función no negativa g de L(X) tal que, para cada y de Y, 

If(x, y)1 :s; g(x) c.e.t. X. 

c) Para casi todos los x de X, f(x, y) es una función de y continua en Y. Esto 
es, para cada y de Y, fijo, 

lim f(x, t) = f(x, y) casi en todo X. 
'---< y 

Entonces la integral de Lebesgue J x f(x. y) dx existe para cada y de Y, y la 
función F definida por la ecuación 

F(y) = t f(x, y) dx 

es C'ontinua en Y. Esto es, si y E Y tenemos 

lim f f(x: t) dx = f limf(x, t) dx. 
t-y x X r -+ y 

Demostración. Dado que f" es medible en X y dominada casi en todo X 
por una función no negativa g de L(X), el teorema 10.35 prueba que fu E L(X). 
En otras palabras, la integral de Lebesgue J x f(x , y) dx -existe para cada y de Y. 

Ahora elegimos un punto fijo y de Y y sea {Yn} una sucesión de puntos 
de Y tal que lim y" = y. Probaremos que lim F(Yn ) = F(y). Sea Gn(x) = f(x, Yn)' 
Cada Gn E L(X) Y (e) prueba que Gn(x) ~ f(x, y) casi en todo X. Obsér­
vese que F(y,,) = J x G..{x) dx. Dado que (b) se verifica, el teorema de conver­
gencia dominada de Lebesgue prueba que la sucesión {F(y,,)} converge y que 

Iim F( YII) = f f(x, y ) dx = F( y ). 
11 -+ OC) X 
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Ejemplo 1. Continuidad de la ' función Gamma rey} = fri 00 e-X x Y - 1 dx para Y > O. 
Aplicamos el teorema 10.38 con X = [O, +00), Y = (O, +00). Para cada y> O el 
integrando, considerado como función de x, es continuo (por tanto medible) casi 
en todo X, luego (a) se verifica. Para cada x fijo> O, el integrando, considerado 
\:omo función de y, es continuo en Y, luego (e) se verifica. Finalmente, verifica­
mos (b), no en Y sino en cada subintervaio compacto [a, b], en donde O < a < b. 
Para cada y de [a, b] el integrando está dominado por la función 

{

X a-¡ 
g(x) = 

Me- x / 2 si x ~ 1, 

s¡O<x:o::;l, 

en donde M es una cierta constante positiva. Esta función g es integrable Le­
hc,~gue en X, en virtud del teorema 10.18, luego por el teorema 10.38 sabemos que 
l' es continua en [a, b]. Pero esto es cierto para todo subintervalo [a, b], por lo 
tllnto l' es continua en Y = (O, +oo}. 

I<:.!cmplo 2. Continuidad de 

F(y) = (+00 e-XY senx dx 
Jo x 

pura y >'0. En este ejemplo se presupone que el cociente (sen x}/x ha de rempla­
:t,arse por 1 cuando x = O. Sea X = [O, +00), Y = (O, + 00). Las condiciones (a) y (e) 
drl teorema 10.38 se satisfacen. Como en el ejemplo 1, verificamos (b) en cada uno 
de los subintervalos Ya = [a, +00), a> O. Dado que I(sen x)/xl ::;: 1, el integrando 
cshl dominado en Ya por la función 

g(x) = e- ax para x ~ O. 

Como ~ es integrable de Lebesgue en X, F es continua en Ya para cada a> O; 
IlIego F es continua en Y = (0, +00). 

A fin de ilustrar otro uso del teorema de la convergencia dominada de Le­
hcsgue probaremos que F(y) -7 O cuando y -7 +00. 

Sea {y,,} una sucesión creciente de números reales tales que y .. > 1 e 
y,,, .. ~ +00 cuando n -7 oo. Probaremos que F(y.n) -7 O cuando n -7 oo. Sea 

para x> O. 

Entonces limn~oo f,,(x) = O casi en todo [O, +00]; de hecho, para todo x salvo 
en O. Ahora 

y .. > 1 implica I !,,(x) I < e-{/) para todo x > O. 

Por consiguiente, cada fin es integrable de Riemann en [O, b] para cada b> O Y 

I Ilnl ::;: I e-X dx < 1. 

so 
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Luego, por el teorema 10.33, fn es integrable de Lebesgue en [O, +00]. 
Puesto que la sucesión {tn} está dominada por la función g(x) = e-" que es 
integrable de Lebesgue en [O, +00], el teorema de convergencia dominada de 
Lebesgue nos dice que la sucesión {Jri 00 in} converge y que 

f
+OO f+ cxo 

tim in = tim ¡;, = o. 
,J- Cf; O O 11- 00 

Pero Sri 00 In = F(y"), luego F(Y71) -7 O cuando n -7 oo. Entonces, F(y) -7 O cuan­
do y -7 +00. 

NOTA. En gran parte de lo que sigue, tendremos ocaSlOn de tratar con inte­
grales que contengan el cociente (sen x)!x. Tendremos siempre presente que este 
cociente debe reemplazarse por 1 cuando x = O. Análogamente, un cociente 
de la forma (sen xy)!x se debe reemplazar por y, que es el valor de su límite 
cuando x -7 O. Generalizando, si tratamos con integrando s con discontinuidades 
evitables en ciertos puntos aislados del intervalo de integración, podremos «(evi­
tan> estas discontinuidades volviendo a definir convenientemente el integrando 
en estos puntos excepcionales. En los puntos en los que el integrando no está 
definido, asignamos al integrando el valor O. 

10.16 DIFERENCIACIóN BAJO SIGNO DE INTEGRAL 

Teorema 10.39. Sean X e Y dos subintervalos de R, y sea f una función 
definida en X X Y que satisfaga las siguientes condiciones: 

a) Para cada y fijo de Y, la función fy definida en X por medio de la ecuación 
fv(x) = f(x, y) es medible en X, y fa E L(X) para un a de Y. 

b) La derivada parcial D 2 f(x, y) existe para cada punto (x, y) del interior 
de X X Y. 

e) Existe una función no negativa G de L(X) tal que 

IDd(x, y)1 ::;: G(x) para todos los puntos interiores de X X Y. 

Entonces la integral de Lebesgue f x f(x, y) dx existe para cada y de y, y la 
función F definida por medio de 

F(y) = t i(x, y) dx 

es diferenciable en cada punto interior de Y. Además, su derivada viene dada 
por la fórmula 

F'( y) = t Dd(x, y) dx. 

http://libreria-universitaria.blogspot.com
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NOTA. La derivada F'(y) se ha obtenido por diferenciación bajo el signo de 
integral. 

Demostración. Primeramente establecemos la desigualdad 

Ify(x)1 s I !a(x) I + Iy - al G(x), (23) 

pura todo punto (x, y) del interior de X X Y. El teorema del valor medio nos da 

f(x, y) - f(x, a) = (y - a) Dd(x, e), 

en donde e está entre a e y. Puesto que ID2f(x, e)1 < G(x), esto implica 

If(x, y)1 s If(x, a)1 + Iy - al G(x), 

que prueba (23). Al ser f.1I medible en X y dominada casi en todo X por 
" unu función no negativa de L(X), el teorema 10.35 prueba que fy E L(X). En 

otras palabras, la integral J x f(x, y) dx existe para cada y de Y. 
Ahora elegimos una sucesión {Yn} de puntos de Y tal que cada Yn =F y 

pero lim y", = y. Definimos una sucesión de funciones {qn} en X por medio 
de la ecuación 

qn(X) = f(x, Yn) - f(x, y) . 

Yn - Y 

En(onces q" E L(X) y qn(x) ~ D.f(x, y) en cada punto interior de X. Por 
el teorema del valor medio tenemos qn(x) = DJ(x, e .. ), en donde en está com­
prendido entre Yn e y. Luego, por (e), tenemos I qn(x) I < G(x) casi en todo X. 
El teorema de la convergencia dominada de Lebesgue prueba que la suce­
Nión {Ix q,,} converge, que la integral J x D 2f(x, y) dx existe, y que 

lim f qn = f lim qn = f Dd(x, y) dx. 
"- 00 x x n- oo X 

Pero 

f qn = _ 1 "- f {¡(x, Yn) - f(x, y)} dx = ~(Yn) - F(y) . 
x Yn - Y x Yn - Y 

Dado que este último cociente tiende hacia un límite para todas las sucesio~ 

nes {y,,}. se sigue que F'(y) existe y que 

F'( y) = 1im f qn = f Dd(x, y) dx . 
"-Jo 00 X X 

.4 
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Ejemplo 1. Derivada" de la función Gamma. La derivada P(y) existe para cada 
y > O Y viene dada por la integral 

r'(y) = L+oo e-xxy- 1 In xdx, 

obtenida diferenciando la integral rey) bajo el signo de integral. Es una consecuen­
cia del teorema 10.39 porque para cada y de [a, h J, O < a < h, la derivada 
parcial D o(e-"x ll - 1

) está dominada e.e.t.por una función g que es integrable en 
[O, + 00). De hecho, 

2 D2 (e- Xx- l ) = -- (e- x/- 1) = e-xxy- 1 log x si x> 0, oy 
luego si y > a, la derivada parcial está dominada (excepto en el O) por la función 

(

x"-lIIOg xl 
g(x) = ,:e-XI2 

si ° < x ~ 1, 
si x > 1, 
six = 0, 

en donde M es una constante positiva. El lector puede verificar fácilmente que g es 
integrable de Lebesgue en [0, +00). 

Ejemplo 2. Evaluación de la integral 

i
+ oo 

F(y) = e-Xysen x dx. 
o x 

Aplicando el teorema 10.39, obtenemos 

F'(y) = - L+oo e-x>, sen x dx, si y> O. 

(Como en el ejemplo 1, probamos el resultado en cada intervalo Ya = [a, +00), 
a > O.) En este ejemplo, la integral de Riemann sS e-X>' sen x dx se puede calcular 
utilizando métodos del Cálculo elemental (utilizando la integración por partes dos 
veces). Ello nos da 

-x>, sen d _ e - y - cos e xx- + ---i
b -b>,( sen b b) 1 

o 1 + y2 1 + y2 
(24) 

para todo número real y. Hacemos b ~ +00 Y obtenemos 

e-x>, sen x dx = ---i + oo 1 

o 1 + y2 
si y> O. 

Por consiguiente F'(y) = -l/O + y') si y> O. Integrando esta ecuación obtenemos 

F(y) - F(b) = - - - = arctg b-arctg y, i>' dt 

b 1 + t 2 
para y > 0, b > O. 



348 La integral de Lebesgue 

Ahora sea b ~ +00. Entonces arc tg b ~ rr /2 y F(b) ~ O (ver ejemplo 2, sección 10.15), 
luego F(y) = rr /2 - arc tg y. En otras palabras, tenemos 

e- XY - dx = - - arc tg y f+oo sen x 7C 

o x 2 
si y> o. (25) 

Esta ecuación es asimismo válida si y = O. Esto es, tenemos la fórmula 

r+ oo 
sen x dx = ~ . 

Jo x 2 
(26) 

Sin embargo, no podemos deducir esto en el caso y = O en (25), puesto que no 
hemos demostrado que Fseacontinua en O. De hecho, la integral de (26) existe como 
una integral de Riemann impropia. No existe como una integral de Lebesgue. (Ver 
l'jercicio 10.9.) 

Ejemplo 3. Demostración de la fórmula 

i +
OO ib sen x d _ l· sen x d _ 7C 

- - X - 1m -- x - - . 
o X b-++ oo o x 2 

Sea IR,.} la sucesión de funciones definida para todo número real y por medio de 
la ecuación 

( ) _ fn -xy sen x d gn y - e -- x. 
o x 

(27) 

Primeramente observemos que gn(n) ~ O cuando n ~ 00 ya que 

in 1 fn 2 
1 

1 g.(n) 1 :5 e- xn dx = - e- t dI < - . 
O non 

Ahora diferenciamos (27) y utilizamos (24) para obtener 

g Y = - e sen x x = - _. .. . '( ) in -xy d e-nv{ - y sen n - cos n) + 1 
n o 1 + y2 ' 

que es una ecuación válida para todo número real y. Esto prueba que g'n(Y)~ 
.- r I( r + y 2) para todo y y que 

1 
'( )1 < e-Y(y + 1) + 1 

gn y - 1 2 
para todo y ¿ o. 

+y 

Por consiguiente, la función fn definida por 

f.(y) = {~~(y) si O::; Y ::; n, 

si y> n. 

• 
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es integrable de Lebesgue en [O, +(0) Y está dominada por la función no negativa 

( ) = e-Y(y + 1) + 1 
g Y 1 2 • + y 

Además, g es integrable de Lebesgue en [0, +(0). Dado que f",(y) ~ -1 lO + y 2) 
en [O, +00), el teorema de convergencia dominada de Lebesgue implica 

f
+oo 

lim In = 
n-+ 00 O 

7C 

2 

Pero tenemos 

r+ 00 rn 

Jo In = Jo g~(y) dy = gin) - gn(O). 

Haciendo que n ~ 00, hallamos que gn(O) ~ 'l!'{2. 
Ahora si b > O Y si n = [b], tenemos 

f b sen x d _ fn sen x ib 
sen x ib 

sen x - - x - - - dx + - - d~ = g.(O) + - - dx. 
oX oX n X n X 

Puesto que 

O :5 f
b 1 b - n 1 

:5 -dx=--:5---+0 
n n n n 

cuando b ~ +oc, 

tenemos 

hm - - dx = hm gn(O) = - . . fb sen x . 7C 

b .... +co o X n-+ CO 2 

Esta fórmula nos será de gran utilidad en el capítulo 11 al estudiar las series de 
Fourier. 

10.17 INTERCAMBIO EN EL ORDEN DE INTEGRACIóN 

Teorema 10.40. Sean X e Y dos sublntervalos de R, y sea k una función defi­
nida, continua y acotada en X X Y, sea pues 

Ik(x, y)1 < M para todo (x, y) de X X Y. 

Supongamos que fE L(X) y g E L(Y). Entonces tenemos: 

a) Para cada y de Y, la integral de Lebesgue J x f(x )k(x, y ) dx existe, y la fun­
ción F definida en y, por medio de la ecuación 

es continua en Y . 
F(y) = Ix f(x)k(x, y) dx 
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b) Para cada x de X, la integral de Lebesgue f y g(y)k(x, y ) dy existe, y la 
función G definida en X por medio de la ecuación 

G(x) = L g(y)k(x, y) dy 

es continua en X. 
e) I_os dos integrales de Lebesgue f y g(y)F(y) dy y f x f(x)G(x) dx existen y son 

iguales. Esto es 

L f(x) [L g(y)k(x, y) dY] dx = L g(y) [L f(x)k(x, y) dX] dy. (28) 

f)l'Il/ostración. Para cada y fijo de Y, sea fy(x) = f(x)k(x, y). Entonces fy es 
medible en X y satisface la desigualdad 

1 J;,(x) 1 = If(x)k(x, y)1 ::;; M If(x) 1 para todo x de X . 

Además, dado que k es continua en X X Y tenemos 

limf(x)k(x, t) = f(x)k(x, y) para todo x de X . 
t~y 

Por consiguiente, la parte (a) se sigue del teorema 10.38. Un razonamiento aná­
logo prueba la parte (b). 

A hora el producto ¡. G es medible en X y satisface la desigualdad 

If(x)G(x) 1 ::;; 1 f(x) 1 I Ig(y)llk(x, y)1 dy :.:; M' If(x)l, 

CII donde M' = M f y Ig(y )1 dy . Por el teorema 10.35 vemos que f·G E L(X). 
Un argumento análogo prueba que g·F E L(Y). 

A continuación probamos (28). En primer lugar observamos que (28) es ver­
lindera si f y g son ambas funciones escalonadas. En este caso, tanto f como g 
se anulan fuera de un intervalo compacto, luego cada una es integrable de Rie­
mann en este intervalo y (28) es consecuencia inmediata del teorema 7.42. 

Ahora utilizamos el teorema 10.19(b) para aproximar f y g por medio de 
funciones escalonadas. Dado E > O, existen funciones escalonadas s y t tales que 

L 1I - si < e y L Ig - ti < e. 

• 
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Por consiguiente tenemos 

(29) 

en donde 

IAII = J L (f - s)· GJ :.:; Ix If - si Iy Ig(y)1 Ik(x, y)1 dy < eM Iy Igl· 

Luego, tenemos 

en donde 

G(x) = I g(y)k(x, y) dy = I t(y)k(x, y) dy + A 2 , 

IA21 = JI (g - t)k(x, y) dyJ ::;; M Iy Ig - ti < eM. 

Por consiguiente 

L s · G = Ix s(x) [I t(y)k(x, y) dY] dx + A3 , 

en donde 

IA31 = JA2 L s(x) dXJ ::;; eM Ix Isl 

::;; eM Ix {Is -fl + Ifl} < l/M + eM Ix Ifl, 

luego (29) se convierte en 

-Lf' G = L s(x) [I t(y)k(x, y) dY] dx + Al + A3' (30) 

Análogamente obtenemos 

I g' F = I t(y) [L s(x)k(x, y ) dX] dy + Bl + B3 , (31) 
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en donde 

y 

Pero las integrales reiteradas que aparecen a la derecha de (30) y (31) son igua­
les, por lo que resulta 

I Ix l ' G - L g . FI ~ lA 11 + IA31 + IBd + IB31 

< 2e
2
M + 2eM {Ix III + L Igl} . 

Puesto que esto se verifica para cada E > O tenemos f x f· G = f y g. F, Gomo 
pretendíamos. 

NOTA. Una versión más general del teorema 10.40 será demostrada en el ca­
pítulo 15 utilizando integrales dobles. (Ver teorema 15.6.) 

1 n. 18 CONJUNTOS MEDIBLES DE LA RECTA REAL 

/),'/i"irión 10.41. Dado un conjunto no vacío S de R, la función Xs definida 
!,or II/edio de 

Xs(x) = g si x E S, 

si xER-S, 

Sl' llama función característica de S. Si S es vacío, definimos Xs(x) = O para 
lodo x . 

Teorema 10.42. Sea R = (-00, +(0). Entonces tenemos: 

a) Si S tiene medida O, entonces Xs E L(R) Y SR XS = O. 
b) Si Xs E L(R), Y si SR XS = O, entonces S tiene medida cero. 

Demostración. La parte (a) se sigue del teorema 10.20, haciendo f = Xs. Para 
demostrar (b), sea fn = Xs para todo n. Entonces Ifnl = Xs luego 
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Por el teorema de Levi para sieres absolutamente convergentes, se tiene que la 
serie 'L.:'= 1 In(x) converge en todo R salvo en un conjunto T de medida O. 
Si x E S, la serie no converge ya que cada uno de sus términos vale 1. Si x El: S, 
la serie converge puesto que cada término es O. Luego T = S, por lo tanto 
S tiene medida O. 

Definición 10.43. Un subconjunto S de R es medible si su función caracte­
rística Xs es medible. Si, además, Xs es integrable de Lebesgue en R, entonces 
la medida p(S) del conjunto S se define por la ecuación 

Jl(S) = L Xs' 

Si Xs es medible pero no es integrable de Lebesgue en R, definimos p(S) = +00. 
La función f1 así definida se llama medida de Lebesgue. 

Ejemplos 
1. El teorema 10.42 nos muestra que un conjunto S de medida cero es medible y 

que peS) = o. 
2. Todo intervalo 1 (acotado o sin acotar) es medible. Si 1 es un intervalo acotado 

con extremos a < b, entonces p{l) = b - a. Si 1 es un intervalo no acotado, en­
tonces p(I) = + oo. 

3. Si A Y B son medibles y A ~ B, entonces peA) < p:(B). 

Teorema 10.44. a) Si S Y T son medibles, también lo es S-T. 

b) Si SI' S2' ... , son medibles también lo son U~ 1 Si e n¡";,, 1 Si' 

Demostración. Para probar (a) observemos que la función característica de 
S - T es Xs - XsXT. Para probar (b), sea 

n n 00 00 

V" = U Si' VII = n Si' V = U Si' V n Si' 
i == 1 i= 1 i= 1 i=1 

Entonces tenemos 

XV n = max (XS" .. . , XsJ y Xv" = min (XS¡,· .. , XsJ, 

luego cada Un y Vn es medible. Por lo tanto, también son medible s 

Xv = limn-+ ro XV n y Xv = limn -+ oo Xv" ' 

y U Y V son medibles. 
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Teorema 10.45. Si A Y B son conjuntos disjuntos medibles, entonces 

p(A u B) = p(A) + p(B). (32) 

Demostración. Sea S = A u B. Dado que A y B son disjuntos tenemos 

Xs = XA + XB' 

Supongamos que AS es integrable. Puesto que tanto XA como XB son medible s 
y satisfacen 

o ::;; XB(X) ::;; Xs(x) para todo x, 

el teorema 10.35 demuestra que tanto XA como Xs son integrables. Por con­
siguiente 

peS) = t Xs = t XA + IR XB = }leA) + }l(B) . 

En este caso, (32) se verifica y ambos miembros son finitos. 
Si .\ .• no es integrable, entonces una por lo menos de las funciones caracte­

rísticas '\:.1, AH no es integrable, por lo que en este caso (32) se verifica siendo 
IImhos miembros infinitos. 

El teorema que sigue es una extensión del teorema 10.45 y se demuestra 
por inducción. 

T"oremn 10.46. Si {A" ... , A,,} es una colección finita de conjuntos me di­
"'cs. disjuntos dos a dos, entonces 

NOTA . Esta propiedad se enuncia diciendo que la medida de Lebesgue es fini­
t({/l/ellte aditiva. En el próximo teorema se demuestra que la medida de Lebes­
gue es numerable aditiva (o más corrientemente, U"-aditiva.) 

T,'oremn 10.47. Si {Al> A 2 , .. . } es una colección infinita numerable de con­
jllntos medibles disjuntos dos a dos, entonces 

(33) 

....... 
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Demostración. Sea Tn = U7=¡ A¡, Xn = XTn' T = U~¡ A¡. Puesto que p. es 
finitamente aditiva, tenemos 

n 

p(Tn) = L: p(AJ para cada n. 
¡= 1 

Debemos probar que jJ-(T,,) ~ fL(T) cuando n ~oo. Obsérvese que jJ-(T,,) < ¡L(Tn+1 ), 

luego {jJ-(T n)} es una sucesión creciente. 
Consideremos dos casos. Si jJ-(n es finito, entonces Xr y cada una de las Xn 

son integrables. Además, la sucesión {¡L(Tn )} está acotada superiormente por 
jJ-(n, luego converge. Aplicando el teorema de convergencia dominada de Le­
besgue, ¡L(Tn) ~ ¡L(T). 

Si jJ-(n = +00, entonces XT no es integrable. El teorema 10.24 implica que 
o bien alguna de las funciones características x.. no es integrable o bien, si 
todas ellas lo son, que F(Tn ) ~ +00. En ambos casos, (33) se verifica con am­
bos miembros infinitos. 

Para posteriores estudios acerca de la teoría de la medida y su relación 
con la integración, el lector puede consultar las referencias del final de este ca­
pítulo. 

10.19 LA INTEGRAL DE LEBESGUE EN SUBCONJUNTOS 
ARBITRARIOS DE R 

Definición 10.48. Sea f una función definida en un subconjunto medible S 
de R. Definimos una nueva función J en R como sigue: 

¡(x) = {~(X) si xES, 

si xE R-S. 

Si J es integrable de Lebesgue en R, diremos que f es integrable de Lebesgue 
en S y escribiremos f E L(S). La integral de f en S se define por medio de la 
ecuación 

Esta definición nos da inmediatamente las siguientes propiedades: 

Si f E L(S), entonces f E L(n para cada subconjunto medible T de S. 
Si S tiene medida finita, entonces jJ-(S) = f s 1. 
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El teorema que sigue describe una propiedad de aditividad numerable 
(o <T-aditividad) de la integral de Lebesgue. Su demostración se deja de ejer­
cicio para el lector. 

Teorema 10.4;9. Sea {Al' A 2 , ••• } una colección infinita numerable de con­
juntos medibles de R, disjuntos dos a dos, y sea S = U~l A j • Sea f una fun­
ción definida en S. 

a) Si f'EL(S), entonces f 'E L(A i ) para cada i y 

h) Si fE L(A i ) para cada i y si la serie de (a) converge, entonces fE L(S) Y la 
ecuación de (a) se verifica. 

1 n.20 INTEGRALES DE LEBESGUE DE FUNCIONES COMPLEJAS 

Si f es una función compleja definida en un intervalo 1, entonces f = u + iv, 
en donde u y v son reales. Se dice que f es integrable de Lebesgue en 1 si u y v 
son ambas integrables de Lebesgue en l, y se define 

Análogamente, se dice que f es medible en 1 si u y v son ambas de M(!). 
Es fácil comprobar que las sumas y los productos de funciones comp.lejas 

medibles son también medibles. Además, dado que 

1I1 = (u 2 + V
2

)1 / 2, 

d teorema 10.34 prueba que Ifl es medible si f lo es. 
Muchos de los teoremas acerca de las integrales de Lebesgue de funciones 

reales se pueden extender a funciones complejas. Sin embargo, no discutiremos 
estas extensiones puesto que, en cada caso, suele ser suficinte escribir f = u + iv 
y aplicar el teorema a u y a v. El único resultado que precisa una formulación 
explícita es el siguiente. 

'/'f'orf'''ut 10 .. 50. Si una función compleja f es integrable de Lebesgue en 1, 
('I//ol/ces !JI E L( T) y se tiene 
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Demostración. Escribimos f = u + iv. Dado que f es medible y If l < lu l + Ivl, 
el teorema 10.35 prueba que If l 'E L(!). 

Sea a = JI t. Entonces a = rei fl , en donde r = 14 Deseamos probar que 

r < JI Ifl. Sea 

si r > O, 
si r = O. 

Entonces Ibl = 1 Y r = ba = b JI f = JI bt. Ahora escribimos bf = U + iV, en 
donde U y V son reales. Entonces JI bf = JI U, puesto que JI bf es real. En­
tonces 

r = f bl = fu::::; f IUI ::::; 1 ibfl = 11/1. 

10.21 PRODUCTOS INTERIORES Y NORMAS 

Este capítulo introduce los productos interiores y las normas, conceptos que jue­
gan un papel importante en la teoría de las series de Fourier que será discutida 
en el capítulo 11. 

Definición 10.51. Sean f y g dos funciones reales de L(!) cuyo producto 1- g 

esté en L(!). Entonces la integral 

1/(X)g(X) dx (34) 

se llama producto interior de f y g, y se designa por medio de (f, g). Si 
f2 E L(!), el número no negativo (f, W/ 2

, designado par medio de Ilfl l, se llama 
L2-norma de f. 

NOTA. La integral de (34) se parece a la suma Lk= I XkYk que define el producto 
escalar de dos vectores x = (XI> ... , xn ) e y = (YI' .. . , y,,). Los valores funcio­
nales f(x) y g(x) que aparecen en (34) juegan el papel de las componentes Xk e Yk 
y la integración toma el lugar de la suma. La L 2-norma de f es análoga a la 
longitud de un vector. 

El primer teorema da una condición suficiente para que una función de L(l) 
tenga L 2-norma. 

Teorema 10.52. Si fE L(!) y si f está acotada casi en todo 1, entonces 
rE L(!). 



358 La integral de Lebesgue 

Demostración. Como f E L(!), f es medible y entonces f2 es medible en l 
y satisface la desigualdad If(x) I' < Mlf(x)! casi en todo 1, en donde M es una 
cota superior de Ifl. Por el teorema 10.35, f2 E L(l). 

10.22 EL CONJUNTO V(l) DE LAS FUNCIONES 
DE CUADRADO INTEGRABLE 

/)"finición 10.53. Designamos por V(l) el conjunto de todas las funciones 
reales f medibles en l tales que f2 E L(l). Las funciones de V(/) se llaman de 
t"/Iadrado integrable. 

NOTA. El conjunto V(!) no es ni más grande ni más pequeño que L(!). Por 
ejemplo, la función dada por 

f(x) = X- 1/ 2 para O < x < 1, feO) = O,. 

es una función de L([O, 1]) que no está en V([O, 1]). Análogamente, la fun­
cilÍn g(x) = l/x para x >1 está en V([l, +00» y sin embargo no está en 
/.([1. +00)). 

'/,,'tm'l1/f/ 10.54. Si fE V(!) y gE V(!), entonces f· g E L(!) Y (af+ bg) E V(!) 
pi/ra cada par de números reales a y b. 

Ikll/oSlraciúfl. Tanto f como g son medibles, luego 1-g 'E M(l). Pero 

If(x)g(x)1 ~ f2(X) + g2(X) , 
2 

luego el teorema 10.35 prueba que 1- g E L(/). Además, (af + bg) 'E M(/) Y 

(af + bg)2 = a2f2 + 2abj- 9 + b2g 2, 

Y entonces (af + bg) E V(l). 

~n consecuencia, el producto interior (j, g) está definido para cada par de 
funCIones f y g de V(l). Las propiedades básicas de los productos interiores 
y de las normas se hallan enumeradas en el siguiente teorema. 

T"orema 10.55. Si f, g y h están en V(/) y c es un número real, tenemos: 

a) (J, g) = (g,/) 

h) (f + g, 17) = (1, 17) + (g, h) 

( conmutatividad). 

(linealidad). 

-
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c) (el, g) = e(J, g) 

d) Ilefll = lel 11111 

( asociatividad). 

(homogeneidad). 
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e) 1(1, g)1 ~ 11111 IIgll (desigualdad de Cauchy-Schwarz). 

f) IIf + gil ~ 11111 + IIglI (desigualdad triangular). 

Demostración. Las partes (a) hasta la (d) son consecuencias inmediatas de la 
definición. Para probar (e), observemos ante todo que IIf ll = O implica f = O 
casi en todo 1, en virtud del teorema 10.l4(b), en cuyo caso (e) se verifica 
trivialmente. Supongamos, pues, que IIfll > O Y que IlgII > O, Y sea k = af + bg, 
en donde a y b son números reales que especificaremos más adelante. Entonces 
Cuando a = (g, g) y b = -(f, g) la desigualdad nos da 

f [1 If(x)g(y) - g(x)f(y)12 dyJ dx ~ o. 

que implica (e). Para probar (f) utilizamos (e) junto con la relación 

IIf + gll2 = (J + g,J + g) = (J,f) + 2(1, g) + (g, g) = IIfll 2 + IIgll 2 + 2(1, g) . 

NOTA. La noción de producto interior se puede extender a funciones comple­
jas f tales que Ifl E L 2(!). En este caso, (j, g) se define por medio de la ecuación 

(1, g) = 1 f(x)g(x) dx, 

en donde la barra designa el complejo conjugado. El conjugado se introduce 
para que el producto interior de f por sí mismo no sea nunca negativo, o sea 
que (j, f) = JI 1fI2. La V-norma de f es, como antes, IIfll = (j, !)l/2. 

El teorema 10.55 es válido también para funciones complejas, excepto la 
parte (a), que debe ser modificada, poniendo 

(1, g) = (g, f). (35) 

Esto implica el siguiente resultado paralelo al de la parte (b): 

(1, 9 + h) = (g + h,J) = (g,/) + (h,/) = (1, g) + (1, h). 

En las partes (e) y (d) la constante e puede ser compleja. De (c) y de (35) ob­
tenemos 

(1, eg) = ceJ, g). 
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La desigualdad de Cauchy-Schwarz (e) y la triangular (f) son válidas tam­
bién para números complejos. 

]0.23 EL CONJUNTO V(I) COMO ESPAC]O SEMIMÉTRICO 

Recordemos (definición 3.32) que un espacio métrico es un conjunto T junto 
con una función no negativa d definida en T X T que satisface las siguientes 
propiedades para toda terna de puntos x, y, Z de T: 

1. d(x, x) = O. 2. d(x, y) > O si x::/= y. 

3. d(x, y) = d(y, x). 4. d(x, y) :=; d(x, z) + d(z, y). 

Intentaremos convertir V(!) en un espacio métrico definiendo la distancia d(f, g) 
entre dos funciones complejas de L 2(!) por medio de la ecuación 

d(/, g) = III - gil = ({ II _ glzy/z. 

Esta función satisface las propiedades 1,3 Y 4, pero no la 2. Si f y g son funcio­
nes de V(!) que difieren en un conjunto de medida cero, no vacío, entonces 
1-; g y en cambio f - g = O casi en todo 1, luego d(f, g) = O. 

Una función d que satisface las propiedades 1, 3 Y 4, pero no satisface la 2, 
se, llama una semimétrica. El conjunto V(!), junto con la semimétrica d, se 
llama un espacio semimétrico. 

IO.2tf. UN TEOREMA DE CONVERGENCIA PARA SERIES 
DE FUNCIONES DE V (1) 

El siguiente teorema es análogo al teorema de Levi para series (teorema 10.26). 

Tf'orema 10 .. 56. Sea {gn} una sucesión de funciones de V(!) tal que la serie 

sea convergente. Entonces la serie de funciones 'L::'= 1 gn converge casi en todo 1 
hacia una función g de V(I), y se tiene 

(36) 

.. 
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Demostración. Sea M = 'L~ 1 IIgnll. La desigualdad triangular, extendida a su­
mas finitas, nos da 

Esto implica 

(37) 

Si xE 1, sea 

La sucesión Un} es creciente, cada fn E L(!) (ya que gk E V(J)), Y (37) prueba 
que Jr fn < M2. Por consiguiente la sucesión {JI in} converge. Por el teorema 
de Levi para sucesiones (teorema 10.24), existe una función f de L(/) tal que 
fn -4 f casi en todo 1, y 

Por lo tanto la serie 'Lf: 1 gk(X) converge absolutamente casi en todo l. Sea 

n 

g(X) = lim L gk(X) 
n-ro k= 1 

en todos los puntos en los que el límite existe, y consideremos 

Entonces cada Gn 'E L(!) Y Gn(x) -4lg(x)12 casi en todo l. Además, 

GnCx) :=; j,,(x) :=; I(x) c.e.t. l. 

Por consiguiente, en virtud del teorema de convergencia dominada de Lebesgue, 
Igl2 E L(!) e 

f IglZ = lim f Gn-
1 n-+oo 1 

(38) 
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Como gn es medible, esto demuestra que gEL 2(/). También tenemos 

y 

y entonces (38) implica 

y esto, a su vez, implica (36). 

10.2:) TEOREMA DE RIESZ-FISCHER 

El teorema de convergencia que acabamos de demostrar permite probar que 
elida sucesión de Cauchy del espacio semi métrico Ve/) converge hacia una fun­
ción de V(/) . En otras palabras, el espacio semimétrico V(/) es completo. Este 
resultado. conocido como el teorema de Riesz-Fischer, juega un papel impor­
tunte en la teoría de las series de Fourier. 

'I't'Mt'll/(l 10.57. Sea Un} una sucesión de Cauchy de funciones complejas 
tI/' t "(/) . Esto es, supongamos que para cada e > O existe un entero N tal que 

111m - /,,11 < ¡; siempre que m;;::: n > N. (39) 

HI/tol/(,('S existe una función I de L 2(/) tal que 

lim II/" - 111 = o. (40) 

DCII/ostración. Aplicando repetidamente (39) obtenemos una sucesión creciente 
de enteros n(l) < n(2) < .. . tal que 

1 111m - J,,(dl < 2k siempre que m > n(k). 

Sea gl = In(l)' y sea gk = /"(k) - In(k-I) para k;;::: 2. Entonces la serieL:';1 Ilgkll 
converge, ya que está dominada por 

te" I 

I , 
'j 
~ 
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Cada gn pertenece a Ve/). Luego, por el teorema 10.56, la serie L::'; 1 gn con­
verge casi en todo 1 hacia una función 1 de L 2(1). Para terminar la demos­
tración probaremos que 111m - III ~ O cuando 111 ~oo. 

A este fin utilizamos la desigualdad triangular para escribir 

111m - III ::;; 111m - J,,(k) II + 11J,,(k) - 111· (41) 

Si m >n(k), el primer término de la derecha es < If2k • Para acotar el se­
gundo término de la derecha observemos que 

00 

1- In(k) = L: {/"(r) - /"(r-I)} ' 
r;k+ 1 

y que la serie L ;"'; k+ 1 II/"(r) - In(r-l)ll converge. Entonces podemos utilizar la 
desigualdad (36) del teorema 10.56 para escribir 

00 00 1 1 
III - /"(k) II ::;; L: Il/n(r) - In(r-l)ll < L: 2r- 1 = 2k - 1 • 

r;k+l r ; k+l 

Entonces (41) nos proporciona 

si m ;;:: n(k). 

Puesto que n(k) ~ IX> cuando k ~ 00, esto demuestra que 111m - 111 -' O cuan­
do m~oo. 

NOTA. En el curso de la demostración hemos probado que cada sucesión de 
Cauchy de funciones de Ve/) admite una subsucesión que converge puntual­
mente casI en todo 1 hacia una función límite f de V(l). Sin embargo, no 
se sigue que la sucesión Un} ella misma converja puntualmente casi en todo 1 
hacia f. (En la sección 9.13 hemos visto un contraejemplo.) Aun cuando Un} 
converge hacia f en el espacio semimétrico ve/), esta convergencia no es la 
misma que la convergencia puntual. 

EJERCICIOS 

Funciones superiores 

10.1 Probar que max (j, g) + min (/, g) = I + g, y que 

max (f + h, 9 + h) -= max (1. g) + h, min (f + h, 9 + h) = min (1. g) + h. 
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10.2 Sean U,,} y {gn} sucesiones crecientes de funciones definidas en un intervalo l. 
Sean Un = max (fn' g",) y Vn = min (In' gn)· 

a) Probar que {u,,} y {v,,} son crecientes en l. 
b) Si f ... 7' c.e.t. I y g ... 7' g c.e.t. 1, probar que Un 7' max (f, g) y vn 7' min 

(f g) c.e.t. l. 
10.3 Sea {s,,} una sucesión creciente de funciones escalonadas que converge pun­

tualmente en un intervalo I hacia una función límite f. Si I no está acotado y si 
f(x) ~ 1 casi en todo 1, probar que la sucesión {JI Sn} diverge. 
10.4 Este ejercicio da un ejemplo de una función superior f en el intervalo 1=[0, 1] 

tal que -f f/= U(/). Sea {rl' 1'2' •.• } el conjunto de los números racionales de [O, 1] 
Y sea In = [rn - 4- n, rn + 4- n] nI. Hacemos f{x) = 1 si x E 1" para algún n, y 
f(x) = O en otro caso. 

a) Hagamos fn(x) = 1 si x E 'n> f,,(x) = O si x f/= In, Y sea s." = max (f1' ... , In)' 
Probar que {sn} es una sucesión creciente de funciones escalonadas que 
genera f. Esto prueba que fE U(/). 

b) Probar que JI f :<:::: 213. 
c) Si una función escalonada s verifica s(x):<:::: -f(x) en 7, probar que s(x):<:::: 

-1 casi por todo en I y entonces JI s:<:::: -1. 
d) Supongamos que -fE U(l) y usar (b) y (e) para obtener una contradicción. 

NOTA. En los ejercicios que siguen, el integrando vale O en los puntos en los que no 
está definido. 

Teoremas de convergencia 

10.5 Si f,,(x) = r""'" - 2e- 2
'n"" probar que 

~ LOO /,,(x) dx #- LOO ~ /,,(x) dx. 

10.6 Justificar las siguientes ecuaciones: 

J
I 1 JI 00 xn 00 1 JI n 

a) o In - - dx = L - dx = L - x dx = 1. 
- x o "=1 n "=1 n o 

J
I Xl'-l (1) 00 1 

b) --- In - dx = lL --2 (p > O). 
o 1 - x x n=O (n + p) 

10.7 Probar el teorema de convergencia de Tannery para integrales de Riemann: 
nllda l/na sucesión de funciones Un} y una sucesión creciente {Pn} de números rea-
1(',1' lal que p" -4. +00 cuando n -4 00, supongamos que 

a) fn -4 f uniformemente en [a, b] para cada b ~ a. 
b) fn es integrable de Riemann en [a, b] para cada b ~ a. 
e) I/"(x) I ::5 g(x) casi en todo [a, +00), en donde g es una función no nega­

lipa e integrable de Riemann en sentido impropio en [a, +(0). 

I
~ 

< 

,. 
f 
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Entonces tanlo f como Ifl son funciones integrables de Riemann en sentido impro­
pio en [a, +:)0), la sucesión U:"/"} converge y 

1
+

00 ll'n ¡(x) dx = lim /,,(x) dx. 
Q n~oo a 

d) Utilizar el teorema de Tannery para demostrar que 

lim f" (1 _ ~)n xl' dx = (00 e-xxI' dx, 
n-+OO Jo n Jo si p > -1. 

10.8 Probar el lema de Fatou: Dada una sucesión Un} de fun ciones no negativas 
de L(/) tales que (a) {f,n } converge casi en todo I hacia una función límite f, 
y (b) J I ~n :<:::: A para un cierto A > O Y todo n ~ 1,- entonces la función límite 
fE h(l) e Ir f :<:::: A. 

NOTA. Este lema no afirma que {f 1 fn} converja. (Compárese con el teoren,á 10.24.) 

Indicación. Sea g,,(x) = inf {fn(x) , f"+1 (x), ... }. Entonces g." 7' f c.e.t. I e f I g" :::; 
JI in :<:::: A, luego limn~ ~ JI gIl existe y es :<:::: A . Aplíquese ahora el teorema 10.24. 

Integrales de Riemann impropias 

10.9 a) Si p > 1, probar que la integral st oo x-I' sen x dx existe como integral im­
propia de Riemann y como integral de Lebesgue. Indicación. Integrar 
por partes. 

b) Si 0< p :<:::: 1, probar que la integral de (a) existe como integral de Rie­
mann impropia pero no como integral de Lebesgue. Indicación. Sea 

g(x) = 
{

.ji. 
2x 

O en cualquier otro caso. 

. n 3n 
SI nn + - ::5 x ::5 nn + para n = 1, 2, ... , 

4 4 

y probar que 

f"" lnn .ji n 1 x-I' Isen xl dx ~ g(x) dx ~ - L - . 
1 7[ 4 k=2 k 

10.10 a) Utilizar la identidad trigonométrica sen 2x = 2 sen x cos x , junto con la 
fórmula f~ sen x /x dx = ,,/2, para demostrar que 

l oo sen x cos x dx = ~ . 
o x 4 

b) Usar la integración por partes en (a) para deducir la fórmula 

.... APOSTOL, análisis - '3 
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e) Usar la identidad sen2 x + cos2 X = t , junto con (b), para obtener 

( '" sen
4 

x dx = ~. 
Jo X2 4 

d) Utilizar el resultado de (e) para obtener 

- - dx =-. 1'" sen~ x n 

o x4 3 

10.11 Si a> 1, probar que la integral J;; oo x P (In x'f1 existe como integral de Rie­
mann impropia y como integral de Lebesgue para todo q si p < - 1, o para q < -1 
si p = -1. 
10.12 Probar que cada una de las siguientes integrales existe como integral de Rie-
mann impropia y como integral de Lebesgue. 

f'" . 1 a) sen2 
- dx, 

1 X 

10.13 Determinar cuándo las integrales siguientes existen, ya sea como integrales 
de Riemann impropias, ya sea como integrales de Lebesgue, y cuándo no. 

( '" In x 
e) JI x(x2 _ 1)1 /2 dx, 

e) fo
1 

In x sen ~ dx, 

b) ('" eos_x dx, 

Jo .Jx 

l
oo 1 

d) e-x sen -- dx, 
o x 

10.14 Determinar para qué 
Lebesgue: 

valores de p y q existen las siguientes integrales de 

a) f: xP(l - X2)Q dx, 

l
oo p-I q-I 

X - X 
c) dx, 

o 1 - x 

e) _x __ dx, l
oo p-I 

o 1 + xq 

b) Jooo 

xXe- XP dx, 

d) ( 00 sen (xP
) dx, 

Jo x
q 

f) LOO (In x)P (sen X)-' /3 dx. 

10.15 Probar que las siguientes integrales de Riemann impropias tienen los valores 
indicados (m y n designan números enteros positivos). 

l OO sen",n+! x n(2n)! 
a) dx = _ ..0---'---, 

o X 22n+l(n!)2' 
b) f'" In x dx = n- 2 

n+ 1 ' 
1 X 

e) ( 00 xn(l + x)-n-m-I dx = n!(m - 1)! 
Jo (m + ~! 

.......... 
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10.16 Si I integrable de Riemann en [0, lJ, es periódica con período t, e 
J¿ f(x) dx = O probar que la integral de Riemann impropia ft oo x-s f(x) dx existe 

si s> O. Indicación. Sea g(x) = Sf f(t) dt y escribir sf [S f(x) dx = ff x-s dg(x). 
10.17 Supongamos que lE R en [a, bJ para cada b > a> O. Definamos g por medio 
de la ecuación xg(x) = Sf f(t) dt si x> 0, supongamos que el límite limx ->+"" g(x) 
existe, y desginemos este límite por B. Si a y b son números positivos fijos, probar que 

a) (b f(x) dx = g(b) _ g(a) + (b g(x) dx. 
Ja x Ja x J.

bT f(x) b 
b) lim - dx = B In - . 

T_+ ", aT X a 

) loo f(ax) - f(bx) d - B 1 a J.b f(t) d e x-n - + - t. 
1 X b a t 

d) Suponemos que el límite limx_o+ x J~ f(t)t -2 dI existe, y designamos este 
límite por A. Probar que 

(1 f(ax) - f(bx) dx = A In ~ _ (b f(t) dt. 

Jo x a Ja t 

e) Combinar (e) y (d) para deducir que 

( '" f(ax) - f(bx) dx = (B _ A) In !! 
Jo x b 

y utilizar este resultado para calcular el valor de las siguientes integrales: 

( '" cos ax - eos bx dx, 

Jo x 1
'" -ax -bx e - e - -_ .. _ - dx. 

o x 

Integrales de Lebesgue 

10.18 Probar que cada una de las siguientes integrales existe como integral de 
Lebesgue: 

a) (1 X log x dx, 
Jo (l + X)2 

e) 11 

log x log (1 + x) dx, 

b) (1 x
P 

- 1 dx (p > -1), 
Jo log x 

d) (1 log (l - x) dx. 
Jo (1 - X)1/2 

10.19 Supongamos que I es continua en [O, IJ, 1(0) = O, /'(0) existe. Probar que la 
integral de Lebesgue fó f(x)x- 3/2 dx existe. 
10.20 Probar que las integrales (a) y (e) existen como integrales de Lebesgue mien­
tras que las integrales (b) y (d) no. 



368 

e) (100 _ _ d_x __ 
J 1 1 + xi sen2 x 

d) roo 

La integral de Lebesgue 

dx 

Indicación. Obtener cotas superiores e inferiores para las integrales sobre entornos 
convenientemente elegidos de los puntos me (n = 1, 2, 3, ... ). 

Funciones definidas por integrales 

10.21 Determinar el conjunto S de los valores reales y para los que cada una de 
las siguientes integrales existe como integral de Lebesgue. 

a) (00 cos xy dx, b) (00 (x2 + y2)-1 dx, 
Jo 1 + X2 Jo 

l oo sen2 xy 
c) - - 2- dx, 

o x 
d) LOO e- x2 cos 2xy dx. 

10.22 Sea F(y) = sgo e- x2 cos 2xy dx si y E R. Probar qu~ F satisface la ecuación 
diferencial F'(y) + 2yFJy) = O Y deducir que F(y) = t :.)rr.e- lI'. (Utilizar el resul­
lado jgo e- x2 dx = ~.Jrr, deducido en el ejercicio 7.19.) 
10.23 Sea F(y) = Sgo sen xy/x(x2 + 1) dx si y> O. Probar que F satisface la ecua­
cit'ln diferencial F"(y) -- F(y) + rr/2 = O Y deducir que F(y) = t 1T'(1- e-1/). Utilizar 
esle resultado para deducir las siguientes ecuaciones, válidas para y> O ya> O: 

( 00 ~e-" xy dx = ~ (1 _ e-ay), 

Jo x(x2 + a2
) 2a2 

----- X = - e , se pue e usar l oo x sen xy d rr -ay d 

o X2 + a2 2 

10.24 Probar que 

l oo cos xy rre-ay 

-------'--~ dx= - -
o X2 + a2 2a ' 

(00 ~~~ dx = ~. 
Jo x 2 

sr [sr f(x, y) dx] dy #; sr [Sr f(x, y) dy] dx si 

x-y 
a) f(x, y) = --3' 

(x + y) 

X2 _ y2 
b) f(x, y) = (2 2)2 . 

X + Y 

10.25 Probar que el orden de integración no puede intercambiarse en las siguientes 
inlegrales: 

a) t [t x - Y 3 dX] dy, Jo Jo (x + y) 

10.26 Seaf(x, y) = Sgo dt/[(1 + x 2t 2)(1 + y 2t 2
)] si (x, y) #; (O, O). Probar (por mé­

lodos del Cálculo elemental) que f(x, y) = !rr(x + y)-l. Hallar el valor de la inte­
gral reiterada S~ HA f(x, y) dx] dy para deducir la fórmula 

(00 (are t; x)~ dx = rr In 2. 
Jo x 

s 
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10.27 Sea f(y) = Sgo sen x eos xy/x dx si y ¿ O. Probar (con métodos del Cálculo 
elemental) que l(y) = rr/2 si O::; Y < 1 Y que I(y) = O si y > 1. Hallar el valor de la 
Integral Sg f(y) dy para obtener la fórmula 

(00 sen ax sen x dx = {n; 

siO::; a::; 1, 

Jo X2 ~ si a ~ 1. 
2 

10.28 a) Si s> O ya> O, probar que la serie 

~ 1 ioo sen 2nrrx 
.L.J - dx 
n=l n a x' 

converge y probar que 

lim i::! roo sen 2snrrx dx = O. 
a-++oo n=l n Ja x 

b) Sea f(x) = L~l sen (2nnx)/n.Probar que 

~ dx = (2nY- 1C(2 - s) - dt, l oo f( ) 100 sen t 

o x' o t
S 

si O < s < 1, 

en donde ~ designa la función zeta de Riemann. 
10.29 a) Deducir la siguiente fórmula para la n-ésima derivada de la ,función 
Gamma: 

r<n)(x) = LOO e- tt X
-

1 (ln tyn dt (x > O). 

b) Cuando x = 1, probar que dicha fórmula se puede escribir como sigue: 

r<n)(l) = L1 

(t2 + (_1)ni- 1/ t )e- tt- 2 (ln tr' dt. 

c) Utilizar (b) para demostrar que r(n)(l) tiene el mismo signo que (-1)". 
En los ejercicios 10.30 y ~ 0.31, r designa la función Gamma. 
10.30 Utilizar el resultado Sgo e- x2 dx = t. ";;~ara probar que rm = ,,;;. Probar 
que r(n + 1) = n! y que r(n + t) = (2n)! .Jn/4nn! si n =0,1,2, ... 
10.31 a) Probar que para x > O tenemos la representación en serie 

00 ( 1)" 1 00 
r(x) = :E --=--. -- + :E enx", 

n=O n. n + X n=O 

en donde Cn = (l/n!) sr t -le-t (ln (1" dt. Indicación. Escribir Sgo = s~ + Sr' 
y utilizar un desarrollo en serie de potencias conveniente para cada in­
tegral. 
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b) PrO'bar que la serie de pO'tencias L:;"o cnzn cO'nverge para cada cO'mplejO' z 
y que la serie L:;"o [( _1)n/n!]/(n + z) cO'nverge para tO'dO' cO'mplejO' 
z=!=O, -1, -2, ... 

10.32 SupO'ngamO's que I es de variación acO'tada en [O, b] para cada b > 0, y que 
Jim3'~+oo I(x) existe. Designar pO'r mediO' de 1(00) este límite y probar que 

lim y roo e-XYI(x) dx = 1(00). 
y--+o+ Jo 

Indicación. Utilizar la integración pO'r partes. 
10.33 SupO'ngamO's que t es de variación acO'tada en [O, 1]. Probar que 

lim y (1 xY - 1/(x) dx = 1(0+). 
y--+o+ Jo 

Funciones medibles 

10.34 Si I es integrable de Lebesgue en un intervalO' abiertO' I y si f'(x) existe casi 
en tO'dO' 1, prO'bar que f es medible en l. 
10.35 a) Sea {sn} una sucesión de funciO'nes escalO'nadas tal que Sn ~ I en tO'dO' R. 

PrO'bar que, para cada real a, 

b) Si I es medible en R. probar que para cada subcO'njuntO' abiertO' A de R 
el cO'njuntO' l-l(A) es medible. 

10.36 En este ejerciciO' se describe un ejemplO' de un cO'njuntO' nO' medible de R. 
Si Ix e y sO'n números reales del intervalO' [0, 1], diremO's que x e y sO'n equivalentes, 
y escribiremO's x .... y, si x - y es raciO'nal. La relación .... es una relación de equi­
valencia, y el intervalO' [0, 1] se puede escribir cO'mO' reunión de subcO'njuntO's dis­
juntO's (lIamadO's clases de equivalencia)en cada unO' de lO's cuales nO' hay puntO's 
equivalentes. Elegimos un puntO' de cada clase de equivalencia y sea Eel cO'njuntO' 
de los puntO's elegidO's. SupO'ngamO's que E es medible y llegaremO's a cO'ntradicción. 
Sea A = {rl' 1'2' .. .} el cO'njuntO' de 100s números raciO'nales de [-1,1] y sea E .. = 
= {r .. + x:xEE}. 

a) Probar que cada E,n es medible y que p(En) = p(E). 
b) Probar que {El' E 2 , ... } es una cO'lección disjunta de cO'njuntO's cuya reu­

nión cO'ntiene a [0, 1] y está cO'ntenida en [-1, 2]. 
c) Utilizar (a) y (b) juntO' cO'n la rr-aditividad de la medida de Lebesgue 

para O'btener una cO'ntradicción. 
10.37 Referirse al ejerciciO' 10.36 y probar que la función característica XE es nO' 
medible. Sea I = xE - XI-E, dO'nde 1 = [O, 1]. PrO'bar que 1I1 E L(I), pero que 
1'" M(I). (CO'mparar cO'n el cO'rolariO' 1 del teO'rema 10.35.) 

-
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,.'unciones de cuadrado integrable 

En IO's ejerciciO's que van del 10.38 al 10.42, tO'das las funciO'nes pertenecen al cO'n­
jllnto V(J). La V-nO'rma se define por la fórmula 11I11 = (f¡ 1/1 2)'/2. 

10.38 Si limn --+ oo IIIn - I11 = 0, prO'bar que limn --+ oo Illnll = 11/11. 
10.39 Si limn --+ oo IIIn - I11 = ° y si limn --+ oo fn(x) = g(x) casi en tO'dO' 1, prO'bar que 
f(x) = g(x) casi en tO'dO' l. 
10.40 Si In ~ I unifO'rmemente en un intervalO' cO'mpactO' 1, y si cada In es cO'n­
tinua en 1, prO'bar que limn --+ oo IIIn - I11 = O. 
10.41 Si limn --+ oo IIIn - I11 = 0, prO'bar que limn --+ oo SI In 'g = SII'g para cada fun­
cil\n g de V (1). 
10.42 Si limn --+ oo IIIn - I11 = ° y limn --+ oo Ilgn - gil = 0, probar quelimn --+ oo SI In 'gn = 

f,/·g· 
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CAPiTULO 11 

Series de F ourier e 

integrales de Fourier 

1 1.1 INTRODUCCióN 

Tln 1807, Fourier sorprendió a algunos de sus contemporáneos al afirmar que 
uno función «arbitraria» se podía expresar como combinación lineal de senos 
y cosenos. Estas combinaciones lineales, llamadas hoy día series de Fourier. se 
hlln convertido en un instrumento indispensable en el análisis de ciertos fenó­
menos periódicos (tales como vibraciones, movimientos ondulatorios y planeta­
rios) que son estudiados en Física e Ingeniería. Muchos problemas importantes 
de naturaleza puramente matemática han surgido en relación con la teoría de 
ll1s series de Fourier, y es un hecho histórico notable que gran parte del desa­
rrollo del Análisis matemático moderno ha sido profundamente influenciado 
rmr la húsqueda de respuestas a tales problemas. En la referencia 11.1 , el lector 
podrá encontrar una breve pero excelente exposición histórica acerca de esta 
mlllcria y de su impacto en el desarrollo de las matemáticas. 

11.2 ~ISTEMAS ORTOGONALES DE FUNCIONES 

Pnrn describir de forma más adecuada los problemas básicos de la teoría de 
lns series de Fourier es preciso sumergirse en el ámbito de una teoría más ge­
nerul conocida con el nombre de teoría de las funciones ortogonales. Por con­
"'guiente, empezamos introduciendo cierta terminología concerniente a las fun­
ciones ortogonales. 

NOTA. Como en el capítulo anterior, consideraremos funciones definidas en un 
cierto subintervalo 1 de R. El intervalo puede ser acotado, no acotado, abierto, 
cerrado o semiabierto. Designamos por L 2(/) el conjunto de todas las funciones 
complejas f que son medibles en 1 y tales que IW 'E L(/). El producto interior 
<l. g) de dos de tales funciones, definido por medio de 

(f, g) = L f(x)g(x) dx, 

I 3n 

____________________ .--.II~_. ____________ - - - -
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existe siempre. El número no negativo [[ f [! = (j, f)1 / 2 es la V-norma de f. 

Definición 11.1. Sea S = {1'o' 1',. 1'2' ... } una colección de funciones de 
V(l). Si 

siempre que m =1= n, 

la colección S se llama sistema ortogonal en l. Si, además, cada 1',. tiene 
norma 

NOTA. 

en un 

l. entonces S se llama ortonormal en l . 

Todo sistema ortogonal para el que cada lI~nll =1= O se puede convertir 
sistema ortonormal dividiendo cada ~n por su norma. 

Nos interesará particularmente el sistema trigonométrico especial S = 
{o~o.~,. 1'2' ... }. en donde 

1 
<Po(x) = /-. 

"-I2n 

cos nx 
<P2n-l(X) = J; , 

sen nx 
<P2n(X) = ¡­

"-In 
(1) 

para n = 1. 2. ... Es fácil comprobar que S es ortonormal en todo intervalo 
de longitud 2r.. (Ver ejercicio 11.1.) El sistema (1) está formado por funciones 
reales . Un sistema ortonormal de funciones complejas en todo intervalo de lon­
gitud 2r. lo constituye 

einx 

<Pn(x) = J-= = 
2n 

cos nx + i sen nx 

J2n 
n = O, ]',2, ... 

11.3 EL TEOREMA DE óPTIMA APROXIMACIóN 

Uno de los problemas básicos en la teoría de funciones ortogonales consiste en 
aproximar tanto como sea posible una función dada f de L 2(1) por medio de 
una combinación lineal de elementos de un sistema orto normal. Precisando. sea 
S = f~o. 9',. 1'2' ... } un sistema ortonormal en 1 y sea 

n 

tn(x) = L bk<Pk(X), 
k~O 

en donde bo. b,. ...• b" son números complejos arbitrarios. Usemos la norma 
I[f - tn [[ para medir el error cometido al aproximar f por medio de tn . La pri­
mera labor consi.ste en elegir las constantes bo • . .. • b" de tal forma que el error 

Series de Fourier e integrales de Fourier .'/'/.'1 

sea lo menor posible. El próximo teorema prueba que existe una única ('k!' 

ción posible de las constantes que minimice este error. 
Para motivar los resultados del teorema consideremos el caso más favoru"Ii­

Si f es realmente una combinación lineal de '9'0' 9' , ..... 1'", esto es 

entonces la elección tn = f proporciona [[ f - tn [[ = O. Podemos dcterrllill:11 111" 
constantes Co' c l .... . Cn como sigue. Formemos el producto interior (f . ~ ' ,,,l. ('11 

donde O < m < n. Utilizando las propiedades del producto interior tl'1ll'1I"'~ 

ya que (:rk, 1'm) = O si k =1= m y (9'm.9'm) = 1. En otras palabras, en el 1I11\~ rn· 
vorable de los casos tenemos Cm = (f,~m) para m = O. l ..... 1/. 1':1 1'1'1"'1111(1 
teorema prueba que esta elección de las constantes es óptima para t(1dlls In~ 

fUllciones de V(l). 

'I'f'orema 11.2. Sea {1'o. 9'1' 9'2 ' ... } orlonormal en 1, y SUpOl/gllllltl,l' '/11" 

fe L"(/). Definimos dos sucesiones de funciones {s,, } y {tn} en I COIII/l .1/.',"/1 ' 

n n 

sn(x) = L Ck<Pk(X), 
k~O 

tnCx) = L bk<Pk(X), 
k~O 

t'l/ donde 

para k = O. 1, 2, ... , (JI 

y hu. b J> b2 , ... . son números complejos arbitrarios. Entonces para ('(/(111 1/ // ' 

I/('IIIOS 

( II 

A dClllás, en (3) se verifica la igualdad si, y sólo si, bk = Ck para k = O. l ... .. 1/ . 

Delllostración. Deduciremos (3) de la ecuación 

n n 

II! - lnll 2 = 11111 2 
- L Icd 2 + L Ibk - ck l2

• 
k~O k~O 
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Es claro que (4) implica (3) ya que el miembro de la derecha de (4) tiene su 
mínimo cuando bk = c" para cada k. Para probar (4). escribimos 

Utilizando las propiedades de los productos interiores obtenemos 

n n n 

= L L bk5m(lfJk' lfJm) = L Ibkl2 , 
k=O m=O k=O 

y 

n n n 

IIf - tnll 2 = IIfII2 - L 5kck - L bkck + L Ibk l2 

k=O k=O k=O 

n n 

IIfl1 2 
- L ICkl 2 + L (bk - ck)(bk - ck ) 

k=O k=O 

n n 

IIfll 2 
- L ICkl 2 + L Ibk - ckl

2
• 

k=O k=O 

11.1. !olERlE DE FOURIER DE UNA FUNCIóN RELATIVA 
A UN SISTEMA ORTONORMAL 

IJf·/illidón 11.3. Sea S = {~o. ~l' '~ 2 ' ... } ortonormal en l y supongamos que 
fe L "(1). La notación 

00 

f(x) ~ L CnlfJn(x) (5) 
n=O 

significa que los números ca. c l • c2 • ... vienen dados por las fórmulas: 

(n = 0, 1,2, ... ). (6) 
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La serie (5) se llama serie de Fourier de f relativa a S, y los números ca. c l , 

c2 , '" se llaman coeficientes de Fourier de f relativos a S. 

HOTA. Cuando l = [O, 2,,] y S es el sistema de funciones trigonométricas des­
crito en (1), la serie se llama simplemente serie de Fourier generada por f. 
Entonces (5) se escribe en la forma 

00 

f(x) ~ ao + L (0" cos n.x + bn sen n.x), 
2 n= 1 

en donde los coeficientes se han obtenido por medio de las fórmulas: 

a
n 

= ~ f2" f(t) cos nt dt, 
n o 

1 f2" bn = - f(t) sen nt dt. 
n o 

En este caso las integrales que dan 0" Y bn existen si fE L([O, 2" n. 

n.s PROPIEDADES DE LOS COEFICIENTES DE FOURIER 

(7) 

Teorema 11.4. Sea {~O' ~ J '~2' .. . } ortonormal en 1, supongamos que fEV(/), 
y que 

ao 

fex) - L CnlfJn(x). 
n=O 

Entonces 
a) La serie 2: !C,,!2 converge y satisface la desif{ualdad 

ao L Ic
n
l2 ~ IIfII2 (desigualdad de Bessel). (8) 

n=O 

b) La ecuación 
00 L \cn1 2 = 1If112 (fórmula de Parseval) 

n=O 

se verifica si, y sólo si, se verifica también 

lim IIf - snll = O, 

en donde {sn} es la sucesión de las sumas parciales definidas por 
n 

sn(x) = L CklfJk(X). 
k=O 
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Demostración. Hagamos b", = Ck en (4) y observemos que el primer miembro 
es no negativo. Por consiguiente 

n 

L: Ickl z ~ II!II z. 
k=O 

Esto establece (a). Para probar (b), hacemos de nuevo bk = Ck en (4) y tenemos 

n 

IIf - snll z = II!II z - L: ICkI 2
• 

k=O 

La parte (b) se sigue inmediatamente de esta ecuación. 
Como consecuencia ulterior de la parte (a) del teor'ema 11.4 obsérvese que 

los coeficientes de Fourier Cn tienden hacia ° cuando n -'> ':xl (ya que ~ Icn l2 con­
verge). En particular, cuando qJ.(x) = einx/J2n e 1 = [0, 271"] ,se obtiene 

i2
" lim f(x)e- inx dx = 0, 

n-+ 00 o 

de donde se obtienen las importantes fórmulas 

lim f21t f(x) cos nx dx = lim f2" f(x) sen nx dx = O. (9) 
n- oo ... o n- oo o 

Postas fórmulas son también casos especiales del lema de Riemann-Lebesgue 
(teorema 11.6). 

NOTA. La fórmula de Parseval 

es análoga a la fórmula 

que da la longitud de un vector x = (x" ... , xn ) de Rn. Cada una de ellas puede 
considerarse una generalización del teorema de Pitágoras para triángulos rec­
tángulos. 

11.6 TEOREMA HE RIESZ·FISCHER 

El recíproco de la parte (a) del teorema 11.4 se llama el teorema de Riesz­
Fischer. 

lP/ ,1 
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Teorema 11.5. Supongamos que {~() ' ~1 ' . . . } es ortonormal en l. Sea {Cn} 
/lila sucesión de números complejos tales que ~ Icn l2 converge. Entonces exis­
te una función f de L 2(1) tal que 

a) (j, <PIJ = Ck para cada k > 0, 
y 

00 

b) II!II 2 = L: Ick1 2
• 

k=O 

• 
Demostración. Sea sn(X) = L: ck qJk(X). Probaremos que existe una función t 

k=O 

de L 2(1) tal que (f, ~k) = Ck Y tal que 

lim lis. -!II = O. 

Entonces la parte (b) del teorema 11.4 implicará la parte (b) del teorema 11.5. 
En primer lugar observemos que la sucesión {Sn} es una sucesión de Cauchy 

en el espacio semi métrico L 2(1), ya que, si m > n, se tiene 

m m 

IIsn - smll 2 = L: L: CkC,(qJk' qJ,) 
k=.+1 ,=.+1 

y la última suma llega a ser menor que E siempre que m y n sean suficiente­
mente grandes. Por el teorema 10.57 existe una función f de V(I) tal que 

lim IIsn -!II = O. 

Para probar que (f , ~k) = CJ.;, obsérvese que (s"' '~k) = Ck si n > k, Y utilizando 
la desigualdad de Cauchy-Schwarz obtenemos 

Puesto que Ilsn - tl i -'> ° cuando n -'> (X) hemos probado (a). 

NOTA. La demostración de este teorema depende del hecho de que el espacio 
semimétrico L 2(1) es completo. No existe un teorema análogo para funciones 
de cuadrado integrable de Riemann. 
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ll.7 LOS PROBLEMAS DE CONVERGENCIA Y REPRESENTACIóN 
PARA SERIES TRIGONOMÉTRICAS 

Consideremos la serie trigonométrica de Fourier generada por una función f 
integrable de L'ebesgue en 1 = [O, 271'], por ejemplo 

al 

I(x) '" ao + L: (an cos nx + bn sen n.x). 
2 n= ¡ 

Se plantean dos preguntas. ¿Converge la serie en algún punto x de I? Y si 
converge en X, ¿acaso su suma vale f(x)? La primera pregunta es el problema 
de convergencia; la segunda es el problema de representación. En general, la 
respuesta a ambas preguntas es «No». Realmente, existen funciones integrables 
de Lebesgue cuyas series de Fourier divergen en todo punto, y existen funciones 
continuas cuyas series de Fourier divergen en un conjunto no numerable. 

Desde el tiempo de Fourier se ha publicado muchísima literatura acerca de 
estos problemas. El objetivo de muchos de los trabajos ha consistido en hallar 
condiciones que debe satisfacer f a fin de que la serie de Fourier pueda ser 
convergente, o en todo el intervalo o en puntos particulares. Más adelante de­
mostraremos que la convergencia o div·ergencia de la serie en un punto particu­
IlIr depende únicamente del comportamiento de la función en entornos suficien­
temente pequeños del punto. (Ver teorema 11.11, teorema de localización de 
Riemann.) 

Los esfuerzos de Fourier y Dirichlet a principios del siglo XIX, seguidos de 
IlIs contribuciones de Riemann, Lipschitz, Reine, Cantor, Du Bois-Reymond, 
Dini, lordan, y de la Vallée-Poussin de fines de siglo, han desembocado en el 
descubrimiento de condiciones suficientes de amplio alcance para establecer la 
convergencia de la serie, ya sea en puntos particulares, o en general, en todo 
el intervalo. 

Después del descubrimiento de Lebesgue, en 1902, de su teoría general de 
la medida y la integración, el campo de investigación fue considerablemente 
IImpliado y los principales nombres ligados, ya desde entonces, al tema son los 
de Fejér, Hobson, W. H. Young, Hardy y Littlewood. Fejér, en 1903, demostró 
que pueden utilizarse series divergentes de Fourier considerando, en vez de la 
sucesión de las sumas parciales {sn}. la sucesión de las medias aritméticas {U"n}. 
en donde 

O"n(X) = so(x) + s¡(x) + ... + sn-¡(x2 . 
n 

Estableció el notable teorema de que la sucesión {U"n(x)} es convergente y su 
Iímile es ~[f(x+) + f(x-)] en cada punto de [0,271'] en donde f(x+) y f(x-) 
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existen, con la única condición de que f sea integrable de Lebesgue en [O, 211"] 
(teorema 11.15). Fejér probó también que cada serie de Fourier, tanto si es 
convergente como si no, puede integrarse término a término (teorema 11.16). El 
resultado más sorprendente acerca de las series de Fourier ha sido probado re­
cientemente por Lennart Carleson, matemático sueco, que demuestra que la 
serie de Fourier de una función de V(/) converge casi en todo l. (Acta Ma­
thematica, ll6 (1966), pp. 135-157.) 

En este capítulo deduciremos algunas de las condiciones suficientes para la 
convergencia de una serie de Fourier en un punto particular. Entonces demos­
traremos los teoremas de Fejér. La discusión se basa en dos fórmulas fundamen­
tales de límites que discutiremos en primer lugar. Estas fórmulas de límites, que 
se utilizan también en la teoría de las integrales de Fourier, se refieren a integra­
les que dependen de un parámetro real 0:, y nos interesará el comportamiento 
de estas integrales cuando o: ~ + oo. La primera de ellas es una generalización 
de (9) y se conoce con el nombre de lema de Reimann-Lebesgue. 

ll.S LEMA DE RIEMANN-LEBESGUE 

Teorema 11.6. Supongamos que f E L(/). Entonces, para cada número real f3, 
tenemos 

Jim r I(t)sen (at + m dt = o. 
12-+ 00 JI 

(10) 

Demostración. Si f es la función característica de un intervalo compacto [a, b], 
el resultado es obvio ya que tenemos 

Ir sen (at + f3) dtl = leos (aa + f3) : cos (ba + mi ::; ~ , si IX > o. 

El resultado se verifica también si f es constante en el intervalo abierto (a, b) y 
cero fuera del intervalo [a, b], independientemente de como se definan fea) y 
f(b). Por lo tanto (10) es válida si f es una función escalonada. Pero entonces 
es fácil probar (10) para toda función f integrable de Lebesgue. 

Dado ¡: > O, existe una función escalonada s tal que JI 11- si < 8/2 (en 
virtud del teorema 1O.19(b». Dado que (10) se verifica para funciones escalo­
nadas, existe un número positivo M tal que 

11 s(t) sen(at + f3) dtl < ~ si a ~ M. 
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Por lo tanto, si oc ¿ M tenemos 

I Lj(t) sen (IXI + p)dtl ~ IL (J(t) - s(t»)sen(lX t + p)dtl 

+ I f s(t) sen (lXt + p) dtl 

~ i Ij(t) - s(t)1 dt + ~ < -~ + ~ = e. 
122 2 

Con lo que la demostración del lema de Riemann-Lebesgue está terminada. 

Iqemplo. H aciendo f3 = O Y f3 = 7i/2, obtenemos, si fE L(I), 

¡im f f(t) senlXt dt = lim f f(t) cos IXI dI = O. 
cz .... +oo JI «-++00 JI 

El lema de Riemann-Lebesgue lo aplic,aremos para obtener un resultado que 
necesitaremos en nuestra discusión de las integrales de Fourier. 

Tt>orema 11.7. Si fE L(--'(X), +00), tenemos 

lim f oo jet) 1 - cos IXt dt = f oo jet) - j( - t) dt, 
« .... + 00 -00 t o t 

(11) 

siempre que la integral de Lebesgue de la derecha exista. 

Demostración. Para cada a fijo, la integral del miembro de la izquierda en (11) 
existe como integral de Lebesgue ya que el cociente (1 - cos at)ft es continuo 
y acotado en (--'(X), +00). (En t = O el cociente se reemplaza por O, que es el 
valor de su límite cuando t - O.) Entonces podemos escribir 

- cos IXt dt = roo f(t) 1 - cos IXt dt + fO f(t) ~os IXt dt 
t Jo t - 00 t 

= roo [J(t) _ f( _ t)] 1 - cos IXt dt 
Jo t 

= roo f(t) - f(-t) dt _ roo f(t) - f(-t) cos IXt dt. 

Jo t Jo t 
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Cuando (J. ~ +00, la última integral tiende a O, en virtud del lema de Riemann­
Lebesgue. 

11.9 INTEGRALES DE DIRICHLET 

Las integrales de la forma S~ g(t)(senlXt)/t dt (llamadas integrales de Dirichlet) 
juegan un papel importante en la teoría de las series de Fourier y también en 
la teoría de las integrales de Fourier. La función g que interviene en el integrando 
está sometida a la condición de poseer un límite lateral por la derecha finito 
g(O+) = lim, .... o+ g(t) y estamos interesados en someter a g a posteriores condi­
ciones a fin de garantizar la validez de la siguiente ecuación 

. 2 flJ sen IXt hm - g(t) - - dt = g(O+). 
« .... + 00 1t o t 

(12) 

A fin de formarse una idea de cómo es posible esperar que una expresión como 
la dada en (12) se verifique, consideremos ante todo el caso en que g es cons­
tante (g(t) = g(O+ ),en [O, o). Entonces (12) es una consecuencia inmediata de la 
ecuación S~ (sen t)/t dt = 1t/2 (ver ejemplo 3, sección 10.15), ya que 

_ _ dt = -- dt -+ - cuando IX -+ + oo. f
lJ sen IXI f«lJ sen t 1t 

o t o t 2 

En general, si g 'E L([O, o], y si O < E < o, tenemos 

. 2 flJ sen IXt hm - g(t) - - dt = O, 
« .... + 00 1t , t 

en virtud del lema de Riemann-L'ebesgue. Por lo tanto, la validez de (12) de­
pende enteramente del comportamiento local de g e'n las proximidades de O. 
Puesto que gel) 'es próximo a g(O + ) cuando t es próximo a O, existe la esperanza 
de demostrar (12) sin necesidad de añadir muchas restricciones a g. Podría pa­
recer que la continuidad de g en O debería bastar para asegurar la existencia del 
límite de (12). Dirichlet probó que la continuidad de g en [O, o] es suficiente 
para probar (12) si, además, g sólo posee un número finito de máximos y míni­
mos en [O, o]. Posteriormente, Jordan demostró (12) bajo la condición menos 
restrictiva de que g sea de variación acotada en [O, 3]. Sin embargo, todos los 
intentos de probar (2) con la sola hipótesis de la continuidad de g en [O, 3] habían 
resultado infructuosos. Efectivamente, du Bois-Reymond encontró un ejemplo 
de una función · continua g para la que el límite de (12) no existe. Aquí se dis­
cute el resultado de Jordan y un teorema relacionado con él debido a Dini. 
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Teorema 11.8 (lordan). Si g es de variación acotada en [O, S], entonces 

hm - g(t) - - dt = g(O+). . 2f" senat 
a-+ + 00 1t o t 

(13) 

Demostración. Es suficiente considerar el caso en el que g es creciente en [O, S]. 
Si (X > O Y si O < h < S, tenemos 

g(t) - dl = [g(t) - g(O+)] - -- dt f
" sen (Xl fh sen (Xl 

o t o t 

+ g(O+) - - dI + g(t) - - dt fh sen (Xt i" sen (Xl 

o t h t 

= 1.(a, h) + 12(a., h) + 13(a, h), (14) 

Aplicamos el lema de Riemann-Lebesgue a 13 «X, h) (ya que la integral I~ g(t)/t dl 
existe) y obtenemos que 1.«X, h) ~ O cuando ,a ~ + oo. Además, 

fh sen at 
12(a, h) = g(O+) - - dt 

o t 

= g(O+) - dt -+ - g(O+) cuando f
hasen t n 

o t 2 
(X ~ +00 

A continuación elegimos M> O tal que II: (sen t)/t dtl < Mpara cada b > a> O. 
Se obtiene que II~ (sen at)/t dt 1 < M para cada b > a > O, si (X > o. Ahora sea 
E > O y elijamos h en (O, S) de modo que Ig(h) - g(O+)1 < E/(3M) . Puesto 
que 

g(t) - g(O+) ~ O si O :5 t :5 h, 

podemos aplicar el teorema de Bonnet (teorema 7.37) en 11«X, h) para escribir 

1.(a, h) = [g(t) - g(O+)] - dt = [g(h) - g(O+)] - dI, fh sen (Xt fh sen at 

o t e t 

en donde c E [O, h]. La definición de h nos da 

11.(a, h)1 = Ig(h) - g(O+)1 - - dt < - M = -:;. \ f
h sen at \ E E 

e t 3M .:l 

(15) 
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Para el mismo h podemos elegir A tal que (X > A implique 

E 
113(a, h)1 < 3" y 

Entonces, para a ¿ A, combinando (14), (15) y (16) obtenemos 

\ f
" sen (XI 1t \ 
o g( t) -t - d t - "2 g(O +) < E. 

Esto prueba (13). 

385 

(16) 

Dini encontró otro tipo distinto de condición para la validez de (13) y se 
puede enunciar como sigue: 

Teorema 11.9 (Dini). Supongamos que g(O+) existe y supongamos que para 
un cierto S > O la íntegral de Lebesgue 

f" g(t) - g(O+) dt 

o t 

existe. Entonces se tiene 

hm - g(t) - - dt = g(O+). . 2 f" sen (Xt 
a-++oo n o t 

Demostración. Pongamos 

g(t) - - dt = senat dI + g(O+) - dt. f
" sen (Xt f" g(t) - g(O+) fa" s,en I 

O t O t O t 

Cuando a ~ +00, el primer término del segundo miembro tiende a O (en 
virtud del lema de Riemann-Lebesgue) y el segundo término tiende a l ng(O+). 

NOTA. Si g ,E L([a, S]) para cada número positivo a < o, es fácil probar que la 
condición de Dini se verifica siempre que g satisface una condición de Lipschitz 
«por la derecha" en O; esto es, siempre que existen dos constantes positivas M 
y p tales que 

Ig(t) - g(O+)1 < Mt P, para cada t de (O, o] 

(Ver el ejercicio 11.21.) En particular, la condición de Lipschitz se verifica con 
p = 1 siempre que g tiene una derivada por la derecha en O. Es interesante ob-
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Utilizando una vez más el lema de Riemann-Lebesgue, sólo es preciso considerar 
el límite de (21) cuando la integral fo se sustituye por J~, en donde 8 es un nú­
mero positivo < 11", puesto que la integral J~ tiende a ° cuando n -+00. Por lo 
tanto, podemos resumir los resultados de la sección anterior en el siguiente 
teorema: 

Teorema 11.11. Supongamos que f'E L([O, 2IT]) Y que f es periódica de pe­
ríodo 2IT. Entonces la serie de Fourier generada por f será convergente para un 
valor dado de x si, y sólo si, para un cierto número positivo 8 < IT, existe el si­
¡:uiente límite: 

lim ~ f~ ¡(x + t) + ¡(x - t) sen (n + t)t dt, 
n-oo n o 2 t 

(22) 

en cuyo caso el valor de este límite es la suma de la serie de Fourier. 
Este teorema se conoce como teorema de lOCalización de Riemann. Nos dice 

que la convergencia o divergencia de una serie de Fourier en un punto particu­
lar depende exclusivamente del comportamiento de f en un entorno arbitra­
riamente pequeño del punto. Esto es bastante sorprendente por cuanto los coe­
ficientes de las series de Fourier dependen de los valores que la función toma 
en todo el intervalo [O, 211"]. 

1I.12 CONDICIONES SUFICIENTES PARA LA CONVERGENCIA 
DE UNA SERIE DE FOURIER EN UN PUNTO PARTICULAR 

Supongamos que f E L([O, 2IT]) y que f tiene período 2IT. Consideremos un x de 
[O, 2IT], fijo, y un número positivo 8 < rr. Sea 

() ¡(x + t) + ¡(x - t) g t = "--'-----'--"-- --'-
2 

SI t 'E [O, ~], 

y sea 
S(x) = g(O+) = lim ¡(x + t) + ¡(x - t) 

t-O+ 2 

siempre que este límite exista. Obsérvese que s(x) = f(x) si f es continua en x. 
Combinando el teorema 11.11 con los teoremas 11.8 y 11.9, respectivamente, 

obtenemos las siguientes condiciones suficientes para la convergencia de una 
serie de Fourier. 

Teorema 11.12 (criterio de lordan). Si f es de variación acotada en el in­
/ervalo compacto [x -~, x + 8] para un 8 < 11", entonces el límite s(x) existe 
y la serie de Fourier generada por f converge hacia s(x). 
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Teorema 11.13 (criterio de Dini). Si el límite s(x) existe y si existe la inte­
wal de Lebesgue 

f
~ g(t) - s(x) dt 

o t 

para un cierto 8 < IT, entonces la serie de Fourier generada por f converge ha­
cia s(x). 

1l.13 SUMABILIDAD DE CESARO PARA SERIES DE FOURIER 

La continuidad de f no es una hip'ótesis demasiado fructífera cuando se trata de 
estudiar la convergencia de una serie de Fourier generada por f. En 1873, Du 
Bois-Reymond dio con un ejemplo de una función, continua e~ todo el inter­
valo [O, 2IT], cuya serie de Fourier no converge en un subconjunto no nume­
rable de [O, 2IT]. Sin embargo, la continuidad es suficiente para establecer la 
sumabilidad de Cesaro de la serie. Este resultado (debido a Fejér) y alguna de 
sus consecuencias se discutirán a continuación. 

Nuestro primer empeño consiste en obtener una representación integral para 
la media aritmética de las sumas parciales de una serie de Fourier. 

Teorema 11.14. Supongamos que f 'EL([O. 2IT]) Y que f es periódica de perío­
do 2IT. Sea Son la suma parcial n-ésima de la serie de Fourier generada por f y sea 

) 
so(x) + St(x) + ... + Sn-l(X) O" (x = ~...f..._----'-'-"-___ ---,,---=-_ 

n n (n = 1,2, ... ). (23) 

Entonces tenemos la representación integral 

1 [" ¡(x + t) + ¡(x - t) sen2 tntd 
O"n(X) = nn Jo 2 . sen2 tt t. (24) 

Demostración. Usamos la representación integral de s,,(x) dada en (19) y for­
mamos la suma que define a (J" n(X), e inmediatamente se obtiene el resultado re­
querido en virtud de la fórmula (16) de la sección 8.16. 

NOTA. Si aplicamos el teorema 11.14 a la función constante igual a 1 en cada 
punto obtenemos O"n(x) = sn(x) = 1 para cada n y entonces (24) se reduce a 

.!. [" sen
2 ~nt dt = 1. 

nn Jo sen' ~t 
(25) 
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Por consiguiente, dado un número s, podemos combinar (25) con (24) para es­
cribir 

U.(x) - s = 1. fn {f(X + t) + f( x - t) _ s}sen
2 ~nt dt. (26) 

m! o 2 sen2 ~ t 

Si elegimos, de ser posible, un valor s tal que la integral de la derecha de (26) 
tienda a O cuando n ~ 00, obtendremos que (J" n(x) ~ s cuando n ~ oo. El próximo 
teorema prueba que basta hacer s = [J(x+ ) + f(x- )]/2. 
Teorema 11.15 (Fejér). Supongamos que fE L[(O, 271")] y que f es periódica 
de período 271". Definimos una función s por la siguiente ecuación: 

s(x) = lim f(x + t) + f(x - t) , 
1-0+ 2 

(27) 

siempre que este límite exista. Entonces, para cada x para ° el que s(x) está defi­
nido, la serie de Fourier generada por f es sumable de Cesaro y tiene suma (C, 1) 
s(x). Esto es, tenemos 

lim un(x) = s(x), 
n- ro 

en donde {o-,, } es la sucesión de las medias aritméticas definidas por medio de 
(23). Si además, f es continua en [O, 271"], entonces la sucesión {(J",,} converge 
uniformemente hacia f en [O, 271"]. 

De~ostrac:ión . Sea gil) = [J(x + t) + f(x - t)]/2 - s(x), siempre que s(x) 
es~e definida. Entonces git) ~ O cuando t ~ 0+. Ppr consiguiente, dado E > O, 
eXiste un número positivo ó < 71" tal que !gx(t)! < e/2 si O <t < Ó. Obsérvese 
que ó depende tanto de x como de E. Sin embargo, si f es continua en [O, 271"], 
entonces f es uniformemente continua en [O, 271"], Y existe un ó igualmente válido 
para cada x de [O, 271"]. Ahora utilizamos (26) y dividimos el intervalo de inte­
g'ración en dos subintervalos [O, ó] y [ó, 71"]. En [O, ó] tenemos 

IJ. f~ git) sen
2 ~nt dtl ::; _ e_ f" sen

2 ~ntdt = .f: 
mr o sen2 y 2m! o sen2 ~t 2 ' 

en virtud de (25). En [o, 71"] tenemos 

- gx(t) --- dt ::; !git)! dt ::; -~ , 
1

1 f" sen
2 

~nt 1 1 in l( ) 
nn ~ sen2 ~t n7l" sen2 ~ o ~ n7l" sen2 !o 
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donde [(x) =.fo !git)! dt. Tomemos ahora N tal que I(x)/(N n sen
2 

1<5) < e/2. En­

tonces n - . N implica 

!an(x) - s(x)! = - git) 2 21 dt < e. 
1

1 In sen
2 

lnt 1 

nn O sen '2 t 

En otras palabras, (T ",(x) ~ s(x) cuando n ~ oo. 
Si f es continua en [0, 271"], entonces, por periodicidad, f está acotada en R y 

existe un M tal que Igit)1 < M para todo x y todo t, y podemos reemplazar 
¡(x) por M7r en el razonamiento anterior. Entonces el N resultante es inde­
pendiente de x y por 10 tanto (T n - S = t uniformemente en [O, 271"]. 

1l.14 CONSECUENCIAS DEL TEOREMA DE FEJÉR 

Teorema 11.16. Sea f continua en [O, 271"] Y periódica con período 271". Supon ­
gamos que {s,, } designa la sucesión de las sumas parciales de la serie de Fouricr 

generada por t, es decir 

ro 

f(x) ~ a; + ~ (a n cos nx + bn sen nx) (2X) 

Entonces tenemos: 

a) l.e.m .• _ ro s. = f en [O, 271"]. 

b) - !f(X)!2 dx = ao + L (a~ + b~) '(Fórmula de Parseval). 1 J2" 2 ro 

n o 2 n= 1 

c) La serie de Fourier se puede integrar término a término. Esto es, para todo x 

se tiene 

J
x f(t) dt = aox + f JX (an cos nt + bn sen nt) dt 
o 2 n= 1 o 

y la serie integrada converge uniformemente en cada intervalo, incluso si la 

serie de Fourier dada en (28) diverge. 
d) Si la serie de Fourier dada en (28) converge para algún x , entonces converge 

hacia f(x). 

Demostración. Si aplicamos la fórmula (3) del teorema 11.2 con 

t.(x) = an(x) = (l /nn:~:¿sk(X), 
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En la forma exponencial podemos escribir 

'" f(x) ~ L rLne2rrinx/p, 

en donde 
n= - ro 

rL
n 

= 1 (P f(t)e-2rrint/p dt, 
p Jo si n = O, +1, +2, . .. 

Todos los teoremas de convergencia para series de Fourier de período 2IT se 
pueden aplicar asimismo al caso de período general p realizando el cambio de 
escala conveniente. 

11.17 TEOREMA DE LA INTEGRAL DE FOURIER 

La hipótesis de la periodicidad, 'que aparece en todos los teoremas de conver­
gencia relativos a las series de Fourier, no es tan fuerte como podría parecer 
n primera vista. Si una función inicialmente está definida en un intervalo fini­
to [a, b], siempre es posible extender la definición de f al exterior de fa, b] im­
poniendo una cierta condición de periodicidad. Por ejemplo, si fea) = f(b), po­
demos definir f en todo el intervalo (-00, +(0), exigiendo que la ecuación f(x + 
+ p) = f(x) se verifique para todo x , siendo p = b - a. (La condición fea) = f(b) 
siempre se puede considerar, puesto que siempre es posible cambiar el valor 
de f en uno de los extremos. Ello no afecta en absoluto ni a la existencia ni al 
valor de las integrales que se utilizan para calcular los coeficientes de Fourier 
de f.) Sin embargo, si dicha función está ya definida en todo el intervalo (-o:>, 
+00) y no es periódica, entonces no debemos esperar encontrar una serie de 
Fourier que represente a dicha función en (-00, +00). No obstante, en tales casos 
la función puede ser representada a veces por medio de una integral infi­
nita mejor que por una serie. Estas integrales, que en muchos aspectos son aná­
logas a las series de Fourier,se llaman integrales de Fourier, y el teorema que 
da condiciones suficientes para que una función admita una representación por 
medio de una de estas integrales, se conoce con el nombre de teorema de la 
integral de Fourier. Los instrumentos báscos utilizados en esta teoría son, como 
en el caso de las series de Fourier, las integrales de Dirichlet y el lema de Rie­
mann-Lebesgue. 

Teorema 11.18 (Teorema de la integral de Fourier). 
f E L( -00, +(0). Supongamos que existe un punto x de 
Lx - <5, x + <5] alrededor de x tal que 

a) f es de variación acotada en [x - <5, x + <5], 

() bien 

Supongamos que 
R y un intervalo 
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h) existen los dos límites f(x+) y f(x-) así como las dos integrales de Lebesgue 

f
b f(x + 1) - f(x'+J dt 

o t fb fJx - t) - f(x-) dt 

o t 
y 

EI/lonces tenemos la fórmula 

f(x+) + f(x-) = ! f'" [f'" f(u) cos v(u - x) dUJ dv, 
2 n o - 00 

(32) 

f'n donde la integral fO' designa una integral de Riemann impropia. 

Demostración. La primera parte de la demostración se establece por medio de 
la fórmula: 

hm - f(x + t) -- dt = . 
. 1 foo senrl.t f(x+) + f(x-) 

.-+00 n _'" t 2 
(33) 

A este fin escribimos 

Cuando rI. ----+ +00, la primera y la cuarta de las integrales del segundo ~iembro 
tienden a O, en virtud del lema de Riemann-Lebesgue. En la tercera, mtegral, 
podemos aplicar o bien el teorema 11.8 o bien el teorema 11.9 (segun se ve­
rifique (a) o (b» a fin de obtener 

lim f(x + t) - - dt = -- . fó sen at f(x + ) 
.-+ 00 o nt 2 

Análogamente, tenemos 

f(x + t) - - dt = f(x - t) - - dt -+ -- cuandorl. ----+ +00. f
o senrl.t fÓ senrl.t f(x - ) 

-ó nt o . nt 2 

Así obtenemos (33). Si hacemos una traslación, resulta 

f(x + t) - - dt = f(u) du, f 
00 sen 'rl.t f 00 senrl.(u - x) 

- 00 t - 00 u - x 
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y si utilizamos la fórmula elemental 

sen a(u - x) fa ----- = cos v(u - x) dv, 
U - X O 

el límite de la relación dada en (33) se convierte en 

lim ~ foo f(u) [fa cos v(u - x) dV] du = f(x+) + f(x-) . 
a-+ + 00 n _ 00 O 2 

(34) 

Pero la fórmula que deseamos demostrar es (34) con el orden de integración 
invertido. Por el teorema 10.40 tenemos 

f: [f:oo f(u) cos v(u - x) dU] dv = f:oo [f: f(u) cOS'v(u - x) dV] du 

para cada a > 0, puesto que el coseno de una función es acotado y continuo 
en todo R. Ya que existe el límite de (34), esto prueba que 

lim ! fa [fOO f(u) cos v(u - x) dU] dv = f(x+) + f(x-) . 
a-++oo n O -00 2 

En virtud del teorema 10.40, la integral J':: 00 f(u) cos v(u - x) du es una función 
continua de v en [O, ex], luego la integral J~ de (32) existe como integral de 
Riemann impropia. No es necesaria la existencia como integral de Lebesgue. 

ll.18 FORMA EXPONENCIAL DEL TEOREMA 
DE LA INTEGRAL DE FOURIER 

Teorema 11.19. Si f satisface las hipótesis del teorema de la integral de Fou­
rier, entonces tenemos 

f(x+) + f(x-) = ~ lim fa [fOO f(u)eiv(u-X) dU] dv. (35) 
2 2n a-+ + 00 - a - 00 

Demostradón. Sea F(v) = J~ 00 f(u) cos v(u - x) du.Entonc'es F es continua en 
(- 00, + 00), F(v) = F( -v) luego J~a F(v) dv = J~ F( -v) dv = J~ F(v) dv. Por 
consiguiente (32) nos proporciona 

f(x+)+f(x-) = lim ~fa F(v)dv = lim ~fa F(v)dv. (36) 
'& a-++ oo n o a-+ oo 2n -a 

--------------------------_._._ .. _---- ... _ ..... _ ........ . _ ... ... _._--
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Ahora definimos G en (-00, +00) por medio de la ecuación 

G(v) = f:oof(U) sen v(u-x) duo 

Entonces G es continua en todo R y G(v) = - G(- v). Luego J':a G(v) dv = O 
para cada ex > 0, y entonces lima_ + 00 J':a G(v) dv = O. Combinando este resul­
tado con (36) obtenemos 

f(x+) + f(x-) = lim .~ fa {F(v) + iG(v)} dv. 
2 a-+oo 2n -a 

Ésta es la fórmula (35). 

1l.19 TRANSFORMADAS INTEGRALES 

Muchas de las funciones que aparecen'en Análsis se pueden expresar por medio 
de integrales de Lebesgue o bien por medio de integrales de Riemann impropias 
de la forma 

g(y) = f:oo K(x, y)f(x) dx . (37) 

Una función g definida por medio de una ecuación de este tipo (en la que y 
puede ser real o compleja) se llama transformada integral de f. La fun­
ción K que aparece en el integrando se denomina el núcleo de la transformada. 

Las transformadas integrales se emplean muy extensamente tanto en Mate­
mática pura como en Matemática aplicada. Son especialmente útiles para resol­
ver ciertos problemas de contorno y ciertos tipos de ecuaciones integrales. Algu­
nas de las transformadas más corrientemente utilizadas son las siguientes: 

Transformada exponencial de Fourier: f:oo e-¡x1'(x) dx. 

Transformada coseno de Fourier: 

Transformada seno de Fourier: 

Transformada de Laplace: 

Transformada de Mellin: 

APOSTOL. análisis - 14 

LOO cos xy f(x) dx. 

foOO 

sen xyf(x) dx 

Loo e-XYf(x) dx. 

Loo xY-1f(x) dx. 
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Puesto que e - ixy = cos xy - i s'en xy, las transfor~adas seno. Y coseno son 
meros casos particulares de la transformada exponencIal de Founer en los que 
la función f se anula en el eje real negativo. La transformada d~ La~lace t~m­
bién está relacionada con la transformada exponencial de Founer. SI consIde­
ramos un valor complejo de y, por ejemplo y= u + iv, en donde u y v son rea­

les, podemos escribir 

too e-XYf(x) dx = too e-ixVe-XUf(x) dx = too e-iXvcpuCx) dx, 

tn donde o/u(x) = e-.xuf(x). Por consiguiente, la transformada de Laplace pue~e 
considerarse también como un caso particular de la transformada exponencIal 

de Fourier. 

NOTA. Una ecuación como la dada en (37) se designa a menudo en la .forma 

b = :K(f) o g =:Kf en donde :K designa el «operador» que conVIerte f reve g, .., 1 
en g. Dado que-la integración se halla involucrada en dIcha ecuaClOn, e ope-
rador :K se desgina con el nombre de operador integral. Es claro que 3{, es 
también un operador lineal. Esto es, 

si a y a son constantes El operador definido por la transformada de Fourier 
se desig;a, a veces, por' medio de Ji" y el que define la transformada de La-

place por fI!. . 
La forma exponencial del teorema de la integral de Fourier puede enuncIar se 

en términos de transformadas de Fourier como sigue. Sea g·la transformada de 

Fourier de f, esto es, 

g(u) = f~oo f(t)e-
itu 

dt. (38) 

Entonces, en los puntos de continuidad de f, la fórmula (35) se convierte en 

f(x) = lim ~ fa g(u)eiXU du, 
a- + 00 2n: -a 

(39) 

sta última fórmula se llama fórmula de inversión para transformadas de 
y e . d' . d 1 
Fourier. Nos dice que una función continua f que satIsfaga las con IClOnes e 
teorema de la integral de Fourier está unívocamente determinada por su trans-

formada de Fourier g. 
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NOTA. Si Ji" designa el operador definido por (38), es costumbre designar por 
medio de Ji"-l el operador definido por (39). Las ecuaciones (38) y (39) pueden 
entonces expresarse simbólicamente escribiendo 9 = Ji"f yf = Ji"-lg.La fór­
mula de inversión indica cómo hallar f resolviendo la ecuación 9 = Ji"f en tér­
/llillos de g. 

Antes de proseguir el estudio de las transformadas de Fourier, introducire­
mos una nueva noción, la convolución de dos funciones. Este concepto puede 
interpretarse como un tipo especial de transformada integral cuyo núcleo K(x, y) 
depende únicamente de la diferencia x-y. 

11.20. CONVOLUCIONES 

/)('Iinición 11.20. Dadas dos funciones f y g, ambas integrables de Lebesgue 
en (-00, +00), sea S el conjunto de los x para el cual existe la integral de Le­
besgue 

h(x) = f~oo f(t)g(x - t) dt (40) 

Esta integral define una función h en S llamada convolución de f y g. Para 
designar esta función se suele escribir h = f * g. 

NOTA. Es fácil ver (por traslación) que f * 9 = 9 * f siempre que la integral 
exista. 

Un caso importante aparece cuando tanto f como g se anulan en el eje real 
negativo. En este caso, g(x - t) = O si t > x, y (40) se convierte en 

h(x) = f: f(t)g(x - t) dt. (41) 

Es claro que, en este caso, la convolución estará definida en cada punto del in­
tervalo [a, b] si tanto f como g son integrables de Riemann en [a, b]. Sin em­
bargo, no es necesario que así ocurra si exigimos sólo que f y g sean integrables 
de Lebesgue en [a, b]. Por ejemplo, sea 

f(t) = 1/_ 
" t 

y g(t) = _,=1= 
--.11 

si 0< t < 1, 

y sea f(t) = g(t) = O si t < O o si t ¿ 1. Entonces f posee una discontinuidad 
infinita en t = O. A pesar de todo, existe la integral de Lebesgue S~ 00 f(t) dt = 
Só r 1/2 dt. Aun cuando g tenga una discontinuidad infinita en t = 1, igual-
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mente existe la integral de Lebesgue S'~ <Xl g(t) dt = H (1 - t) -1/2 dt. Sin em­
bargo, cuando se forma la integral de convolución de (40) correspondiente a 
x = 1, se obtiene 

Obsérvese que las dos discontinuidades de f y g se han «fundido)) en una discon­
tinuidad de tal naturaleza que no existe integral de convolución. 

Este ejemplo prueba que pueden existir ciertos puntos del eje real en los que 
la integral de (40) no exista, aun cuando las funciones f y g sean ambas integra­
bles de Lebesgue en (-00, +00). Nos referiremos a tales puntos llamándolos 
«singularidades» de h. Es fácil comprobar que dichas singularidades no pueden 
presentarse a menos que ambas funciones f y g tengan discontinuidades infinitas. 
Precisando, tenemos el siguiente teorema: 

Teorema 11.21. Sea R-= (-00, +00). Supongamos que Je L(R), 9 e L(R), y 
que o f o g está acotada en R. Entonces la integral de convolución 

h(x) = f:oo J(t)g(x - t) di (42) 

existe para cada x de R, y la función h así definida está acotada en R. Si, ade­
más, la función acotada, sea f o g, es continua en R, entonces h tambl'én es con­
tinua en R y h 'E L(R). 

Demostración. Puesto que J * 9 = 9 * J, es suficiente considerar el caso en que 
R está acotada. Supongamos que Igl < M. Entonces 

IJ(t)g(x - t)1 :::;; MIJ(t)l . (43) 

El lector puede verificar que, para cada x, el producto f(t)g(x - t) es una fun­
ci!?n de t medible en R, luego el teorema 10.35 prueba que existe la integral de 
h(x) . La desigualdad (43) prueba también que Ih(x)1 :::;; M J IJI, luego h está 
acotada en R. 

Ahora bi'en, si g es además continua en R, entonces el teorema 10.40 prueba 
que h es continua en R y que en cada intervalo compacto [a, b] se tiene 

~lh(x)1 dx ~ f [f:<Xl IJ(t)llg(x - t)1 dt] dx = f:oo IJ(t)1 [f Ig(x - 01 dX] dt 

= f:oo IJ(t)1 [f~tt Ig(y)1 dY] dt ~ f:oo IJ(t)1 dt f:oo Ig(y)1 dy, 

por lo que. en virtud del teorema 10.31, hE L(R). 

., 
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T"orema 11.22. Sea R =(-00. +00). Supongamos que fE V(R) y g E VeR). 
Entonces la integral de convolución (42) existe para cada x de R y la función h 
t'slLÍ acotada en R. 

Demostración. Para x fijo, sea git) = g(x - t). Entonces g., es medible en R 
y .1:" E VeR), luego el teorema 10.54 implica que el producto f . g" E L(R). En 
otras palabras, la integral de convolución h(x) existe. Pero h(x) es un producto 
interior, h(x) = (f, g,,), y entonces la desigualdad de Cauchy-Schwarz prueba que 

Ih(x)1 ~ IIJII IIgxll = IIJII IIgll, 

luego h está acotada en R. 

11.21 TEOREMA DE CONVOLUCIÓN PARA TRANSFORMADAS DE 
FOURIER 

El próximo teorema demuestra que la transformada de Fourier de una convolu­
ción f '" g es igual al producto de las transformadas de Fourier de f y de g. 
Usando la notación del operador, tendremos 

~(f * g) = ~(J)' ~(g) . 

Teorema 11.23. Sea R = (-----;00, +00). Supongamos que fE L(R), g E L(R), 
Y que una por lo menos de las funciones f o g es continua y acotada en R. Desig­
nemos por medio de h la convolución h = J* g.Entonces, para cada número 
real u, tenemos 

La integral del primer miembro existe como integral de Lebesgue y como inte­
gral de Riemann impropia. 

Demostración. Supongamos que g es continua y acotada en R. Sean {a,.} y 
{b .. } dos sucesiones crecientes de números reales positivos tales que a,. -+ +00 Y 
bn -+ +00. Definimos una sucesión de funciones Un} en R como sigue: 

f
bn 

f,,(t) = -a" e-
iux 

g(x - t) dx. 
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Puesto que 

para todo intervalo compacto [a, b], el teorema 10.31 prueba que 

lim /,.(t) = foo e- iux g(x - t) dx 
n-oo - 00 

para cada t real. (45) 

La traslación y = x- t nos proporciona 

Loooo e-
iux 

g(x - t) dx = e- iut fOoo e- iuy g(y) dy, 

Y (45) prueba que 

~~~ l(t)/,.(t) = I(t)e-
iut (LOOoo e-

iuy 
g(y) dY) 

pura IO?O t. Ahora fn es continua en R (teorema 10.38), luego el producto f . fn 
es medible en R. Puesto que 

I/(t)/,.(t)1 ::;; I/(t)1 Loo", Igl, 

el producto f . fn es integrable de Lebesgue en R, y el teorema de convergencia 
dominada de Lebesgue prueba que 

Pero 

Como la función k definida por k(x, t) = g(x - t) es continua y acotada en 
R" y dado que la integral J~ e- iux dx existe para cada intervalo compacto [a, b], 
el teorema 10.40 nos permite invertir el orden de integración y obtener 

J":" l(t)ln(t) dt = f~" e-
iux [LOOoo I(t)g(x - t) dt] dx = f~" e-iUXh(x) dx. 

e 

.... 
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Por consiguiente, (46) prueba que 
,J 

!~ r:n h(x)e-
iUX 

dx = (f:oo I(t)e-
iu

' dt) (f:oo g(y)e-
iuy 

dY) , 
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que demuestra (44). La integral de la izquierda existe también como integral de 
Ricmann impropia puesto que el integrando es continuo y acotado en R e 
S: Ih(x)e-iUXI dx ::;; S'='oo Ihl para cada intervalo compacto [a, b]. 

Como aplicación del teorema de convolución obtendremos la siguiente pro­
piedad de la función gamma. 

Ejemplo. Si p > ° y q > 0, tenemos la fórmula 

t xp-l(l - X)q-l dx = Dp)r(ll.~ . 
Jo r(p + q) 

(47) 

La integral del primer miembro se llama función beta y usualmente se designa por 
B(p, q). Para probar (47) consideremos 

si t > 0, 

si t ~ O. 

Entonces f" E L(R) e J'::oo lit) dt = J~ tp-Ie- t dt = r(p) . Si h designa la convolu­
ción, h = fp * f q, haciendo u = ° en la fórmula de convolución (44), y si p> t o 
q> 1, obtenemos 

f"oo h(x) dx = L: IvCt) dt L: /q(y) dy = r(p)r(q). (48) 

Ahora calculemos la integral de la izquierda por otro camino. 
como f q se anulan en el eje real negativo, tenemos 

h(x) - J: [,(/)I.(X - 1) dI - (:-' J: I'-'(X - 1)'-' dI 

El cambio de varibale t = ux nos da, para x> ° 

Dado que tanto f p 

si x > 0, 

si x ~ o. 

h(x) = e-xxP+q- 1 {l up-I(l _ U)q-l du = e-xxp+q-IB(p, q). 

Por consiguiente, J'::oo h(x) dx = B(p, q) J~ e-xxP+q-l dx = B(p, q)r(p + q) que, a 
la vista de (48), prueba (47) si p> 1 o q> 1. Para obtener el resultado siendo 
p> 0, o q > 0, usar la relación pB(p, q) = (p + q) B(p + 1, q). 

11.22 FóRMULA DE SUMACIóN DE POISSON 

Terminamos este capítulo con una discusión de una fórmula importante, llamada 
la fórmula de sumación de Poisson, que tiene muchas aplicaciones. La fórmula 
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puede expresarse de diversas maneras. Para las aplicaciones futuras, la más 
conveniente es la forma siguiente. 

Teorema 11.24. Sea f una función no negativa tal que ia integral J ~(J(J(x) dx 
existe como integral de Riemann impropia. Supongamos además que f crece en 
(--00, O] Y decrece en [O, +00). Entonces tenemos 

+00 +00 foo m~oo f(m+) ; f(m-) = n~oo _ oo f(t)e-Z"int dt, (49) 

en donde cada una de las series es absolutamente convergente. 

Demostración. La demostración hace uso del desarrollo en serie de Fourier 
de la función F definida por medio de la serie 

+00 
F(x) = L f(m + x). (50) 

m = - oo 

Ante todo veremos que esta serie converge absolutamente para cada x y que la 
convergencia es uniforme en el intervalo [O, 1]. 

Dado que f decrece en [O, +00] tenemos, para x ¿ O, 

to f(m + x) :s; feO) + ti f(m) :s; feO) + t oo f(t) dt. 

Por consiguiente, aplicando el criterio M de Weierstrass (teorema 9.6), la serie 
r.~'=of(m + x) converge uniformemente en [O, +(0). Un argumento análogo 
prueba que la s'erie L:;;,! _ 00 f(m + x) converge uniformemente en (--00, 1]. Por 
lo tanto la serie dada en (50) converge para todo x y la convergencia es unifor­
me en la intersección 

(-00,1] n [O, +(0) = [0,1]. 

La función suma F es periódica de período 1. Realmente tenernos F(x + 1) = 
r.; '!'- (fJ f(m + x + 1), Y esta serie es en realidad una reordenación de la serie 
dada en (50). Puesto que todos sus términos son no negativos, converge hacia 
la misma suma. Luego 

F(x + 1) = F(x). 

Ahora vemos que F es de variación acotada en cada intervalo compacto. Si 
O --:' .x < t, entonces f(m + x) es una función decreciente respecto de x si m > O 
Y una función creciente respecto de x si m < o. Por consiguiente tenemos 

00 -1 

F(x) = L f(m + x) - L {-f(m + x)}, 
m=O m = - 00 

,
~ 

"",. , .' ' 

, , 
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luego F es la diferencia de dos funciones decrecientes. Por lo tanto F es de varia­
ción acotada en [O, n Un._.argumento análogo prueba que F es también de 
variación acotada en [- t , O]. Por periodicidad, F es de variación acotada en 
cuda intervalo compacto. 

Consideremos ahora la serie de Fourier (en forma exponencial) generada 
por F, a saber 

+00 
F(x) '" L (J.ne21tinX. 

n= - ro 

Al ser F de variación acotada en [O, 1] es integrable de Riemann en [O, 1] Y los 
coeficientes de Fourier vienen dados por la fórmula 

(J.n = ti F(x)e-Zninx dx . (51) 

Además, al ser F de variación acotada en cada intervalo compacto, el criterio 
de Jordan prueba que la serie de Fourier converge para cada x y que 

F(x+) + F(x-) = 
2 

00 
L (J.neZ"inx. 

"=- 00 
(52) 

Para obtener la fórmula de sumación de Poisson basta expresar los coefi­
cientes a n de otra forma. Utilicemos (50) y (51) e integremos término a término 
(lo cual está justificado por la convergencia uniforme) para obtener 

(J.n = m~oo ti f(m + x)e- 2"inx dx. 

El cambio de variables t = m + x nos da 

(J.n = m~oo 5:+
1 

f(t)e-Z1tint dt = 5:00 f(t)e-Z"int dt, 

ya que eZ1timn = 1. Utilizando esto en (52) obtenemos 

F(x+) + F(x-) 

2 

Cuando x = O esto se reduce a (49). 

(53) 

http://libreria-universitaria.blogspot.com
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NOTA .. En el teorema 11.24 no se impone la continuidad de f. Sin embargo si I 
es ~ontmua en c~da entero, entonces cada uno de los términos I(m + x) de la 
serie (50) es. ~ontmuo en x = .0 ~ entonces, en virtud de la convergencia unifor­
me, la funclOn suma F es aSImIsmo continua en O. En este caso, (49) se con­
vierte en 

(54) 

Es posible debilitar las exigencias de monotonía impuestas a f. Por ejemplo, 
dado que cada uno de los miembros de (49) depende linealmente de 1, si el teo­
rema es verdadero para 1, y para 12 entonces es verdadero para toda combinación 
I~al 01!1 ~ 0212; ~n particular, la fórmula es válida para funciones complejas 

f - u + IV SI es valida para u y V separadamente. 

~jemplo l. Fórmula de transformación para la función rheta. La función 8 se de­
/tne para todo x > O por medio de la ecuación 

+00 

8(x) = ¿ e-nn>x. 

n=:- CX) 

Utilizamos la fórmula de Poisson para deducl'r la ecuacl'o'n de trilnsformación 

8(x) = ~ e(!) para x > O. 
vlx x (55) 

Para el( > O fijo, sea f(x) = e-a;' para todo número real x. Esta función satisface 
'.odas las hipótesis del teorema 11.24 y es continua en todo R. Por consiguiente la 
fMmula de Poisson implica ' 

+ 00 + 00 Joo 
m~oo e-

am
> = n~oo _ 00 e-at2e2ninl dI. (56) 

El primer miembro es (}(a!rr). La integral del segundo es igual a 

j ex, J oo -at2 27tinr 2 00 
e e dI = 2 e-al cos 2nnt dI = ~ ( e-x> cos 2n~x dx = 2_ F(nn) 

- " , o vlrx Jo vi ex vi IX vI~ 
en donde 

F(y) = loo e-X> cos 2xy dx. 

Pero F(y) = t vl;e- Y > (ver ejercicio 10.22), luego 

J-: e-al>e21tinl dt = (~) 1/2 e-x>n>/ a. 

Substituyendo este resultado en (56) y haciendo a = rrX obtenemos (55). 
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Ejemplo 2. Descomposición en fracciones parciales de coth x. La cotangente hi­
perbólica, coth .x, se define para .t 4= O por medio de la ecuación 

e2x + 1 coth x = ---~ - . 
e2x 

- 1 

Utilizaremos la fórmula de sumación de Poisson a fin de obtener la pseudodescom­
posición en fracciones parciales 

l 00 1 
coth x = - + 2x ¿ 2 2 2 (57) 

x n= 1 X + n 11 

para x > O. Para a > O fijo, sea 

si x ;::: O, 

si x < O. 

Entonces f satisface evidentemente las hipótesis del teorema 11.24. Además, f es 
continua en todo R, excepto en O, en donde feO +) = 1 Y feO -) = O. Por consiguien­
te, la fórmula de Poisson implica 

00 +00 ioo t + ¿ e- ma = ¿ e-al-hinl dI. 
m=l n=-oo o 

(58) 

La suma del primer miembro es una serie geométrica cuya suma vale I/(ea - 1), Y la 
integral del segundo es igual a l/Ca + 2rrin). Por lo tanto (58) implica 

- + - - =-+ + 1 1 1 00 (1 1) 
2 ea - 1 IX ~ IX + 2nin IX - 2nin ' 

y esto da (57) cuando se substituyect por x. 

EJERCICIOS 

Sistemas ortogonales 

11.1 Verificar que el sistema trigonométrico dado en (1) es ortonormal en [0, 2rr]. 
11.2 Una colección ·finita de funciones {'!'o' 1'1' oo., '!'m} es linealmente indepen­

diente en [a b] si la ecuación 

m 

¿ Ckfllk(X) = ° para todo x de [a, b] 
k=O 

implica Cn = cl = oo. = Cm = O. Una colección infinita es linealmente independiente 
en [a, b] si cada uno de sus subconjuntos finitos es linealmente independiente en [a, b]. 
Probar que cada sistema ortonormal en [a, b] es linealmente independiente en [a, b]. 
11.3 Este ejercicio describe el procedimiento de Gram-Schmidt que convierte un 

sistema linealmente independiente cualquiera en un sistema ortogonal. Sea {fo, fl' oo.} 
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un sistema linealmente independiente en [a, b] (tal como se definió en el ejerci­
cio 11.2). Definimos un nuevo sistema {go ' gI' .. . } recurrentemente como sigue: 

r 

go = lo, gr+l = /"+1 - L akgb 
k=1 

en donde ak = (/"+1> gk)/(gk, gk) si //&1/ =1: O, Y ak = O si //gk// = O. Probar que g,,<+, 
es ortogonal a cada uno de los gu' g" ... , gn para todo n ¿ O. 
11.4 Con referencia al ejercicio 11.3, sea (/, g) = f:'1 I(t)g(t) dt. Aplicar el proce­

dimiento de Gram,Schmidt al sistema de polinomios {l, t, t2 , •.. } en el intervalo 
[-J, 1] Y probar que 

g¡(t) = t, 

11.5 a) Supongamos 1 E R en [O, 2",], siendo 1 una función real que tiene perío­
do 2",. Probar que para cada E > O existe una función continua g de pe­
ríodo 2"" de modo que III - gil < E. Indicación. TOIlUlr una partición Pe 
de [O, 2",] para la cual 1 satisfaga la condición de Riemann U(P, f) - L(P, 1) 
< E Y construir una función lineal a trozos g que concuerde con 1 en 
los puntos de Pe' 

b) Aplicar la parte (a) para ver que el teorema11.16 (a), (b) y (c) se verifica 
si 1 es integrable de Riemann en [O, 2",]. 

11.6 En este ejercicio suponemos que todas las funciones son continuas en un 
intervalo compacto [a, b]. Sea {.9'o' 1'1' . . . } un sistema ortonormal en [a, b]. a) Probar 
que las tres proposiciones siguientes son equivalentes. 

1) (/, 1'n) = (g, 1'n) para todo n implica 1 = g. (Dos funciones distintas no 
pueden tener los mismos coeficientes de Fourier.) 

2) (/, 9' .. ) = O para todo n implica 1 = O. (La única función continua orto­
gonal a todas las 9'", es la función cero.) 

3) Si T es un conjunto ortonormal en [a, b] tal que {'9'O'9'" ... } ~ T, en­
tonces {1'o, 1'" ... } = T. (No es posible ampliar el conjunto ortonormal.) 
Esta propiedad se d(!signa diciendo que {'9'o, 1'" .. . } es maximal o total. 

b) Sea 9'n(x) = ei=/-J 2n para n = 0, 1, 2, .. . , Y verifíquese que el conjunto 
{e.,.: n E Z} es total en cada intervalo de longitud 21T. 

11.7 Si x E R Y n = 1, 2, ... , sea In(x) = (X2 _l)n y definamos 

!/Jo(x) = 1, 1 
!/J (x) = - j,<n)(x). 

n 2nn! n 

Es claro que t¡J'" es un polinomio. Se llama polinomio de Legendre de orden n. Los 
cuatro primeros son 

!/J¡(x) = x, !/J2(X) = 1x2 - -l, 
!/J3(X) = !x3 

- 1x, !/J4(X) = V.X4 - lIx2 + f . 
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d d d l Polinomios de Legendre: Deducir las siguientes propie a es e os 

c) (n + 1)!/Jn+l(X) = (2n + 1)xifo.(x) - n!/Jn-l(X). 

. . . 1[(1 2) T + n(n + l)y = O. d) I/In satisface la ecuación diferenCIa - x y 

) [(1 - X2) Ll(x)]' + [m(m + 1) - n(n + 1)]ifom(x)l/In(x) = 0, , 
e en donde~ = !/Jnl/l~ - !/Jmifon' 

f) El conjunto {<Po, t¡J" t¡J2' ... } es ortogonal en [- 1, 1]. 

g) !/J~ dx = -- - ifon-I dx. fl 2n - 1 JI 2 
-1 2n + 1 -1 

h) JI ifo2 dx = _ 2_ . 
-1 n 2n + 1 

NOTA. Los polinomios 
2n(n!)2 

g.(t) = -- ifon(t) 
(2n)! 

d G S hmidt al sistema {l , 1, t2
, .• • } en aparecen al aplicar el procedimiento e ram- c 

el intervalo [- 1, 1] (ver ejercicio 11.4). 

Series de Fourier trigonométricas 

]) ue f es periódica de período 21T. Probar 
11.8 Supongamos q~e fE L([-ro, ro fY q ta las siguientes formas especiales si 

que la serie de Founer generada. por presen 
se verifican las condiciones enunciadas: 

a) Si f( -x) = fex) cuando O < x < 11", entonces 

00 2 f" 
f(x) ,...., ao + L: an cos nx, en donde Qn = -; Jo f(t) COS ni dI. 

2 n=1 

b) Si f( -x) = - f(x) cuando O < x < ro, entonces 

00 2 f" 
f(x) ,...., L: bn sennx, en dondebn = -; Jo f(t) sen nI dt. 

n= 1 

. . . 15 robar que cada uno de los desarrollos 
En los eJerCICIOS que van. de~ 11.9 al t 1. , ~ Utilizar el ejercicio 11.8 Y el teore­
es válido en el intervalo mdlcado. SugerenclQ. 
ma 11.l6(c) cuando sea posible. 
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00 

11.9 a) x = n - 2 L sen nx , 
n~ 1 n 

si O < x < 2n. 

X2 2 00 

b) - = nx _ ~ + 2 ~· cos nx 
2 3 6-:. n2 ' 

si O :s; x :s; 2n. 

NOTA. Cuando x = O esto da ~(2) = rr2 /6. 

11.10 a) ~ = i: sen(2n - l)x 
4 n~1 2n - 1 ' si O < x < n. 

b) x = :: _ ~ t cos (2n .:.. 1 )x 
2 n n~ 1 (2n - 1)2 ' 

si O :s; x :s; n. 

11.11 a) x = 2 i: (_1)n-l sen nx , 

n~ 1 n 
si - n < x < n. 

b) X2 = ~~ + 4 ~(-l)ncos nx 
3 6-:. n2 ' 

si - n :s; x :s; n. 

X2 = ~ n 2 + 4 i: (COS 2nx _ n sen.nx) , 
3 n~ 1 n n 

11.12 si O < x < 2n. 

8 00 
11.13 a) cos x = _ ~ n sen 2nx 

n 6-:. 4n2 - 1 ' si O < x < n. 

2 4 00 
b) sen x = _ __ ~ cos 2nx 

n n 6-:. 4n2 
- 1 ' 

si O < x < n. 

11.14 u) xcosx = --!senx + 2 ~ (-I)"ns.ennx 
~ n2 

- 1 ' 
si - n < x < n. 

h) x sen x = 1 - t cos x _ 2 ~ (- 1)n cos nx 
L.J 2 si - n :s; x _< 71:. 
n~2 n - 1 ' 

11.15 a) log Isen~1 -Iog 2 - i: cos nx, si x i: 2kn 
n~l n 

b) log Icos ~21 -log 2 - n~oo~l (-I)n:os nx, L.J si x i: (2k + 1)71:. 

c) log I tan ~I = -2 i: cos (2n - 1)x 
n~1 2n - 1 ' 

si x i: k 71:. 

11.16 a) H~lar ~m:. ~3nción conti~~a en [-1r, rr] que genere la serie de Fourier 
Ln~ 1 ( 1) n sen nx. UtilIzar entonces la fórmula de Parseval para pr 
bar que ~(6) = rr 6 /945. 0-

• 
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b} Utilizar una serie de Fourier apropiada juntamente con la fórmula de 
Parseval para probar que ~(4) = ,,'/90. 

11.17 Supongamos que f posee una derivada continua en [O, 2rr], que feO) = f(2rr), 
y que S~" f(t) dI = O. Probar que Ilrl! ¿ Ilfl!, verificándose la igualdad si, y sólo si, 
f(x) = a cos x + b sen x. Indicación. Utilizar la fórmula de Parseval" 
11.18 Una sucesión { Bn } de funciones periódicas (de período 1) está definida en R 

por medio de: 

B (x) = (_1)n+ 1 2(2n)! ~ cos 271:kx 
2n (271:)2n bt k 2n 

(n = 1, 2, ... ), 

_ () ( )n+ I 2(2n + 1)! LOO sen2nkx 
B x = -1 2n+l (271:)2n+l k~1 k2n+1 

(n = 0,1,2, ... ). 

(Bn se llama función de Bernoulli de orden n.) Probar que: 
a) B/x) = x - [x] - t si x no es entero. ([xl es la parte entera < x.) 
b) g B/x) dx = O si n ¿ 1 Y B~(x) = nB"_l(x) si n ¿ 2. 
e) Bn(x) = P,i(x) si O < x < 1, en donde P" es el n-ésimo polinomio de Ber­

noulli . (Ver ejercicio 9.38 para la definición de P !n') 

_ n! 00 e2 "ih 

d) B (x) = - -- L --
" (2ni)n k~ _ 00 k" 

(n=1 , 2, .. . ). 

k*O 

11.19 Sea f una función de período 2rr cuyos valores en [-1i, r.] son 
f(x) = 1 si O < x < :7, 

f(x) = -1 si -rr < x < O, 
f(x) = O si x = O o x = 1i. 

a) Probar que 

f(x) = ~ t sen(2n - ~~~, 
n n~ I 2n - 1 

para cada x. 

Este es un ejemplo de una clase de series de Fourier que tiene una propiedad cu­
riosa conocida como fenómeno de Gibbs. Este ejercicio está pensado para ilustrar 
este fenómeno. En lo que sigue, s,,(x) designa la suma parcial n-ésima de la serie 
dada en la parte {a). 

b) Probar que 

Sn X - - -- f. ( ) _ 2 IX sen 2nt d 
71: o sen t 

c) Probar que, en (0, rr), s" tiene un máximo local en xl' x 3 ' ••• , X 2n- 1 y un 
mínimo local en x

2
' x

4
' ••• , X 2n- 2 ' en donde x'" = tmr./n (m = 1, 2, .. . , 

2n-l). 
d) Probar que s",(tr./n) es el mayor de los números 

(m = 1, 2, . . . , 2n - 1). 
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e) Interpretar s",(trr/n) como una suma de Riemann y demostrar que 

hm Sn - = - - - dt. . ( n ) 2 f1t sen t 
n-+oo 2n n o t 

El valor del límite que interviene ,en (e) es, aproximadamente, 1,179. Entonces, a pesar 
de que f tenga un salto .en el origen igual a 2, las gráficas de las curvas aproxima­
ciones s,. tienden a aproximarse a un segmento vertical de longitud 2,358 en las proxi­
midades del origen. Éste es el fenómeno de Gibbs. 
11.10 Si f(x) ~ ao/2 + L::'= 1 (an cos /IX + bn sen nx) y si f es de variación acotada 
en [O, 21T], probar que a .. = OO/n) ybn = O{1/n}. Indicación. Escribir 1 = g - h, en 
donde g y h son crecientes en [O, 2rr]. Entonces 

a
n 

= ---'-- g(x) d(sen nx) - - h(x) d(sen nx). 1 f21t 1 f21t 
nn o nn o 

Ahora aplíquese el teorema 7.31. 
11.21 Supongamos que g E L([a, ,Il]} para cada a de (0, 8) Y supqngamos que g sa­
tisface una condición de Lipschitz ((por la derecha» en O. (Ver la nota que sigue al 
teorema 11.9.) Probar que existe la integral de Lebesgue fg Ig(t) - g(O+ )I/t dt 
11.11 Utilizar el ejercicio 11.21 para probar que la diferenciabilidad de 1 en un 
l1unto implica la convergencia de su serie de Fourier en dicho punto. 
11.13 Sea g una función continua en [0, 1] Y supongamos que.fA tng(t) dt = ° para 

n = O, 1, 2, '" Probar que: 

a) n g(t)2 dt = fb g(t)(g(t) - P(t») dt para cada polinomio P. 

b) fb g(t)2 dt = O. Indicación. Utilícese el teorema 11.17. 

c) g(t) = ° para cada t de [0, 1]. 

11.14 Utilizar el teorema de aproximación de Weierstrass para demostrar cada una 

de las siguientes afirmaciones. 
a) Si 1 es continua en [1, +:lO] Y si j(x) -4 a cuando x -4 +:x>, entonces 1 se 

puede aproximar uniformemente en [1, +00] por medio de una función g 
de la forma g(x) = p(l /x), en donde p designa un polinomio. 

b) Si f es continua en [0, +00) Y si l(x)-4a cuando x- +00; entonces 1 se 
puede aproximar uniformemente en [O, +00] por medio de una función g 

de la forma g(x) = p(e-"'), en donde p es un polinomio. 
11.15 Supongamos que f(x) ~ ao/2 + L::'=l (an cos nx + bn sen nx) Y sea k .. } la su­
cesión de medias aritméticas de las sumas parciales de dicha serie, tal como se hizo 

en (23). Probar que: 

a) a.(x) = ao + L 1 - - (ak cos kx + bk sen kx). "-1 ( k) 
2 k=l n 

r21t [21t 
b) Jo If(x) - a.(xW dx = Jo If(xW dx 

n-1 n-1 

- !!. a~ - n L (a~ + b~) + n2 L k2(a~ + bi). 
2 k= 1 n k= 1 
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c) Si 1 es continua en [O, 2rr] y tiene período 2rr, entonces 

n 

Iim n
2 
L k2(a~ + b~) = O. 

n-+oo n k=l 

11.16 Consideremos la serie de Fourier (en forma exponencial) generada por una 
función 1 continua en [0, 2rr] y periódica de período 2rr, esto es 

+00 

f(x) ~ L ocne'U. 
"=-00 

Supongamos además que la derivada f E R enlO, 2n]. 
a) Probar que la serie L::=~oo n2 1oc"1 2 converge; utilizar entonces la desigual­

dad de Cauchy-Schwarz para deducir que L:;;=~oo loc"1 converge. 
b) Deducir de (a) que la serie L::=~oo oc"e'"'" converge uniformemente hacia 

una función suma g continua en [O, 2rr]. Probar entonces que 1 = g. 

Integrales de Fourier 

11.17 Si 1 satisface las hipótesis del teorema de la integral de Fourier, probar que 
a) Si 1 es par, esto es, si f( - t) = I(t) para cada t, entonces 

f __ (-,--x_+--,),--+-,f,--(,--x_-~) = ~ lim [a cos vx [ [00 f(u) cos vu dU] dv. 
2 n a-++oo Jo Jo 

b) Si 1 es impar, esto es, si 1(-1) = -/(t) para cada t, entonces 

f(x+) + f(x-) 2 . fa [fOO ] 
2 

= - hm sen vx f(u) sen vu du dv. 
n a-+ + 00 o o 

Utilizar el teorema de la integral de Fourier para calcular las integrales impropias 
del ejercicio 11.28 hasta el ejercicio 11.30. Sugerencia. Utilizar el ejercicio 11.27 
cuando sea posible. 

11.18 ~ . [00 sen v cos vx dv = {~ 
1r Jo v t 

11.29 [00 cos ax dx = ~ e-1a1b 

Jo b2 + X2 2b ' 

si -1 < x < 1, 
si Ixl > 1, 
si Ixl = 1. 

si b > O. 

Indicación. Aplicar el ejercicio 11.27 con f(u) = e- b1ul • 

. --- x---e 11 '30 100 X senax d _ a 1r -Ial 

o 1 + X2 lal2 ' 
si a # O. 

11.31 a) Probar que 
r(p)r(p) = 2 [1/2 xll-1(l _ X)P-l dx. 

r(2p) Jo 
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b) Realizar un cambio conveniente de variables en (a) y deducir la fórmula 
de duplicación para la función Gamma: 

NOTA. En el ejercicio 10.30 hemos probado que rei) = ..,¡;. 

11.32 Si/ex) = e- x2
/
2 y g(x) = xf(x) para todo x, probar que 

f(y) = A LOO f(x) cos xy dx y g(y) = A Loo g(x)senxy dx. 

11.33 Este ejercicio describe otra forma para la fórmula de sumación de Poisson. 
Supongamos que f es no negativa, decreciente, y continua en [O, +oo~ y que J~ f(x) dx 
existe como integral de Riemann impropia. Sea 

g(y) = A Loo f(x) cos xy dx. 

Si a y ~ son números positivos tales que rxf3 = 2rr, probar que 

.;; {tJ(O) + ~ f(mrx)} = ..,¡p {tg(O) + ~ g(nP)} . 

11.34 Probar que la fórmula de transformación (55) para ()(x) puede ponerse en 
la forma 

en donde af3 = 2rr, a > O. 

11.35 Si s> 1, probar que 

n- s
/
2 rG)n-s 

y deducir la fórmula 

n- s
/
2 rG)C(s) = fooo 

If/(X)x"/2-1 dx, 

donde 21f/(x) = O(x) - 1. Usar esto y la fórmula de transformación para ()(x) para 
probar que 

n- s
/
2 r(D C(s) = ses ~ 1) + fl

OO 
(x"/2-1 + X(1-S)/2-1)If/(X) dx. 

t 
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Transformadas de Laplace 

Sea c un número positivo tal que la integral f~ e-etlf(t)1 dt existe como integral de 
Riemann impropia. Sea z = x + iy, en donde x > c. Es fácil probar que la integral 

F(z) = Loo e-zt f(t) dt 

existe como integral de Riemann impropia y también como integral de Lebesgue. 
La función F así definida se llama transformada de Laplace de f. designada 
por !f(f). Los ejercicios siguientes describen algut:J.as propiedades de las ~ransfor­
madas de Laplace 

11.36 Verificar las entradas en la siguiente tabla de las transformadas de Laplace. 

f(t) F(z) = f~ e-ztf(/) dt z = x + iy 

eat (z - a)-l (x > a) 
cos at Z/(Z2 + ( 2) (x > O) 
sen at a/(z2 + rx2) (x > O) 
tPeat r(p + 1)/(z - a)P+1 (x > IX, p > O) 

11.37 Probar que la convolución h = f * g toma la forma 

h(t) = f: f(x)g(t - x) dx 

cuando tanto f como g se anulan en el eje real negativo. Utilizar el teorema de con­
volución para transformadas de Fourier para demostrar que !l'(f. g) = .!l'(f) . !l'(q). 
11.38 Supongamos que f es continua en (O, +00) Y sea F(z) = f~ e- zt f(t) dI para 
Z = x + iy, x > c > O. Si s > c ya> O, probar que: 

a) F(s + a) = a J~ g(t)e- at di, en donde g(x) = g e-st f(t) dt. 
b) Si F(s + na) = O para n = O, 1, 2, ... , entonces f(t) = O para t > O. In­

dicación. Utilizar el ejercicio 11.23. 
c) Si h es continua en (0, +00) Y si f y h tienen la misma transformada de 

Laplace, entonces jet) = h(t) para cada t > O. 
11.39 Sea F(z) = f~ e- zt f(/) dt para z = x + iy, x> c > O. Sea t un punto en el 
que f satisface una de las condiciones n!ocales)) (a) o (b) del teorema de la integral 
de Fourier (teorema 11.18). Probar que, para cada a > c, tenemos 

f(t+) + f(t-) _ 1 l' fT (a+lv)tF( + ') d '--'-----'--_-'---'---C. _ - 1m e a IV v. 
2 2n T-++OO -T 

Esta expreSIOn se llama fórmula de inversión para transformadas de Laplace. El 
límite de la derecha se calcula usualmente con la ayuda del cálculo de residuos, tal 
como se describe en la sección 16.26. Indicación. Sea g(t) = e-atf(t) para t:2: O, 
R(t) = ° para t < O, Y aplíquese a g el teorema 11.9. 
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CAPíTULO 12 

Cálculo diferencial~ 

de varias variables 

12.1 INTRODUCCIóN 

Las derivadas parciales de funciO'nes de Rn en Rl fue discutidO' brevemente en 
el capítulO' 5. También se intrO'dujO' el cO'nceptO' de derivada de una función de 
Rl en Rn. Este capítulO' extiende la teO'ría de la derivación a las funciO'nes de Rn 
en Rm. 

CO'mO' ya se indicó en la sección 5.14, la derivada parcial es una generaliza­
ción en ciertO' mO'do insatisfactO'ria de la derivada usual por cuanto la existencia 
de tO'das las derivadas parciales Dd, ... , Dnf en un punto particular no implica 
necesariamente la continuidad de f en dicho punto. El inconveniente de las deri­
vadas parciales consiste en el hecho de que una función de varias variables es 
tratada en cada caso comO' una función de una sO'la variable. La derivada parcial 
describe la variación de una función en la dirección de' cada unO' de los ejes 
cO'O'rdenadO's. Existe una ligera generalización, llamada la derivada direccional, 
que estudia la variación de una función en una dirección arbitraria. Se aplica 
tanto a funciones vectoriales reales como complejas. 

12.2 LA DERIVADA DIRECCIONAL 

Sea S un subconjunto de Rn, y sea f:S ~ Rm una función definida en S con va­
lores en RJm. Deseamos estudiar cómo varía f cuando pasamos, a lO' largo de un 
segmento rectilíneo, de un puntO' e de S a un punto próximo c+u, en donde 
u '=1=- O. Cada uno de los puntO's del segmento se puede expresar por medio de 
e + hu, en dO'nde h es real. El vector u define la dirección del segmento recti­
líneo. SupO'nemos que e es un punto interior de S. Entonces existe una bola 
n-dimensional B(c; r) cO'ntenida en S, y, si h es suficientemente pequeño, el 
segmentO' rectilíneo que une e con e + hu está contenido en B(c; r) y por lO' 
tantO' en S. 

417 
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Definición 12.1. La derivada direccional de f en el punto e y en la direc­
ción u, designada por medio del símbolo ('(e; u), se define por la ecuación 
ecuación 

f'(e; u) = lim fCe + hu) - fSe) , 
h-+O h 

(1) 

siempre que el límite de la derecha exista. 

NOTA. Algunos autores imponen que Ilull = 1, pero aquí no lo hemos supuesto. 

Ejemplos 

1. L~ defin.ición (1) es completamente significativa si u = O. En este caso ('(e; O) 
eXiste e Igual a cero para todo e en S. 

2. Si u = Uk es el k-ésimo vector unitario coordenado entonces f' = (c' u) 
denomina derivada parcial y se indica por Dkf(c). Cuando f. es un v~lo/ re:: 
e~tá conforme con la definición dada en el capítulo 5. ' 

3. SI! = (J" ... , fm)' entonces f'(e; u) existe si y sólo si fk(e; u) existe para todo . 
k - 1, 2, ... , m; en tal caso 

('(e; u) = (¡{(e; u), ... ,¡';'(e; u». 

En particular, cuando u = Uk encontramos 

(2) 

4. Si F(t) = f(e.+ tu), entonces F'(O) = f'Ce; u). Generalizando, F(t) = ('(e + tu; u) 
si ambas derivadas existen. 

~ S. Si f(x) = IlxW, entonces 

F(t) = ¡(e + tu) = (e + tu)· (e + tu) 

= IIe l1
2 + 2te· u + t 2 11u11 2

, 

así P(t) = 2e'u + 2t Il u11 2
, de aquí F(O) = f'(e; u) = 2e·u. 

6. Funciones lineales. Una función f:Rn->-Rm se llama lineal si f(ax+by) = af(x)+ 
h.f(y) para todo x e y en Rn y todo par de escalares a y b. Si f es lineal, el co­
ciente de la derecha de (1) se simplifica para f(u), ,así f'Ce; u) = fCu) para todo e 
y todo u. 

12.3 DERIVADAS DIRECCIONALES y CONTINUIDAD 

Si f'(c; ~) existe en cada dirección u, entonces en particular, todas las deriva­
d.as pafCIales Dl~(C), ... , Dnf(c) existen. Sin embargo, el recíproco es falso. Con­
sideremos por ejemplo la función real f: R2 ->- Rl dada por 
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f(x, y) = {~ + y 
si x = O o y = O, 

en cualquier otro caso. 

Entonces D¡/(O, O) = D 2f(0, O) = l. A pesar de ello, si consideramos alguna / 
otra dirección u = (al' a2), en donde al =1= O Y a2 =1= O, entonces 

feO + hu) - feO) f(hu) 1 
/¡ h h' 

que carece de límite cuando h ->- O. 
Un hecho realmente sorprendente es que una función puede tener derivada 

direccional finita f'(c; u) para cada u y en cambio no ser continua en c. Por 
ejemplo, sea 

si x =1= O, 

si x = O. 

Sea u = (al' a2 ) un vector cualquiera de R2. Tenemos entonces 

y de aquí, que 
si al =1= O, 

si al = O. 

Luego, 1'(0; u) existe para todo u. Por otro lado, la función f toma valor t 
en cada punto de la parábola x = y2 (excepto en el origen), luego f no es con­
tinua en (O, O), ya que feO, O) = o. 

Vemos por lo tanto que la existencia de todas las derivadas direccionales 
en un punto no implica necesariamente la continuidad en dicho punto. Por esta 
razón, las derivadas direccionales, como ocurría con las derivadas parciales, 
constituyen una extensión en cierto modo poco satisfactoria del concepto de 
derivada unidimensional. Ello nos lleva a una generalización más conveniente 
que implica la continuidad y, al mismo tiempo, extiende los principales teore­
mas de la teoría de la derivada unidimensional al caso de las funciones de 
varias variables. Este concepto se llama la derivada total. 

12.4 LA DERIVADA TOTAL 

En el caso unidimensional, una función f con derivada en c se puede aproxi­
mar por medio de un polinomio lineal en las proximidades de c. De hecho, 
si f'(c) existe, designamos por Ec(h) la diferencia 

EJh) = fCe +. h~ - f(e) - f'(e) SI h=l= O, (3) 
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y sea Ec(O) = O. Entonces tenemos 

f(e + h) = f(e) + f'(e)h + hE/h) , (4) 

ecuación que se verifica también si h = O. Esta expresión se llama fórmula de 
Taylor de primer orden para aproximar a f(c + h) - fCc) por medio de f(c)h. 
El error cometido es hEc(h). De (3) vemos que Ec(h) -4 O cuando h -4 O. Se 
dice que el error hE('(h) tiene orden inferior a h cuando h -4 O. 

Enfoquemos nuestra atención a dos propiedades de la fórmula (4). La pri­
mera nos indica que la cantidad f(c)h es una función lineal de h. Esto es. si 
escribimos Tc(h) = f'(c)h, entonces 

Tc(ah l + bh2 ) = aTc(h l ) + bTcCh2 ). 

La segunda nos dice que el error hEc(h) es de orden inferior a h cuando h -4 O. 
La derivada total de una función f de R " en Rm se definirá a la vista de lo 
anterior de tal forma que se conserven estas dos propiedades. 

Sea f: S -4 R m una función definida en un conjunto S de' R" con valores 
en R,"'. Sea e un punto interior de S, y sea B(e; r) una n-bola contenida en S. 
Sea v un punto de Rn con [[ vi l < r, entonces e + v 'E B(e; r). 

IJt'ji"ición 12.2. La función { es diferenciable en e si existe una función 
lincal T (': Rn -4 Rm tal que 

f(e + v) = f(e) + Te(v) + Ilvll Ee(v), (5) 

cn donde E c(v) -4,0 cuando v -4 O. 

NOTA. La ecuación (5) se llama una fórmula de Taylor de primer orden. Se 
verifica para todo v de R" con [[v il < r. La función lineal T e se llama la deri­
vada total de { en e. La expresión (5) se escribe también en la forma 

f(e + y) = f(e) + Te(y) + o(lIvll) cuando v -4 O. 

El proxlmo teorema demuestra que. si la derivada total existe, es única. 
Relaciona también la derivadá total . con las derivadas direccionales. 

Teorema 12.3. Supongamos que f es diferenciable en e con derivada total Te' 
Entonces, la derivada direccional f'(e; u) existe para cada u de Rn y tenemos 

Te(u) = f'(e; u). (6) 

Demostración. Si v = O entonces {'(e; O) = O Y T c(O) = O. Por consiguiente 
podemos saponer que v =F O. Hagamos v = hu en la fórmula de Taylor (5). 
con h =F o. y obt'endremos 

f(e + hu) - C(e) = Te(hu) + IIhull Ee(Y) = hTe(u) + Ihl Ilull Ee(Y). 

Cálculo diferencial de varias variables 421 

Dividimos ahora por h y hacemos que h -4 O Y obtenemos (6). 

Teorema 12.4. Si { es diferenciable en e. entonces { es continua en e. 

Demostración. Sea v -4 O en la fórmula de Taylor (5). El término que da el 
error verifica [[v il E c(v) -4 O; el término lineal Ta(v) tiende también a O puesto 
que si v = v 1 U¡ + ... + VnUn • en donde UI> .... U n son los vectores coordenados 
unitarios. entonces por linealidad tenemos 

Te(u) = v1Te(u1) + ... + v"Te(u"). 

y cada término de la derecha tiende a O cuando v -4 O. 

NOTA. La derivada total Te se escribe también {'(e) por analogía con la nota­
ción utilizada en la teoría unidimensional. Con esta notación. la fórmula de 
Taylor (5) toma la forma 

f(e + y) = C(e) + f'(e)(v) + Ilvll Ee(Y) , (7) 

en donde E c(v) -4 O cuando v -4 O. Sin embargo. deberá tenerse en cuenta que 
f'(e) es mla aplicación lineal y no un número. Está definida en todo Rn; el vec­
tor {'(e)(v) es el valor de {'(e) en v. 

Ejemplo. Si f es una función lineal propia, entonces f(e + v) = f(e) + f(v); así la 
derivada f'(c) existe para todo e y es igual a f. En otras palabras, la derivada 
total de una función lineal es la misma función. 

12.5 LA DERIVADA TOTAL EXPRESADA POR MEDIO 
DE LAS DERIVADAS PARCIALES 

El siguiente teorema demuestra que -el vector f'(e)(v) es una combinación lineal 
de las derivadas parciales de f . 

Teorema 12.5. Sea {: S -4 R'" difereneiable en un punto interior e de S, con 
S ~ R". Si v = VIU ¡ + ... + V"Un , en donde U I ' ... . Un son los vectores coorde­
nados unitarios de R", entonces 

" 
f'(e)(y) = L vkDkf(e). 

k=l 

En particular, si f es una función real (m = 1) tenemos 

f'(e)(y) = Vf(e)' Y, (8) 

producto escalar de Y con el vector 

Vf(e) = (DJ(e) , ... , D"f(e»). 

) 
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Demostración. Si utilizamos la linealidad de f'(e) tenemos 

n n 

f'(e)(v) = ¿ f'(e)(vkuk) = ¿ vkf'(e)(uk) 
k=l k=¡ 

n n 

= ¿ vkf'(e; uk) = ¿ vkDkf(e). 
k= ¡ k= ¡ 

NOTA. El vector Vf(e) que aparece en (8) se llama vector gradiente de f en e. 
Está definido en cada punto en el que existen las derivadas parciales DJ, ... , Dnf. 
La fórmula de Taylor de una función real f toma la forma 

f(e + v) = f(e) + Vf(e)· v + o(lIvll) ,cuando v -. O. 

12.6 APLICACIóN A LAS FUNCIONES COMPLEJAS 

Sea f = u + iv una función compleja de una variable compleja. El teorema 5.22 
probaba que una condición necesaria para que f tenga derivada en el punto c 
es que existan las cuatro derivadas parciales D,u, D 2u, Dlv, D 2ven c y se veri­
fiquen las ecuaciones de Cauchy-Riemann: 

Un ejemplo nos demostraba también que estas ecuaciones por ellas mismas no 
eran sufici'entes para la existencia de f'(c). El próximo teorema demuestra que 
las ecuaciones de Cauchy-Riemann, junto con la diferenciabilidad de u y v, 
implican la existencia de f'(c). 

Teorema 12.6. Sean u y v dos funciones reales definidas en un subconjunto S 
del plano complejo. Supongamos además que u y v son diferenciables en un 
punto interior c de S y que las derivadas parciales satisfacen las ecuaciones de 
Cauchy-Riemann en c. Entonces la función f = u+iv tiene derivada en c. 
Además, 

f'(e) = D¡u(c) + iD¡v(e). 

Demostración. Tenemos fez) - f(e) = u(z) - u(e) + i{v(z) - v(e)} para cada 
z de S. Puesto que tanto u como v son diferenciables en c, para z suficiente­
mente próximo a c tenemos 

u(z) - u(e) = Vu(e)' (z - e) + o(lIz - ell) 
y 

vez) - v(e) = Vv,Ce)' (z - e) + o(llz - ell)· 

",-

, 

..•. :8
1

, 
.' 

' . 

2' 
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Utilizamos aquí la notación vectorial y consideramos los números complejos 
como vectores de R2. Tenemos entonces 

fez) - f(e) = {Vu(e) + i Vv(e)} . (z - e) + o(llz - ell)· 

Haciendo z = x + iy Y e = a + ib, obtenemos 

{Vu(e) + i Vv(e)} . (z - e) 

= D1u(e)(x - a) + Dzu(e)(y - b) + i {D¡v(e)(x - a) + D2v(e)(y - b)} 

= D¡u(e){(x - a) + i(y - b)} + iD¡v(e){(x - a) + i(y - b)}, 

en virtud de las ecuaciones de Cauchy-Riemann. Luego 

fez) - f(e) = {D¡u(e) + iD¡v(e)} (z - e) + o(llz - ell)· 

Dividiendo por z - c y haciendo que z -. c vemos que existe f'(c) y que cs 
igual a 

12.7 LA MATRIZ DE UNA FUNCIóN LINEAL 

En esta sección nos apartamos brevemente del tema para recordar algunos de 
los resultados elementales del Álgebra lineal que son útiles en ciertos cálculos 
en los que intervienen derivadas. 

Sea T: Rn --+ R'" una función lineal. (En nuestras aplicaciones, T será la 
derivada total de una función f.) Probaremos que T determina una matriz m X n, 
cuyos términos son 'escalares (ver la expresión (9) que se da a continuación), 
que se determina como sigue: 

Sean U l ' ... , Un los vectores coordenados unitarios de R". Si x 'E Rn tene­
mos x = XIU l + ... + XnUn y, en virtud de la linealidad. 

n 

T(x) = ¿ xkT(uk). 
k=¡ 

Por consiguiente T está totalmente determinada por su acción sobre los vectores 
coordenados U l , ... , Un. 

Supongamos ahora que el' ... , em designan los vectores unitarios de R"'. 
Puesto que T(Uk) 'E R"', podemos escribir T(Uk) como combinación lineal de 
el' ... , em , siendo 

m 

T(uk) = ¿ t¡ke¡. 
¡=¡ 
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Los escalares t ,k , ... , t mk son las coordenadas de T(Uk)' Estos escalares se dis­
ponen en columna como sigue: 

Esta disposición se llama vector columna. Formamos el vector columna para 
cada uno de los vectores T(u,), ... • T(u,,) y se colocan uno al lado del otro 
para obtener la siguiente disposición 

(9) 

Esta disposición se llama matriz * de T y se designa por medio de m(T). 
Consta de .m filas y n columnas. Los números de la k-ésima columna son las 
componentes de T(Uk)' Se utiliza también la notación 

m(T) = [t¡k];7,;':. ¡ o m(T) = (t¡d 

para designar la mattiz de (9). 
Sean ahora T: Ron ->- Rm y S: Rm -> Rr dos funciones lineales, tales que el 

dominio de S sea igual al recorrido de T. Podemos formar entonces la función 
compuesta S o T definida por 

(S o T)(x) = S[T(x)] para todo x de Ron. 

La composición S o T también es lineal y aplica R'" en Rv. 
Calculemos la matriz meS o T). Designemos los vectores coordenados uni­

tarios de Rn, R'" y Rv, respectivamente. por medio de 

y W¡, ... , wP' 

Supongamos que S y T tienen matrices (Sij) y (t i ¡). respectivamente. Esto sig­
nifica que 

p 

S(ek) = L: S¡kWj para k = l. 2 •...• m 
j = 1 

* Con mayor precisión, la matriz de T relativa a las bases dadas u» ...• U n de R" y el> . '" em de Rm. 
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y In 

T(u) = L: tkjek para j = 1, 2, ... , n. 
k= ¡ 

Entonces 

m 

(S oT)(u) = S[T(u)] = L: tkjS(ek ) 
k=1 

luego 

[
m JP,n 

meS o T) = ¡: S¡ktkj . 
k-l i,j= ¡ 

En otras palabras. meS o T) es una matriz p X n cuyo elemento perteneciente 
a la i-ésima fila y j-ésima columna es 

m 

L: S¡kfkj' 
k= 1 

que coincide con el producto escalar de la i-ésima fila de meS) con la j-ésillla 
columna de m(T). Esta matriz se llama también producto m(S)m(T). Por lo 
tanto. meS o T) = m(S)m(T). 

12.8 LA MATRIZ JACOBIANA 

Ahora mostraremos cómo se presenta una conexión entre matrices y deriva­
das totales. 

Sea f una función con valores en R,n diferenciable en un punto e de R". 
y sea T = {'(e) la derivada total de f en c. Para hallar la matriz de T consi­
deremos su acción sobre los vectores coordenados unitarios U

" 
•.. , u". En vir­

tud del teorema 12.3 tenemos 

Para expresar esto como combinación lineal de los vectores coordenados unita­
rios e" ... , em de Rm escribimos f =(f" ... , fm). luego Dkf = (Dd" .... Ddm), 
y entonces 

m 

T(uk) = Dk f( e) = L: Dd,{c)e¡. 
i= 1 

http://libreria-universitaria.blogspot.com
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Por consiguiente la matriz de T es m(T) = (Ddi(e». Est~ matriz se llama la 
matriz jacobiana de f en e y se designa por Df(e). Esto es, 

[

Dd¡(C) Dd¡(c) 

Df(c) = D¡~2(C) D2~2(C) 

Ddm(c) Ddm(c) 

. .. D"f¡(C)j 

. .. D"f2(C) 

D"fm(c) 

(10) 

El -elemento de la i-ésima fila y k-ésima columna es Ddi(C). Así pues, obtene­
mos la k-ésima columna diferenciando las componentes de f respecto del k-ési­
mo vector coordenado. La matriz jacobiana Df(e) está definida en todos los 
puntos e de Rn en los que existen todas las derivadas parciales Ddi(e). 

La k-ésima fila de la matriz jacobiana (10) es un vector de Rn llamado 
vector gradiente de f¡. y designado por medio de Vj¡Je). Esto es, 

VJ,JC) = (D¡h(C), ... , Dnh(C»). 

. En 'el caso especial en que 1 es una función real (m = 1), la matriz jaco­
blana consta de una sola fila. En este caso Df(c) = Vf(e) , y la ecuación (8) 
del teorema 12.5 prueba que la derivada direccional r(c; v) es el producto 
escalar del vector gradiente Vf(e) por el vector dirección v. 

En el caso de una función vectorial f = (tI' ... , 1m) tenemos 

m m 

f'(c)(v) = f'(e; v) = L f~(c; v)ek = L {V h(C) . v}ek , (11) 
k = ¡ k=¡ 

por lo que el vector f'(e)v tiene componentes 

(Vfl(C)' v, ... , Vfm(e)' v). 

Así pues, las componentes de {'(c)v se obtienen efectuando el producto escalar 
de las sucesivas filas de la matriz jacobiana por el vector V. Si consideramos 
f(e)v como una matriz 1 X ~, o vector fila, entonces f(e)v es igual a la matriz 
producto Df(c)v, en donde Df(e) es la matriz jacobiana m X n y v está conside­
rado como una matriz nX 1, o vector columna. 

NOTA. La ecuación (11), usada junto con la desigualdad triangular y la desigual­
dad de Cauchy-Schwarz, nos da 

11 f'(e)(v) 11 = 11~{V.h(c)'V}ekll::::; ~ IVfk(C)'vl::::; Ilvll ~ IWf,.(c)lI· 

¡ 
I 

1 

1

1 ¡ 

I 

I 
I 
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Por consiguiente tenemos 

11 f'(e)(v) I1 ::::; Mllvll, ( 12) 

en donde M = 2:~= 1 II Vfk(e)lI· Esta desigualdad será utilizada para demostrar 
la regla de la cadena. Demuestra también que {'(e)(v) ~ O cuando v ~ O. 

12.9 REGLA DE LA CADENA 

Sean { y g funciones tales que la compuesta h = { o g está definida en un en­
torno de un punto a . La regla de la cadena nos dice cómo calcular la derivada 
total de h en función de las derivadas totales de f y de g. 

Teorema 12.7. Supongamos que g es diferenciable en a, con derivada g'(u). 

Sea h = g(a) y supongamos que { es diferenciable en h, con derivada total {'("). 
Entonces la función compuesta h = { o g es diferenciable en a, y la derivada 
total h'(a) se obtiene por medio de 

h'(a) = {'(h) o g'(a), 

que es la composición de las funciones lineales {'(h) y g'(a). 

Demostración. Consideramos la diferencia h(a + y) - h(a) para Il y ll pequeño. 
y demostramos que tenemos una fórmula de Taylor de primer orden. TEflemos 

h(a + y) - h(a) = f[g(a + y)] - f[g(a)] = f(b + v) - f(b) , ())) 

en donde h = g(a) y v = g(a+y) - h. La fórmula de Taylor para g(a+y) 
implica 

v = g'(a)(y) + lIyll Ea(y), en donde Ea(Y) ~ O cuando y -+ O. (14) 

La fórmula de Taylor para {(b + v) implica 

f(b + v) - f(b) = f'(b)(v) + IIvll Eb(v),en donde Eb(v) -+ O cuando v ~ 05) 

Utilizando (14) Y (15) se obtiene 

f(b + v) - f(b) = f'(b)[g'(a)(y)] + f'(b)[lIyll Ea(Y)] + Ilvll ~(v) 

= f'(b)[g'(a)(y)] + Ilyll E(y), 

en donde E(O) = O Y 

E(y) = f'(b)[Ea(y)] + .M Eb(V) 
lIyll . 

(16) 

(17) 
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Para terminar la demostración basta probar que E(y) -+ O cuando y -+ O. 

El primer término del segundo miembro de la igualdad (17) tiende a O cuan­
do y -+ O puesto que Ea(Y) -+ O. En el segundo término, el factor Et(v) -+ O pues­
to que v -+ O cuando y -+ O. Ahora vemos que el cociente Ilvl l/ llyll permanece 
acotado cuando y -+ O. Utilizando (14) y (12) para acotar el numerador obte­
nemos 

Ilvll :::;; IIg'(a)(y)II + Ilyll IIE.(y)II :::;; Ilyll{M + IIE.(y)II}, 

en donde M = L:~= 1 II Vgk(a)ll. Por lo tanto 

~ :::; M + IIE (y)lI, 
lIyll a 

luego Ilvll /ll yll permanece acotado cuando y -+ O. Utilizando (13) y (16) obte­
nemos la fórmula de Taylor 

h(a + y) - h(a) = f'(b)[g'(a)(y)] + Ilyll E(y) , 

en donde E(y) -+ O cuando y -+ O. Esto prueba que h es diferenciable en a y que 
su derivada total en a es la función compuesta f'(h) o g'(a). 

12.10 FORMA MATRICIAL DE LA REGLA DE LA CADENA 

La regla de la cadena establece que 

h'(a) = f'(b) o g'(a), (l8) 

en donde h = f o g y h = g(a). Como la matriz de una composición es el pro­
ducto de las matrices correspondientes, (18) implica la siguiente relación para 
matrices jacobianas: 

Dh(a) = Df(b)Dg(a). (19) 

Lo que se llama forma matricial de la regla de la cadena. Puede escribirse tam­
bién por medio de un conjunto de ecuaciones escalares a fin de expresar cada 
matriz por medio de sus elementos. 

Especificando, si a 'E R p, h = g(a) 'E Rn y f(h) E Rm, entonces h(a) E Rm 
y podemos escribir 

Entonces Dh(a) es una matriz mX p, Df(h) es una matriz m X n, y Dg(a) es 
una matriz n X p, dadas por 

.. 
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La ecuación matricial (19) es equivalente a las mp ecuaciones escalares 

n 

Djh¡(a) = L Dd¡(b)Dj 9k(a), para i = 1,2, ... , m y j = 1,2, ... ,p. (20) 
k=! 

Estas ecuaciones expresan las derivadas parciales de las componentes de h en 
función de las derivadas parciales de las componentes de f y g. 

La ecuación dada en (20) puede ponerse de forma que sea fácil de recordar. 
Escribimos y = f(x) y x = gel). Entonces y = f[g(l)] = h(t), y (20) se expresa 

(21) 

en donde 

y 

Ejemplo. Supongamos m = 1. Entonces ambas / y h = / o g son a valores reales 
y hay p ecuaciones en (20), una por cada derivada par,cial de h: 

n 

Djh(a) = L Dd(b)Djgk(a) , j= l , 2, .. . ,p. 
k = l 

El segundo miembro es el producto escalar de los dos vectores \l/(b) y Djg(a). 
En este caso la ecuación (21) toma la forma 

óy t óy ÓXk 3t; = k=l o X k Óf j , 
j= 1,2, ... ,p. 

En particular, si p = 1, obtenemos solamente una ecuación, 

n 

h'(a) = L Dd(b)g~(a) = V/(b)· Dg(a), 
k=l 

donde la matriz jacobiana Dg(a) es un vector columna. 

La regla de la cadena puede ser usada para dar una demostración sencilla del 
siguiente teorema, diferenciando una integral con respecto ' a un parámetro que apa­
rece en el integrando y en los límites de integración. 

APOSTOL, análisis - 15 



430 Cálculo diferencial de varias variables 

Teorem.a 12.8. Sean f y D 2f continuas en un rectángulo [a, bJ X [e, d]. Sean 
p y q dlferen~i~bles en [e, d], donde p(y) E [a, bJ y q(y) E [a, b] para cada y 
,de [e, d]. Definida F por la ecuación 

iq(y) 

F(y) = f(x, y) dx, 
p(y) 

siy E [e, d]. 

Existe entonces r(y) para cada y de (e, ti) y está dada por 

iq(y) 

rey) = D2 f(x , y) dx + f(q(y), y)q'(y) - f(p(y) , y)p'(y). 
p(y) 

Demostración. Sea G(x ¡, x 2 , x 3 ) = S~: f(t, x 3 ) dt para todo Xl y X
2 

de [a, bJ y 
x 3 E [e, dj. Entonces F es la función compuesta dada por F(y) = G(p(y), q(y), y). 
La regla de la cadena impl ica 

rey) = D¡G(p(y), q(y), y)p'(y) + D2 G(p(y), q(y), y)q'(y) + D
3
G(p(y), q(y), y). 

Pfor el teorema 7.32 tenemos D¡G(x¡ , x 2 , x 3 ) = -f(x¡ , x
3

) Y D
2
G(x¡, x

2
, x

3
) = 

(x2 , x 3 )· Por el teorema 7.40 también tenemos 

Utilizando estos resultados en la fórmula para F'(y) obtenemos el teorema. 

]2.11 TEOREMA DEL VALOR MEDIO 
PARA FUNCIONES DIFERENCIABLES 

El teorema del valor medio para funciones de Rl en Rl establece que 

f(y) - f(x) = f'(z)(y - x), (22) 

en donde z está comprendida entre X e y. Esta ecuación es falsa, en genera!, 
p~ra funciones vectoriales de R " en R"', cuando m > 1. (Ver ejercicio 12.19.) 
Sm embargo, probaremos que se obtiene una ecuación correcta si se toma el 
producto escalar en cada uno de los miembros de (22) para un cierto vector 
de R1/!, ya que z se elige convenientemente. Esto proporciona una generaliza­
ción verdaderamente útil del teorema del valor medio para funciones vectoriales. 

En el enunciado del teorema se utiliza la notación L(x, y) para designar el 
segmento rectilíneo que une los puntos x e y de R". Esto es 

L(x, y) = {tx + (\ - t)y : O $; t $; I}. 
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7'f'orema 12.9. (Teorema del valor medio). Sea S un subconjunto abierto 
c/e R" y supon[?amos que f: S ~ Rm es diferenciable en cada punto de S. Sean 
JI, (' y dos puntos de S tales que L(x, y) ~ S. Entonces para cada vector a de Rm 
t'Xiste un punto z de L(x, y) tal que 

a· {f(y) - f(x)} = a' {f'(z)(y - x)}. (23) 

Delllostraci6n. Sea u = y-x. Dado que S es abierto y que L(x, y) ~ S, existe 
un () > O tal que x + tu 'E S para todo t real del intervalo (-o, 1 +0). Sea a un 
vector fijo de Km y sea F la función real definida en (-8, 1 +8) por medio de 
la ecuación 

F(t) = a' f(x + tu). 

Entonces F es diferenciable en (-o, 1 +ó) Y su derivada viene dada por 

r(t) = a' f'(x + tu; u) = a' {f'(x + tu)(u)}. 

Por -el teorema usual del valor medio tenemos 

F(\) - F(O) = r(O), en donde O < e < 1. 

Ahora bien 
r(o) = a' {f'(x + Ou)(u)} = a· {f'(z)(y - x)}, 

en donde z = x + Ou E L(x, y). Pero F(1) - F(O) = a' {f(y) - f(x)}, y esto nos 
proporciona (23). Además, el punto z depende de F, y por lo tanto de a. 

NOTA. Si S es convexo, entonces L(x, y) ~ S para todo x, y de S, por lo cual 
(23) se verifica para todos los x e y de S. 

Ejemplos 
1. Si f es una función real (m = 1) podemos tomar a = 1 en (23), obteniendo , 

f(y) - f(x) = f'(z)(y - x) = Vf(z)· (y - x). (24) 

2. Si ( es una función vectorial y si a es un vector unitario en Rm, [[a[[ = 1, la 
ecuación (23) y la desigualdad de Cauchy-Sohwarz nos dan 

[[f(y) - (x) [[ ::; [[f'(z)(y - x) [l. 
Empleando (12) obtenemos la desigualdad 

[[f(y) - f(x)[[ ::; M [[y - x Ir, 
donde M = L::'=1 ~ Vj¡,(z)[[. Obsérvese que M depende de z y por consiguiente 
de x e y. 



432 Cálculo diferencial de varias variables 

3. Si S es convexo y si todas las derivadas parciales D ¡h son acotadas en S, enton­
ces existe una constante A > O tal que 

I/f(y) - f(x)1I :::; Ally - xII. 

En otras palabras, f satisface una condición de 'Lipschitz en S. 

El teorema del valor medio permite dar una demostración simple del si­
guiente resultado concernient'e a funciones con derivada total cero. 

Teorema 12.10. Sea S un subconjunto conexo y abierto de Rn y sea {: S ~ R'" 
diferenciable en cada uno de los puntos de S. Si {'(e) = O para cada e de S, 
entonces { es constante en S. 

Demostración. Como s'ea que S es abierto y conexo, resulta que es poligonal­
mente conexo. (Ver sección 4.18.) Por consiguiente, cada par de puntos x e y 
de S se pueden unir por medio de un arco poligonal contenido en S. Desig­
nemos los vértices de este arco por medio de PI' ... , pr, en donde PI = X Y 
pr = y. Ya que cada segmento L(Pi+l' Pi) ~ S, el teorema del valor medio 
prueba que 

para cada vector a. Sumando estas ecuaciones para i = 1, 2, ... , r-l, obte­
nemos 

a'Jf(y) - f(x)} = O, 

para cada a. Haciendo a = {(y) - {(x) obtenemos f(x) = {(y), luego f es cons­
tante en S. 

12.12 UNA CONDICIóN SUFICIENTE DE DIFERENCIABILIDAD 

Hasta ahora hemos ido deduciendo consecuencias de la hipótesis de que una 
función sea diferenciable. Hemos visto también que ni la existencia de todas 
las derivadas parciales ni la existencia de todas las derivadas direccionales es 
sufici'ente para establecer la diferenciabilidad (puesto que no implican conti­
nuidad). El teorema que sigue prueba que la continuidad de todas menos una 
de las derivadas parciales implica la diferenciabilidad. 

Teorema 12.11. Supongamos que una de las derivadas parciales D.f, ... , Dnf 
existe en e y que las restantes n - 1 derivadas parciales existen en una cierta 
n-bola B(e) y son continuas en e. Entonces f es diferenciable en e. 
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DC'mostración. Ante todo conviene observar que una función vectori~l f = 
(f ••... , f m) es diferenciable en e si, y sólo si, cada fi, i ~ 1: : .. , r:': es dlferen­
ciable en e. (La demostración de esta afirmación es un eJerCICIO facII.) Por con-
Niguiente. basta demostrar el teorema cuando f es. real. . .f 

Para la demostración suponemos que D.f(e) eXIste y que las denvadas par 

ciales continuas son D 2f, ... , Dnf· 
El único candidato para ne) es el vector gradiente Vf(e). Probaremos que 

f(e + v) - f(e) = Vf(e)' v + o(lIvlD cuando v ~ O, 

Y esto probará el teorema. La idea consiste en exp~esar l,a d!ferencia f(e+v)-:f(c) 
como una suma de n términos, en donde el k-eslmo termmo es una aproxIma-

ción de Dkf(e)vl;. 
A este fin hacemos v = AY, en donde Ilyl l = 1 Y A = IIvll · Mantenemos A 

suficientemente pequeño para que e + v pertenezca a la bola B(e~ en la que 
las derivadas parciales D

2
f, ... , D,.! existen. Expresando y en térmInOS de sus 

componentes tenemos 

y = YIUI + .,. + Ynun' 

en donde UI; es el k-ésimo vector coordenado unitario. Ahora escribimos la 

diferencia f(e+v) - f(e) como suma telescópica, 
n 

f(e + v) - f(e) = f(e + Ay) - f(e) = ~ {I(e + }.Vk) - f(e + },Vk-I)}' (25) 

en donde 
V

o 
= O, VI = YiU¡, V2 = YI U ¡ + Y2U2' . .. , Vn = YiUi + .,. + YnUn' 

El primer término de la suma es f(e + Ay.u.) - f(e). Dado que los dos pun­
tos e y e + Ay.u. difieren sólo en su primera componente, y dado que D.f(e) 

existe, podemos escribir 

f(e + AYiU¡) - f(e) = AYiDtf(e) + AYIEI(A), 

en donde E,(A) ~ O cuando A ~ O. 
Para k:> 2, el k-ésimo término de la suma es 

f(e + AV
k

_ 1 + AYkUk) - f(e + AVk _ l ) = f(b k + AYkUk) - f(bk), 

n donde b = e + AV _ . Los dos puntos bk y bk + AYkUk difieren sólo en su 
e k k I d' 'd' 
k-ésima componente, y podemos aplicar el teorema del valor me 10 unr ¡men-

sional para derivadas a fin de obtener 
(26) 
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en donde 8k pertenece al segmento rectilíneo que une bk con bk + AYkU k • Ob­
sérvese que bk -4 e y por lo tanto ak -4 e cuando ,\ -4 O. Puesto que cada Dd es 
continua en e para k > 2 podemos escribir 

Utilizando este resultado en (26) obtenemos que (25) se convierte en 

n n 

f(e + v) - f(e) = A L: Dd(e)Jk + A L: YkEk()') 
k = 1 k=1 

= V f(e) . v + IIv IIE(A), 

en donde 
n 

E(A) = L: YkEk(A) -+ ° cuando II V II -4 O. 
k=l • 

Esto termina la demostración. 

NOTA. La continuidad de n - 1, por lo menos, de las derivadas parciales 
D If, .. . , D"f en e, si bien es suficiente, no es necesaria para la diferenciabilidad 
de f en e. (Ver ejercicios 12.5 y 12.6.) 

12.13 UNA CONDICIóN SUFICIENTE PARA LA IGUALDAD 
DE LAS DERIVADAS PARCIALES CRUZADAS 

Las derivadas parciales Dlf, ... , Dnf de una función de Rn en R'" son, a su 
vez, funciones de R n en R m y pueden poseer derivadas parciales. Éstas se 
llaman derivadas parciales de segundo orden. Utilizaremos la notación intro­
ducida en el capítulo 5 para funciones reales: 

Las derivadas parciales de orden superior se definen análogamente. 
El ejemplo 

f ) {xY(X 2 - y2)f(x2 + y2) si (x, y) =1= (O, O,) 

(x , y = ° si (x, y) = (O, O), 

prueba que D l •2 f(x, y) no es necesariamente igual que D2.lf(x, y). Realmente 
en este ejemplo tenemos 

--_ .. _---_.-----

y(x4 + 4X2 y2 _ y4) 
DJ(x, y) = - - -e 2-Z)Z-'" - , si (x, y) =1= (O, O), 

x + y 

T·,··,,
"".··.· ; 

. 
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y DIf(O, O) = O. Por lo tanto, DJ(O, y) = -y para todo y y entonces 

D
2 

J(O, y) = -1, D 2 .J(0, O) = -1. 

Por otro lado, tenemos 

x(x4 _ 4x2y2 _ y4) 
Dd(x, y) = - (x2 + y-i)2 , 

si (x, y) =1= (O, O), 
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y D .. f(O, O) = 0, luego D
2
f(x, O) = x para todo x. Por consiguiente,D1.zf(x, O) l. 

D 'feO O) = 1 Y vemos que D 2 .J(0, O) #- Dl,zf(O, O)'. . . 
, .2' '. nos da un criterio para determmar cuando las dos lIt-

El teorema que sIgue . 
rivadas parciales cruzadas D1.2f Y D2 •1f son 19uales. 

Teorema 12.12. Si las dos derivadas parciales Drf Y Dkf existen en una 1/-/)0/" 

B(e, o) y ambas son diferenciables en e, entonces 
(rl) 

Demostración. Si f = (fl' ... ,fm),entonces Dkf = (Dd¡, .. . , Dd"!)· Por lo lall ­

to es suficiente probar el teorema para funciones reales t- Ade~as, da(~o _q,~; 
e~ (27) sólo se involucran dos componentes, basta conSiderar e caso I . ' 

Para simplificar, suponemos que e = (O, O). Probaremos que 

D1,2f(O, O) = D 2 .J(0, O) . 

Elijamos h =1= O tal que el cuadrado de vértices (0,0), 0, O), (h, h) Y (o. J¡l 

esté contenido en la 2-bola B(O; 8). Consideremos la cantldad 

/).{h) = f(h, h) - f(h, O) - feO, h) + feo, O). 

Probaremos que t:..(h)/h2 tienden tanto hacia D 2 .,f(0, O) como hacia D, .JO. ()) 

cuando h --+ O. 
Sea G(x) = f(x , h) - f(x , O) y obsérvese que 

/).{h) = G(h) - G(O). 

En virtud del teorema del valor medio unidimensional tenemos 

G(h) _ G(O) = hG'(x,) = h{DJ(x¡, h) - DJ(x¡, O)}, 

(2X) 

(21») 

h Co D f es diferenciable l'1I 
en donde x, 08tá-.w-mprwdidG entre ° ~ . ' mo 1 

(O, O), tenemos las fórmulas de Taylor de pnmer orden 

D¡j(x¡, I1) = D1f(0, O) + D¡.¡j(O, O)x¡ + D2 • l f(0 , O)h + (x~ + h
2
)'/2E¡(lI), 
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y 
D¡J(xJ> O) = D¡J(O, O) + DI.¡J(O, O)xI + IxJl Ez(h), 

en donde E](h) y E (h) ~ O d .. 
(29) obtenemos 2 cuan o h ~ O. UtIllzando estos resultados en (28) y 

!J..(h) = D2.¡J(0, 0)h 2 + E(h), 

en dondeE(h) - h(x2 + h2)1/2E (h) hl 
- l l + xII E2(h).Puesto que IxIl :$ Ihl, tenemos 

O :$ /E(h) I :$ .J"2 h2 /EI(h)1 + h2 IE2(h)/, 

por lo tanto 

!~~ !J..~~) = D2.d(0, O). 

Aplicando el. ~ismo procedimiento a la función H(y) = /(h y) - feO ) 
vez de a la funclOn G(x), obtenemos "Yen 

r !J..(h) 
h~~ h2 = DI.d(O, O), 

que termina la demostración. 
Como consecuencia de los teoremas 12.11 y 12.12 tenemos: 

Teorema 12.13. Si las dos derivadas parciales D f Y D f . t 
n-bola B(c) e' l ' r k eXls en en una 

, 19ua mente eXisten las derivadas D f D f 
y Dkor f que son continuas en e, entonces ror , k.k en e, y las Drokf 

D,.kf(c) = Dk.rf(c). 

NOTA. Mencionamos (sin demostración) otro resultado que establece . 
p,f, Dkf Y Dk.rf son continuas en una n-bola B( ) . que SI 
Igual a Dk.rf(c). e , entonces D,.kf(c) eXIste y es 

Si f es una función real de dos variables h . 
das parciales de segundo orden: a saber D' ;'Y Dquef,conslderar cuatro deriva-
demostrado que, si f se toma conveni t \.1, 1,'2 ~ D2.1f, Y D2.2f Hemos 
distintas. en emen e restnngIda, sólo tres de ellas son 

El numero de derivadas pa . 1 d d 
todas ellas son continuas en u~c~~e;:o e ~r en ~ que es posible formar es 2k

• Si 
derivadas cruzadas serán iguaJ.~s C d e~ o~nod el PU?to (x, y), entonces ciertas 
D f, e d d d v . a a enva a parCIal cruzada es de la forma 

", .. . '" ' n on e ca a r · vale 1 o 2 S' t 
ciales cruzadas, D", ... , J D . 1 enemos dos de tales derivadas par-
permutación de la k- la r.f y p,"", P.f, en donde la k-pla (r" Oo., rk) es una 
iguales en (x y) si l~s 2~Pd .:., ;k), ento?ces las dos derivadas parciales serán 

, en va as parCIales son continuas en un 'entorno de 
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(x, y). Esta afirmación es fácilmente demostrable por medio de la inducción 
matemática, utilizando el teorema 12.13 (que es el caso k = 2). Omitimos la 
demostración para k genérico. De todo esto se sigue que, en general, de entre 
llls 2k derivadas parciales cruzadas de orden k, sólo hay k + 1 distintas, a 
saber, las de la forma Dr" . .. , rkf, en donde la k-pla (r" Oo., rk) toma una de 
las k + 1 formas siguientes: 

(2,2, ... , 2), (1, 2, 2, ... , 2), (1, 1,2, ... , 2), ... , 

(1 , 1, .. . , 1, 2), (1, ... , 1). 

Afirmaciones análogas se verifican, también, para funciones de n variables. 
En este caso, existen nk derivadas parciales de orden k. La continuidad de to­
das estas derivadas parciales en un punto x implica que Dr " • • . , ,./(x) no cam­
bie cuando se permutan los índices r" Oo., rk. Cada ri es ahora un número en­
tero < n. 

12.14 FóRMULA DE TAYLOR PARA FUNCIONES 
DE R Ol EN R ' 

La fórmula de Taylor (teorema 5.19) se puede extender a funciones reales f de­
finidas en subconjuntos de ROl. En orden a establecer el teorema general en for­
ma parecida al caso unidimensional, introducimos símbolos especiales 

f"(x; t), j"'(x; t), ... ,j(m)(x; t), 

para ciertas sumas que aparecen en la fórmula de Taylor. Juegan el papel de 
las derivadas direccionales de orden superior, y se definen como sigue: 

Si x es un punto de R n en el que existen las derivadas parciales de segundo 
orden de f, y si t = (t" Oo . , tn ) es un punto arbitrario de ROl, se escribe 

n n 

f"(x; t) = L L D¡.J(x)tjt¡. 
i= I j= 1 

Se define también 
n n n 

f'''(x; t) = L L L D¡,j,d(x)lkljl¡ 
¡= 1 j= 1 k= 1 

cuando existen todas las derivadas parciales de tercer orden en x. El símbolo 
j(m)(x; t) se define análogamente cuando existen todas las derivadas parciales 

de orden m. 
Estas sumas son análogas a la fórmula 

n 

f'(x; t) = L DJ(x)t¡ 
i;::1 
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para ]a derivada direcciona] de una función diferenciable en x. 

Teorema 12.14 (jór 1 d TI) 
vadas parciales de ord:

u
:::" m e so:Yd~;r;nc7:~~;:~m::d~ue f y todas sus de; i­

junto abierto S de Hn S' h d punto de un subcon-
. . I a y son os puntos de S tales que L( h) e S 

ces eXIste un punto z del segmento rectilíneo L(a, h) tal que a, -, en ton· 

m-I 

f(b) - fea) = L _!- ¡tk)(a; b - a) + _1 f(m )(z' b _ ) 
k=\ k! m!' a. 

Demostración. Puesto que S es abierto, existe un o > O tal que 
para todo t real del intervalo _ (j 

a + t(b - a) E S 
< t < 1 + (j. Se define g en (-8, 1+0) por 

medio de la ecuación 

g(t) = fea + t(b - a)]. 

En~onces f(b) - fea) = g(1) - g(O). Probaremos el teorema aplicando la fór­
mu a de Tay]or unidimensional a g, que nos permite escribir 

m-I 

g(1) - g(O) = L i. g<k)(O) + _1 g(m)(o), 
k=1 k! m! 

en donde O < e < l. (30) 

Pero g es una f~n.ción compuesta dada por g(t) = f[p(t)], en donde p(t) = a + 
1(h - a). La k-eslma componente de p tiene derivada p~ (t) = b - a . A l' 
cando la l d I d k k P l-. reg a e a ca ena, vemos que g'(t) existe en el intervalo (-o 1 + o) 
y viene dada por la fórmula ' 

n 

g'(t) = ~ DJ[P(t)J(bj - a) = f'(p(t) ; b - a) . 

Aplicando de nuevo la regla de la cadena, tenemos 

n n 

g"(t) = f;; ~ Di,J[P(t)J(bj - a)(b¡ - aJ = f"(p(t); b - a). 

Análogamente. hallamos que g<m)(t) = j<"')( (). h .. 
tados en (30) s. bf l P t, - a). UtilIzando estos resul-

. e o lene e teorema, ya que el punto z = a + O(b - a) E L(a, b), 
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Funciones diferenciables 

12.1 Sea S un subconjunto abierto de Rn, y sea 1: S -)o Rn una función real con 
derivadas parciales DI/, ... , D-nl, finitas en S. Si I posee un máximo o un mínimo 
local ,en un punto e de S, pmbar que Dd(e) = O para cada k. 

12.2 Calcular todas las derivadas parciales de primer orden y la derivada direccio­
nal f'(x; u} para cada una de las funciones reales definidas en Rn como sigue: 

a) t(x) = a 'x, en donde a es un vector fijo de R n. 
b) t(x) = Ilx11 4

• 

c) t(x) = x 'L(x), en donde L : R "-)o R " es una función lineal. 
n n 

d) t(x) = L L a/jx/xj , en donde aij = a ji' 
i= 1 j= 1 

12.3 Sean ( y g funciones con valores en Rm tales que existen sus derivadas direc­
cionales ('(e; u) y g'(e; u). Probar que la suma f + g y el producto escalar f'g tienen 
derivadas direccionales dadas por 

(f + g)'(e; u) = f'(e; u) + g'(e; u) 
y 

(f· g)'(e; u) = f(e)' g'(e; u) + g(e)' f '(e; u). 

12.4 Si S ~ R", sea (: S -> R'" una función con valores en Ron, y pongamos f = 
(tI' ... , [:n,), Probar que f es diferenciable en un punto interior e de S si, y sólo si, 
cada ti es diferenciable en e. 

12.5 Consideremos n funciones reales tI' ... , In' cada una de ellas diferenciable 
en un intervalo abierto (a, b) de R. Para cada punto x = (xl' ... , x .. ) del intervalo 
abierto n-dimensional. 

s = {(x \, ... , x n) : a < Xk < b, k=J,2, ... ,n}, 

definimos t(x) = tl~l) + ... + tn(xn), Probar que I es diferenciable en cada punto 
de S y que 

n 

f'(x)(u) = L ¡;(x¡)u/, en donde u = (ul' ... , u",). 
1= 1 

12.6 Dadas n funciones reales 1" ... , tn definidas en un conjunto abierto S de R n, 
para cada x de S, definimos t(x) = II(x) + ... + In (x) y suponemos que, para cada 
k = 1, 2, ... , n, existe el siguiente límite 

lim J,Jy) - J,,(x) . 
y-+x Yk - X k 

Yk =FXk 
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Llamemos a este límite a,,(x). Probar que I es diferenciable en x y que 

n 

f'(x)(u) = L ak(x)Uk 
k=l si u = (u" .. . , un)' 

12.7 Sean f y g funciones de Rn en Rm. Supongamos que f es diferenciable en e, 
que f(e) = O, Y que g es continua en e. Sea h(x) = g(x) ·f(x) . Probar que h es dife­renciable en e y que 

h'(e)(u) = g(e) . (f '(e)(u)} si u ERn. 

12.8 Sea f: R 2 - R3 definida por medio de la ecuación 

f(x, y ) = (sen x cos y, sen x sen y, cos x cos y). 

Determinar la matriz jacobiana Df(x, y). , 

12.9 Probar que no existe ninguna función real I tal que f(e; u) > O para Un 
punto fijo e de R n y cada vector no nulo u de Rn. Dar un ejemplo tal que f (c; u) > O 
para una dirección fija u y cada punto e de R n. 

12.10 Sea 1= u + iv una función compleja tal que, para algún complejo e, exista 
la derivada f(e). Escribimos z = e + rei.cl. (en donde a es real y fijo) y hacemos 
que /' - O en el cociente incremental [fez) - l(e)Jf{z _ e) a fin de obtener 

f'(e) = e-ia[u'(e;a) +. iv'(e ; a)], 

en donde a = (cos a, sena), y u'(e; a) y v'(e; a) son derivadas direccionales. Sea 
h = {cos (3, sen (3), en donde (J = a + ! 11', Y demostrar por medio de un razona­miento análogo que 

f'(e) = e-ia[v'(c; b) - ¡u'(e; b)J. 

Deducir que u'(e ; a) = v~(c; b) y v'{e; a) = -u'(e; b). Las ecuaciones de Cauchy­
Riemann (teorema 5.22) Son un caso particular. 

Gradientes y regla de )a cadena . 

12.11 Sea I una función real y diferenciable en un punto e de R n, y SUpongamos 
que 1/V'!(e)/I'=1= O. Probar que existe un vector unitario u de R n y uno sólo tal que 
/f'(c; u}/ = //\7 f(c)/I , y que éste es el vector unitario para el cual ¡f(e; u)/ alcanza su máximo. 

12.12 Calcular el vector gradiente \7/(x, y) en los puntos (x, y) de R 2 en los que exista : 

a) I(x, y) = x 2
y2 In (x

2 + y 2) si (x, y) '=1= {O, O), 1(0, O) = O. 
1 

b) I(x, y) = xy sen - si (x, y) '=1= (O, O), 1(0, O) = O. X2+y2 

$ , ;:::u:::;;e:e::::d:::::: ::~::::~:n R' oon d"i"d" ",unda. f" y 4;: 
""nlinuas. Definimos 

F(x, y) = f(x + g(y)] para cada (x , y) de R 2
• 

f' ulas para todas las derivadas pa rCIa es pnme . 1 . ras y segundas de F en 
Encontrar orm. f Verificar la relación función de las denvadas de y g. 

(D1F)(Dl,zF) = (DzF)(D¡.¡F) . 

12.14 Dada una función I definida en R 2, sea 

F(r, O) = 1(1' COS O, r sen O). 

. d d s adecuadas de diferenciabilidad de f y probar que a) Suponer las prople a e 

D¡F(r, O) = cos O D¡/(x, y) + sen O Dzf(x, y), 

f( ) + senz 8D f(x, y). 20D f(xy)+2sen8cosBD1,2 x,y 2.Z DI ¡F(r, O) = cos 1 . 1 ' O 
~n donde x = r cos O, y = l' sen . 

, D F D F Y D •• F. b) Encontrar fórmulas analogas para 2 ' 1 ,2 ' . , _ 

c) Verificar la fórmula 

2 [DI F(r, 8)]2 + "!'z [D2 F(r, O)]z . IIVf(r cos O, rsen 8)// = r 

'\7 f() \7 g(x) en un punto x de R n, pro-12.15 Si f y g tienen vectores gradlen~es x Ir) _ f (x)g(x) posee también vector 
bar que la función producto h defimda por 1 x -
gradiente en x y que 

Vh(x) = f(x)V g(x) + g(x)Vf(x) . 

1 d análogo para el cociente II g. Establecer y demostrar un resu ta o d . da f' en cada punto de Rl 
1216 Sea I una función que posea enva . , 
fu~ción definida en R " por medio de la ecuaclOn 

y sea g una 

2 2 + 2 g(x, y , z) = x + y z . 

. , h - f o R probar que Si h designa la funcIOn compuesta - , 

/I Vh(x , y, z )J12 = 4g(x, y, z){f' [g(x, y , z )nz . 

e f es diferenciable en cada punto (x, y) de R 2. Sean gl y g2 1217 Supongamos qu . . 
fu~ciones definidas en R ' por medio de las ecuaCIOnes 

( Z) =X2+y2+Z 2, g 2(X,y, Z)=x+y+ z, gl x , y, 

1 (en R 2) vienen dados por y sea g la función vectorial cuyos va ores 

g(x , y, z) = (gl(x, y, z), g2(X, y, z». 

Sea h la función compuesta h = I o g y probar que 

IIVhl1 2 = 4(D¡j)2g1 + 4(Dd)(Dzf)g2 + 3(Dzf)2. 
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12.18 Sea f una función definida en un conjunto abierto S de Rn. Se dice que I es 
homogénea de grado p sobre S si I(Ax) = AP/(x) para cada A real y para cada x 
de S para el que Ax E S. Si una función de este tipo es diferenciable en x, probar que 

x· Vf(x) = pf(x). 

NOTA. Este resultado se conoce con el nombre de teorema de Euler para funciones 
homogéneas. Indicación. Para x fijo, se define g(A) = I(Ax) y se calcula g(1). 

También es posible demostrar el recíproco. Esto es, probar que si x·\1I(x) = pl(x) 
para todo x de un conjunto abierto S, entonces I debe ser homogénea de grado p en S. 

Teoremas del valor medio 

12.19 Sea f: R --+ R2 definida por medio de la ecuación f(t) = (cos t, sen t). Enton­
ces f'(t)(u) = u( -sen 1, cos t) para cada u real. La fórmula del valor medio 

f(y) - f(x) = f'(z)(y - x) 

no se verifica para x = O, Y = 271", ya que el primer miembro es cero y el 
miembro de la derecha es -un vector de longitud 271". No obstante, el teorema 12.9 
establece que, para cada vector a de R2 existe un z del intervalo (O, 271") tal que 

a . {f(y) - f(x ) } = a . {f '(z)(y - x)}. 

Doterminar z en función de a cuando x = O e y = 270. 

12.20 Sea I una función real diferenciableen una 2-bola B(x). Considérese la función 

g(t) = f[IYI + (l - t)XI> Y2] + f[xI> tY2 + (l - t)X2] 

y demuéstrese q-ue 

en donde ZI E L(xl' YI) y Z2 E L(x
2

, Y
2

) . 

12.21 Establecer y demostrar una generalización del resultado del ejercicio 12.20 
p;¡ra una función real diferenciable en una n-bola B(x). 

12.22 Sea I una función real y supongamos que la derivada direccional fec+tu; u) 
existe para cada t del intervalo O < t < 1. Probar que para un cierto B del intervalo 
abierto (O, 1) tenemos 

f(e + u) - f(e) = ('(e + Bu; u). 

12.23 a) Si I es una función real y si la derivada direccional f'(x; u) = O para cada x 
de una n-bola B(e) y cada dirección u, probar que I es constante en B(e). 

b) ¿Qué se puede deducir acerca de f si se sabe que f'(x; u) = O en una di­
rección fija u y para cada x de B{c)? 
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Derivadas de orden superior y fórmula de Taylor 

12.24 Para cada una de las s.iguientes funciones, verificar que las derivadas parciales 
D f D f son Iguales. cruzadas 1,2 Y 2.1 " 2 

) f( x y)= X4 + y 4 -4x-y. 
a, 2) ( ) -1- (O O). b) f(x, y) = In (x: + y • . x,~ . ..., , 

c) f(x, y) = tg .~x /y), SI Y'~l Utilizar la inducción y el teore~a 12.13 
12.25 Sea f una funclOn de dos ~ana es. . l d f de orden k son contmuas en 

. 1 2k denvadas parcia es e d d Para demostrar que, SI as t das las derivadas parciales cruza as e 
t ( y) entünces o ) t ' e un entorno de un pun o x, '. ( ') , . la k-pla ,(r , ... , rk con len f son Iguales en , x, y SI I la forma Dr, .. ... r.f y Dp , .. ... P. • l (p p .). . 

el mismo número de unos que la k-p ~ 'bl" . .. , tk1'ene derivadas parciales contmuas f . , d dos vana es que 
12.26 Si f es una .uncJOn ~ t bierto S de R 2, probar que 
de orden k en un cierto conlun o a 

j(k)(X; t) = t (k) t[t~-rDpl"'" pJ(x), 
r=O r 

si x E S, 

1 - - p" = 2. 
en donde en el r-ésimo término tenemos P I = .. :ó= ~~ 7a fIr:~l¡ de 'Ta;lor' (teo-

d d una nueva expresl n Utilizar este resulta o para ar 

rema 12.14~ en el ckaso n = ~~ficiente binómico k!/rr!(k-r)!]. 
NOTA. El slmbolo (r: es el d c T l para expresar las siguientes funciones como 12.27 Utilizar la formula e ay or 
potencias de (x -1) e (y - 2) : 

a) f(x, y) = x 3 + y3 + xy2, b) f(x, y) = X2 + xy + y2. 
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CAPíTULO 13 

Funciones implícitas 

y problemas de extremos 

13.1 INTRODUCCIóN 

Este capítulo consta de dos partes principales. La primera parte disl"lIll' 1111 

importante teorema de Análisis llamado el teorema de La función illlplí('itll; 111 

segunda parte trata de los problemas de extremos. Ambas partes utili/.:l1I I(l,~ 

teoremas desarrollados en el capítulo 12. 
El teorema de la función implícita en su forma más simple se retint' a 111111 

ecuación de la forma 

f(x, t) = O. (1) 

El problema consiste en decidir cuándo dicha ecuación determina a .\ COIIIO 

función de t. En cuyo caso tenemos 

x = g(t), 

para una cierta función g. Se dice que g está definida (<implícitamentc)) por (11, 

El problema toma una forma más general cuando se considera un sistrlllH 
de varias ecuaciones en las que intervienen varias variables y nos prcgllntlllllll. 
si se pueden resolver dichas ecuaciones para algunas de esas variables en fllnc.:h\" 
de las restantes variables. Éste es el mismo problema que el planteado IInle· 
riormente a excepción de que x y t se reemplazan por vectores, y f y g se rrcllI' 
plazan por funcions vectoriales. Bajo condiciones bastante generales, sicmprCl 
existe una solución. El teorema de la función implícita proporciona unll "!'N ' 

cripción de estas condiciones y ciertas conclusiones acerca de la soluci6n , 
Un caso particular importante lo constituye un problema familiar de !\ lp,rhrH 

que consiste en resolver n ecuaciones lineales de la forma 

n 

L aijx j =. ti 
j = 1 

(i = 1,2, .. . , n), (,') 

445 
C,:'. i , ' ;fJ DE t 
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en donde los a¡¡ y los t i son números y X i' . .. • x n representan las incógnitas. 
En Álgebra lineal se demuestra que un sistema de este tipo posee solución única 
si. y sólo si. el determinante de la matriz de los coficientes A = [aij ] es no nulo. 

NOTA. El determinante de una matriz cuadrada A = [aij ] se designa por det A 
o por det [a ¡¡ ]. Si det [a ij ] =1= O. la solución de (2) se puede obtener aplicando 
la regla de Cramer que expresa cada Xk como cociente de dos determinantes. 
a saber XI¡ = Ak/D, en donde D = det [a ij ] y Al¡ es el determinante de la ma­
triz obtenida reemplazando la k-ésima columna de [ai j] por t , .... tn . (Para una 
demostrac ión de la regla de Cramer. ver la referencia 13.1, teorema 3.14.) En 
particular, si cada ti = O, entonces cada Xk = O. 

A continuación vemos cómo el sistema (2) se puede escribir en la forma (1). 
Cada ecuación de (2) tiene la forma 

y 

f¡(x, t) = O en donde x = (x¡, ...• xn), t = (tI •...• t
n
), 

n 

¡;(x, t) = ¿ aijx j - ti' 
j = l 

Por consiguiente. el sistema (2) se puede expresar como una ecuaclOn vecto­
ri al {(x . t) = O. en donde f = (tI' .. . , f,,). Si Ddj designa la derivada parcial 
de t i con respecto a la j-ésima coordenada X j, es Di/i(x. t) = ai j. Entonces 
la matriz de los coeficientes A = (a ¡J que intervienen en (2) es una matriz 
jabociana. El Álgebra lineal nos dice que (2) tiene solución única si el deter­
minante de esta matriz jacobiana es no nulo. 

En el teorema general de la función implícita. la no anulación del determi­
nante de una matriz jacobiana juega un papel muy importante. Esto resulta de 
haber ap roximado f por medio de una función lineal. La ecuación f(x. t) = O 
es reemplazada por un sistema de ecuaciones lineales cuya matriz de coefi­
cientes es la matriz jacobiana de f . 

NOTACIÓN. Si f = (f, • .... fn) y x = (X,. ... , xn). la matriz jacobiana Df(x) = 
[D¡/i(X)] es una matriz n X n. Su determinante se llama determinante jacobiano 
y se designa por medio de J f(X). Entonces. 

La notación 
0(11, . . . ,f,,) 

a(xl'~:-:-':-xJ . 
se utiliza también para des ignar el determinante jacobiano J ,(x). 
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l · el determl'nante J'acobiano de una función El siguiente teorema re aClOna 
compleja con su derivada. 

Teorema 13.1. Si f = u + iv es una función compleja con una derivada en 
un punto Z de C. entonces J¡(z) = II'(zW. 

Demostración. Tenemos I'(z ) = D¡u + ¡D¡v, luego II'(z)1 2 = (D¡U)2 + (D¡ V) 2. 
Entonces 

J¡(z) = det [D¡U D2U] = D¡u D2v - D¡ v D2u = (D¡U)2 + (D¡V)2. 
D¡v D2v 

en virtud de las ecuaciones de Cauchy-Riemann. 

13.2 FUNCIONES CON DETERMINANTE JACOBIANO NO NUT,O 

Esta sección da algunas propiedades de funciones co~. determin~nte jacohial~~l 
no nulo en ciertos puntos. Estos resultados se~án uttlizados mas tardc cn .1 

demostración del teorema de la función implíCita . 

Teorema 13.2. Sea B = B(a ; r) una n-bola de R", y designemos por oH .\'/1 

frontera, 

BB = {x: Il x - all = r } 

y sea 13 = Bu aB su adherencia. Sea f = (f i' .... f~) cont~nua en 13, y Sfll~OI1J:(/~ 
mos que todas las derivadas parciales Ddi(X) ex/st.en SI ~ 'E B: SUPOIl,~ (//II(1,\ 
además que f(x) =1= fea) si x E aB y que el determlllante. ¡acoblUno J~(x) / () 

para cada x de B. Entonces f(B), la imagen de B por medIO de f, conflenc //1111 

n-bola con centro en fea) . 

Demostración. Definimos una función real g en aB como sigue: 

g(x) = IIf(x) - f(a) 11 si x E oB. 

Entonces g(x) > O para cada x de aB puesto que f(~ =1= fea) si xE aJr ~~k 
, es continua en aB ya que f es continua en B. Dado que aB es (1 !lI -

mas, g ) l' to de ¡¡n. Oh· pacto, g alcanza su mínimo absolut? (llamado m en a gun pun 
sérvese que m > O ya que g es posItIva en aB o Sea T la n-bola 

. T = B(f(a) ; ;) . 
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f 

Figura 13.1 

Probaremos que T c;: f(B) Y 'esto probará el teorema. (Ver fig . 13.1.) 
Para ello demostramos que y E T implica y 'E f(B) El . d T' . eglmos un punto y 

e ,mantenemos y fiJo, y definimos una nueva función real h en B como sigue: 

!t(x) = IIf(x) - YII SI X E Ji. 

E~t?nces h es contin~a en el conjunto compacto Ji y por lo tanto alcanza su 
mIOlmo absoluto en B Ve remo h 1 ' . 
d 1 blb' . s que a canza su mlOImó en un cierto punto 

e a n- o a alerta B. En el centro tenemos 

!tea) = 11 fea) _ YII < m 
2 

ya que y 'E T. Luego el valor mínimo de h en Ji debe ser también < m12. Pero 
en cada punto x de la frontera aB tenemos 

h(x) = IIf(x) - ylI = /If(x) - fea) - (y - f(a»)/1 

¿ /If(x) - f(a)/1 - Ilf(a) - y/l > g(x) _ m > !!! 
2 - 2 ' 

luego 1 ,. d . 
e m~mm? e h no puede OCurnr en la frontera de aBo Por Ío tanto existe 

un :u~to ~ntenor e .~e ~ en el que h alcanza su mínimo. En este punto el 
cua ra o e h tamblen tIene un mínimo. Puesto que 

h
2
(x) = /If(x) - y/l 2 = t [j,(x) - y,J2, 

,= 1 

y dado que cada derivada parcial Dk(h 2
) debe ser cero en e, debemos tener 

11 

¿ [j,(c) - y,]Dkj,(c) = O 
r= 1 

para k = 1, 2, .. . , n. 

Pe ' t . 
ro es e es un sIstema de ecuaciones lineales cuyo determinante] (e) no 

~;ro , ya que e 'E B. Por consiguiente f,·(e) = Yr para cada r, o f(e) ~ y. Es~~ 
, y E f (B). Luego T c;: f(B) y esto termina la demostración. 
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Una función f : S ~ T de un espacio métrico (S, dI» en otro (T, dr ) se llama 
una aplicación abierta si, para cada conjunto abierto A de S, la imagen feA) 
es abierta en T. 

El teorema que sigue da una condición suficiente para que una función 
aplique conjuntos abiertos en conjuntos abiertos . (Ver también el teorema 13.5.) 

Teorema 13.3. Sea A un subconjunto abierto de Rn y supongamos que 
f: A ~ Rn es continua y tiene derivadas parciales DJ; finitas en A. Si f es 
uno a uno en A y si ! f(X) =1= O para cada x de A, entonces feA) es abierto~ 

Demostración. Si bE feA), entonces b = fea) para algún a de A. Existe una 
n-bola B(a; r) c;: A en la que f satisface las hipótesis del teorema 13.2, luego 
f(B) contiene una n-bola centrada en b. Por consiguiente, bes un punto inte­
rior de f(A), luego feA ) es abierto. 

El teorema que sigue prueba que una funCIón con derivadas parciales con­
tinuas 'es localmente uno a uno en las proximidades de un punto en el que no 
se anula el determinante jacobiano. 

Teorema 13.4. Supongamos que f = (fl' . . . , in) posee derivadas parciales D;/i 
continuas en un conjunto abierto S de R'n, y que el determinante jacohial1o 
]f(a) =1= O para un cierto punto a de S. Entonces existe una n-bola B(a) ('1/ la 
que f es uno a uno. 

Demostración. Sean Z" .. . , Zn n puntos de S y sea Z = (Z" ... , Zn) el punto 
de R'n' cuyas n primeras componentes son las componentes de ZI' cuyas n com­
ponentes siguientes son las de Z2' y así sucesivamente. Definimos una funci6n 
real h como sigue: 

Esta función es continua en aquellos puntos Z de Rn' en donde heZ) está defin i­
da puesto que DJ; es continua en S y un determinante es un polinomio en sus 
n 2 elementos. Sea Z el punto de Rn' obtenido haciendo 

Entonces heZ) = J,(a) =1= O y entonces, por continuidad, existe una n-bola B(a) 
tal que det [DJ;(Z i)] =1= O si cada Zi 'E B(a). Demostraremos que f es uno a uno 
en B(a). 

Supongamos lo contrario. Esto es, supongamos que f(x) = f(y) para un cier­
to par de puntos x =1= y de B(a). Dado que B(a) es convexo, el segmento recti-
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línea L(x,y) c;::::: B(a) y podemos aplicar el teorema del valor medio a cada com­
ponente de f para escribir 

o = j¡(y) - j¡{x) = Vj¡(Z¡)· (y - x) para i = 1, 2, ... , n, 

en donde cada Z¡ 'E. L(x, y) y entonces Z¡ 'E B(a). (El teorema del valor medio 
es aplicable puesto que f es diferenciable en S.) Pero éste es un sistema de ecua­
ciones lineales de la forma 

n 

L: (h - xk)aik = O 
k~ I 

El determinante de este sistema no es cero, ya que ZiE B(a). Luego Yk - Xk = 
O para cada k, y esto contradice la hipótesis de que x '=1= y. Hemos demostrado, 
por consiguiente, que x =1= y implica f(x) =1= f(y) y por ello f es uno a uno 
en B(a). 

NOTA. El lector deberá tener en cuenta que -el teorema 13.4 es un teorema lo­
cal y no un teorema global. La no anulación de }¡(a) garantiza que f es uno 
a uno en un entorno de a. No se deduce que f es uno a uno en S, aun cuando 
J ¡(x) =1= O para cada x de S. El ejemplo que sigue ilustra este punto. Sea f la 
función compleja definida por I(z) = eZ si z E C. Si z = x + iy tenemos 

J¡(z) = lf'ez)1 2 = lez l2 = e2x
• 

Entonces }¡(z)=I= O para cada z de C. Sin embargo, I no es uno a uno en C pues­
to que f(z,) = fez") para cada par de puntos z, y Z2 que difieran en 2rri. 

El teorema que sigue da una propiedad global de las funciones con deter­
minante jacobiano no nulo. 

Teorema 13.5. Si A es subconjunto abierto de Rn y suponemos que f: A -+ Rn 
tiene derivadas parciales continuas Ddi en A y si } t<x) =1= O para tO'dO' x de A, 
entances f es una aplicación abierta. 

Demostración. Sea S un subconjunto abierto de A. Si xE S existe una n-bola 
B(x) en la que f es uno a uno (por el teorema 13.4). Por consiguiente, por el 
teorema 13.3, la imagen f(B(x» es abierta en R ". Pero podemos escribir S = 
UXE,~ B(x). Aplicando f obtenemos feS) = UXES f(B(x»), luego feS) es abierto. 

NOTA. Si una función f = (/" .. . , fn) tiene derivadas parciales continuas en 
un conjunto S, decimos que f es cantinuamente dilerenciable en S, y se escribe 
fE C' en S. A la vista del teorema 12.11 resulta que la diferenciabilidad con 
continuidad en un punto implica la diferenciabilidad en ese punto. 

Funciones implícitas y problemas de extremos 451 

El teorema 13.4 prueba que una función diferenciable con continuidad con 
jacobiano no nulo en un punto a admite una inversa local en un entorno de a . 
El teorema que sigue da algunas de las propiedades locales de diferenciabili­
dad de esta función inversa local. 

13.3 EL TEOREMA DE LA FUNCIóN INVERSA 

Teorema 13.6. Supongamas que f = (f" .. . , fn) E C' en un cO'njunto abier­
ta S de Rn, y sea T = feS). Si el determinante jacabiana J¡(a) =1= O en un 
punto a de S, entances existen dos conjuntos abiertos X c;::::: S e Y c;::::: T Y una 
función g unívocamente determinada tales que 

a) aE X y fea) E Y, 
b) Y = f(X), 
c) f es uno a una en X, 
d) g está definida en Y, g(Y) = X, Y g[f(x)] = x para cada x de X. 
e) g E C' en Y. 

Demastración. La función} ¡ es continua en S y, puesto que} ¡(a) =1= O, existe 
una n-bola Bl(a) tal que }¡(x) =1= O para todo x de B,(a). Por el teorema 13.4, 
existe una n-bola B(a) c;::::: B/a) en la que f es uno a uno. Sea B una n-bola cen­
trada en a y de radio menor que el de B(a). Por el teorema 13.2, f(B) con­
tiene una n-bola centrada en fea). Designémosla por Y y sea X = f-I(Y) n B. 
Entonces X es abierto puesto que tanto f-l(Y) como B son abiertos. (Ver figu­
ra 13.2.) 

s • Q 
• 0 ... _ ...... ~ .. -........ -,(.) 

Figura 13.2 

El conjunto E (adherencia de B) es compacto y f es uno a uno y continua 
en E. Por lo tanto, por el teorema 4.29, existe una función g (1a función inver­
sa f - l del teorema 4.29) definida en f(E) tal que g[f(x)] = x para todo x de R. 



452 Funciones implícitas y problemas de extremos 

Además, g es continua en f(8). y puesto que X ~ 8 e y ~ f(8), esto de­
muestra la~ par~:s (a), (b), (c) y (d). La unicidad de g se sigue de (d). 

A co.ntmuaclOn se demuestra (e). Para ello, definimos una función real h 
por ;edlo de la ecuación heZ) = det [D¡/i(Z;)], en donde Z¡, ... , Z" son n pun­
tos e S, y Z = (Z¡; ... ; Z,,) es el punto correspondiente en Rn'. Entonces 
razonando como e~ la demostración del teorema l3.4, existe una n-bola BoCa) 
tal que heZ) =F O SI cada Zi. 'E B 2(a). Ahora podemos suponer que, en la pri­
mera parte de la demostracIón, la n-bola B(a) ha sido elegida de tal manera 
que B(a) ~ B 2(a). Entonces B ~ B 2(a) y heZ) =F O si cada Z E B. 

Para demostrar (e), escribimos g = (gl> ... , gn). Probarem~s que cada gkE e' 
en Y. Para ~emo~trar que Drgk existe en Y, suponemos que y 'E Y Y conside­
ramos el cocIente mcr~m~ntal [gk(Y + tu,) - gk(y)]/t, 'en donde U

r 
es el r-ésimo 

v~ctor coordenado umtano. (Dado que Y es abierto, y + tU
r 

E Y si t es sufi­
clentem,ente pequeño.) Sea x = g(y) y sea x' = g(y + tu

r
). Entonces tanto x 

como x p.ertenecen a X y {(x') - {(x) = tu Luego { (x') {() O" -1-
. • r· i - i X es SI 1 -r-- r 

y es t SI 1 = r. Por el teorema del valor medio tenemos ' 

j¡(x't=-¡;(x) = V¡;(Z.). x' - x 
t . " t para i = 1, 2, .. . , n 

en donde ~~da Zi pe.rten~ce al segmento rectilíneo que une x y x'; luego Zi 'E B. 
La ex~reslOn de la IzqUIerda es 1 o O, según que i = r o ¡=Fr. Éste es un sis­
tema lmeal de n ecuaciones con las n incógnitas (Xi - x¡)!t y tiene solución 
única, ya que 

det [DjJ¡(Z¡)] = heZ) "# O. 

Determinando la k-ésima incógnita por medio de la regla de Cramer, obtenemos 
una expresión para [gk(y + tu r) - gk(y]!t como cociente de determinantes. Cuan­
do t -+ O, el punto x' -+ x, ya que g es continua, y por consiguiente cada Zi -+ x, 
pues Z i ~stá en el segmento que une x a x'. El determinante que aparece en 
el denommador tiene por límite al número det [DjJ¡(x)] = lf(X), y éste es no 
nulo, puesto que x E X. Por lo tanto, el límite siguiente existe: 

lim r¡iY + tu,)-=- gk(Y) = D,gk(Y)' 
t~O t 

De donde resulta la existencia de Drgk(y) para cada y de Y y cada r = 1, 2, 
... , n. P~r ?tra parte, este lí~ite es un cociente de dos determinantes en los que 
figuran. un.lcamente las denvadas D ¡!i(X). La continuidad de las D¡ji implica 
la contInUIdad de cada una de las derivadas parciales Drgk • Esto termina la 
demostración de (e). 
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NOTA. La demostración precedente facilita además un método para calcular 
DrRk(y). En la práctica,las derivadas Dr8k se pueden obtener más fácilmente (sin 
necesidad de recurrir a un proceso de límite) utilizando el siguiente hecho, si 
y = {(x), el producto de las dos matrices jacobianas Df(x) y Dg(y)es la matriz 
identidad. Si escribimos esto con todo detalle obtenemos el siguiente sistema 
de n 2 ecuaciones: 

si i = j, 
si i =1= j. 

Para cada i fijo, obtenemos n ecuaciones lineales cuando j recorre los valores 
1, 2, ... , n. Estas ecuaciones permiten determinar las n incógnitas D,!?i(Y), 
Dngi(y), por medio de la regla de Cramer, o por cualquier otro medio. 

13.4 EL TEOREMA DE LA FUNCIóN IMPLíCITA 

El lector sabe que la ecuación de una curva del plano xy se puede expresar 
en forma «explícita», tal como y = f(x), o bien en forma «implícita», tal como 
F(x, y) = O. Sin embargo, si disponemos de una ecuación de la forma F(x, y) = 0, 
ésta no representa necesariamente una función. (Como ejemplo, considérese 
X2 + y2 - 5 = O). La ecuación F(x, y) = O representa siempre una relación, a 
saber, el conjunto de todos los pares (x, y) que satisfacen la ecuación. Por lo 
tanto se presenta naturalmente la siguiente pregunta: ¿Cuándo es una función 
la relación definida por F(x, y) = O? En otras palabras, ¿cuándo la ecuación 
F(x, y) = O permite resolver yen función de x, obteniéndose una solución única? 
El teorema de la función implícita trata localmente esta cuestión. Nos dice que, 
dado un punto (xo Yo) tal que F(xo, Yo) = O en ciertas condiciones existirá un 
entorno de (xo' Yo) tal que en este entorno la relación definida por F(x, y) = O es 
también una función. Las condiciones son que F y D 2F sean continuas en un en­
torno de (,xo, Yo) Y que D 2F(xo' Yo) =1= O. En su forma más general, el teorema 
trata, en vez de una ecuación de dos variables, un sistema de n ecuaciones con 
n + k variables: 

(r = 1, 2, ... , n). 

Este sistema puede resolverse para 'XI> ••. , X n en función de t" ... , h, en el su­
puesto de que ciertas derivadas parciales sean continuas y en el supuesto de 
que el determinante jacobiano nX n, o(!" ... , !n)!o(x" ... , xn) sea no nulo . 

Por brevedad, en este ~eorema adoptaremos la siguiente notación: Los pun­
tos del espacio (n+k)-dimensional Rn+k se escribirán en la forma (x; t), en 
donde 

y 



ti 
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Teo~~ma 13.~ (teo.rema d e la función implícita). Sea l = (1" .. . fn) una 
funcLOn vectorial defmida en un conjunto abierto S de R n+k con valores en R". 
Supongamos que lEC' en S. Sea (x ,, ; t ,, ) Un punto de S en el que l(x. ; t) = O 
Y el determinante jacobiano n X n del [Ddi(X ,, ; lo)] "* O. Entonce~ exis_ 
le un. conjunt~ abierto k-dimensional T o que contiene a t

o 
Y una función 

vectorial g, y solo una, definida en T o Y con valores en R" tales que 

a) g E C' en T o' 

b) g(lo) = x o' 

c) l(g(t) ; 1) = O para cada t de T
o
' 

Demostración. Aplicaremos el teorema de la función inversa a una cierta fun-
" . F (F 

clan vectonal = 1,· ··, Fn; Fn+l>"" Fn+k) definida en S y con valores 'en 
R n+k. L a función ,F se define como sigue: Para 1 ~ m ~ n, sea F m(X; t) = 
f ,ix; 1), Y para 1 < m < k, sea Fn +m(x; t) = tm. Podemos escribir entonces 
F. = (l, 1), en donde f = (1" . .. , fn) y en donde I 'es la función identidad defi­
nJ?a por I(t) = t para cada t de Rk. El jacobiano JF(x; t) vale entonces lo 
mismo que el determinante nX n, det [Ddi(X; t)] puesto que los términos que 
apareoen en las k .últimasfilas y también en las k últimas columnas de JF(x; t) 
forman un ,det~rmmante k X k con unos en la diagonal principal y ceros en los 
restantes termmos; las n primeras filas y las n primeras columnas forman el 
determinante det [D j/i(x ; t)], y 

D¡Fn+ix ; t) = O para 1 ~ i ~ n, l ~ j ~ k. 

Lueg.o el jacobiano JF(XO; to) =1= O. Además, F(xo; to) = (O; to). Por consiguiente, 
en vIrtud del teorema 13.6, existen conjuntos abiertos X e Y que contienen 
(x ,, ; lo) Y ~O; lo), respectivamente, tales que F es uno a uno en X, y X = F-l(Y). 
Luego, eXiste una función G que es la inversa local de F, definida en y y con 
valores en X, tal que 

G[F(x; t)] = (x; t), 

y G 'E C' en Y. 

Ahora G puede ser reducido a componentes como sigue: G = (v; w), en 
donde v = (v l , •• . , vn) es una función vectorial definida en y con valores en 
Rn y w = (w l , ••• , Wk) está también definida en y pero con valores en Rk. Ahora 
estamos en situación de determinar v y w explícitamente. La ecuación 
G[F\X; t)] = (x; t), escrita en términos de las componentes v y w, nos pro­
porcIOna las dos ecuaciones 

v[F(x; t)] = x y w[F(x; t)] = t. 
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Pero ahora, cada punto (x ; t) de Y se puede escribir unívocamente en la for­
ma (x; t) = F(x' ; t') para un (x'; t') de X, puesto que F es uno a uno en X 
y la imagen inversa F- l (y) contiene a X. Además, por la manera como se ha 
definido F , si se escribe (x; t) = F(x' ; t '), debe s'er t' = t . Por lo tanto, 

v(x; t) = v[F(x'; t)] = x' y w(x; t) = w[F(x'; t)] = t. 

Por lo tanto la función G se puede describir como sigue: Dado un punto (x, t) 
de Y , tenemos G(x ; t) = (x' ; t), en donde x' es el punto de R " tal que (x; t) = 
F(x' ; t). Esta afirmación implica que 

F[ v(x ; t) ; t] = (x; t) para cada (x; t) de Y. 

Ahora estamos a punto de definir el conjunto T o y la función g del teo­
rema. Sea 

To = {t: t E R\ (O; t) E Y}, 

y para cada t de Tu definimos g(t) = v(O; t) . El conjunto To es abierto en RI<. 
Además, g 'EC' en T o puesto que G 'E C' en Y y las componentes de g se han 
tomado de entre las componentes de G. Además, 

g(to) = veO; to) = X o 

puesto que (O; l o) = F(xo; to)' Finalmente, la ecuación F[ v(x; t); t] = (x; t), 
que se verifica para cada (x; t) de Y, da lugar (considerando las componentes 
de R n) a la ecuación f[ v(x ; t) ; t] = x. Haciendo x = O, vemos que para cada t 

de T o' tenemos f[g(t); t] = O, Y esto termina la demostración de las proposi­
ciones (a), (b) y (c) . Falta demostrar que sólo existe una tal función g. Pero 
ello se sigue inmediatamente del hecho de que f sea uno a uno. Si tuviéramos 
otra función h, que verificase (e), entonces tendríamos f[g(t); t] = f[h(t); t], 
y ello implicaría (g(t); t) = (h(t) ; t), o g(t) = h(t) para cada I de T o' 

13.5 EXTREMOS DE FUNCIONES REALES DE UNA VARIABLE 

En el resto del capítulo consideraremos funciones reales f en vistas a determi­
nar aquellos puntos (si existen) en los que f posee un extremo local, esto cs, 
o un máximo local o un mínimo local. 

Ya hemos obtenido algún resultado en este sentido para funciones de una 
variable (teorema 5.9). En dicho teorema establecíamos que una condición 
necesaria para que una función real f tenga un extr'emo local en un punto in­
terior e de un intervalo es que f'(c) = O, en el supuesto de que f'(c) exista . Esta 
condición, sin embargo, no es suficiente, como se ve si se considera f(x) = x". 
c = O. Ahora deduciremos una condición suficiente. 
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Teorema 13.8. Para un entero n > 1, sea f una función que posea n-ésima 
derivada continua en el intervalo abierto (a, b). Supongamos también que para 
un cierto punto interior e de (a, b) tenemos 

f'(e) = f"(e) = . " = f(n-l)(e) = O, pero 

Entonces para n par, f posee un mínimo local en e si f enl(e) > O, Y un máximo 
local en e si fenl(e) < O. Si n es impar, no existe ni máximo ni mínimo loca­les en e. 

Demostración. Puesto que f enl(c) * O, existe un intervalo B(e) tal que para 
cada x de B(e), la derivada f enl(x) tendrá el mismo signo que fe nl(e). Por la 
fórmula de Taylor (teorema 5.19), para cada x de B(e) se tiene 

f(x) - f(e) = f(n)(x l
) (x - et, donde Xl S B(c). 

n! 

Si n es par, esta ecuación implica f(x) > f(e) cuando ¡Cnl(e) > O, Y f(x) < f(c) 
cuando ¡Cnl(e) < O. Si n es impar y f en l(e) > O, entonces f(x) > f(c) cuando x > e, 
pero cuando x < e, f(x) < f(c) , y no puede haber extremo en e. Una afirma­
ción análoga se verifica si n es impar y ¡Cnl(e) < O. Ello demuestra el teorema. 

13.6 EXTREMOS DE FUNCIONES REALES DE VARIAS VARIABLES 

Volvamos ahora a las funciones de varias variables. El ejercicio 12.1 propor­
ciona Una condición necesaria para que una función tenga Un máximo o un 
mínimo locales en un punto interior a de un conjunto abierto. La condición 
es que cada derivada parcial Dkf(a) sea cero en dicho punto, Es posible esta­
bleoer 'este resultado en términos de derivadas direccionales, diciendo que fea; u) 
debe ser cero para cada dirección u, 

Sin embargo, el recíproco de este resultado no es verdadero, Consideremos 
el siguiente ejemplo de una función de dos variables: 

Se tiene, en este caso, D,j(O, O) = D 2f(0, O) = O, Ahora bien, feO, O) = O, pero 
la función toma tanto valores positivos como negativos en cada entorno de (O, O), 
luego no posee ni máximo ni mínimo locales en (O, O), (V.er fig. 13,3.) 

Este ejemplo ilustra otro fenómeno interesante, Si tomamos una recta fija 
que pase por el origen e imponemos que el punto (x, y) se mueva a lo largo de 
esta recta hacia (O, O), entonces el punto penetrará en la región situada por 
encima de la parábola y = 2 X2 (o por debajo de la parábola y = x2), en la 
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( ) -1- (O O) Por consi-o ositiva para cada x, y --¡--- , , 
que f(x y) llega a ser y perman .. ce PI l' f posee un mínimo en (O. O). pero 

' 1 d cada una de ta es meas, d (O O) guiente, a lo argo e , . 1 ntorno bidimensional e . . el origen no es un mmlmo loca en un e 

, si Vf(a) = O, el punta a se lIall/(I 
Definición 13.9. Si f es diferenewble en a ~ ario se llama un punto de s;lIlI 

' 'd f Un punto esfaelOn . f' ' , un punto estacIOnarlO e , 1 f( ) > fea) y puntos ta ( .\ l/lit 
si cada n-bola B(a) contiene puntos x ta es que x 

~<~, , 
, es un punto de silla de la funCión , 

E el eJ'emplo precedente, el ong~~ 'bI tiene un máximo local, 
n , d funClOn de n vana es I 

Para determinar cuan o una to estacionario a, debemos ( r-
, 'mo local o un punto de silla en un pun d de un entorno (k 11 , un mlm, () f() para to o x 

+ rminar el signo algebraico de f x - ah la ayuda de la fórmula de' 
ce 'd ' , 1 esto se ace con 12 14 S' Como en el caso um ImenSlOna, _ = a + l en el teorema . ., I 

Taylor (teorema 12,14), Hagamo~'fm - c:a~l:S en una n-bola B(a), entoncl'S 
las derivadas parciales de f son l ·eren 

fea + t) - fea) = Vf(a) , t +"Z z, , ~f"( , t) (., ) 

T que une a con a + l, Y en donde z pertenece al segmento rectl meo 

I"(z; t) = t t D¡,jf(z)t¡t j. 
¡= 1 J= 1 

1 cual (3) toma la forlllu ' ' t os Vf(a) = O con o En un punto estaclonano enem 

fea + t) - fea) = tl"(z ; t). 

B(a) el signo algebraico de fea + t) - /(11) 
Por lo tanto, dado que a + tf,;(ec~r~e Pod~mos escribir (3) en la forma 
está determinado por el de z , , 

fea + t) - J(a) = tl"(a; t) + 11 tll 2E(t), (4) 
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en donde 
IItIIZE(t) = tf"(z ; t) - tf"(a ; t). 

La desigualdad 

prueba que E~t) ~ O cuando t - > O si las derivadas parciales de segundo orden 
de I son contmuas en a. Puesto que J! t l'2E(t) tiende a cero ma's "d 
que 1' 1' 2 d , rapl amente 

I t ,1 ' parece razonable esperar que el signo algebraico de I(a + t) - I( ) 
venga determInado por el d 1"( . ) E a e a, t . sto es lo que afirma el próximo teorema. 

Teorema 13.10 (Criterio de las derivadas segundas en el cálcul d 
tremos) Supo' o e ex-. ngamos que eXisten las derivadas parciales segundas D· .1 
una n-bola 8(a) y que so t' 1,} en . d I n con muas en a, en donde a es un punto estaciona-
rlO e . Sea -

Q(t) = tf"(a; t) = ! t t D¡.j!(a)th 
2¡~1 j~l 

(5) 

a) S~ Q(t) > O para todo t ,* O, I tiene un -mínimo relativo en a. 
b) S~ Q(t) < O para todo t ,* O, I tiene un máximo relativo en a. 
c) ~l Q(t) toma valores positivos y negativos, entonces I tiene Uf1 

sdla en a . punto de 

Demostración. La función Q es continua en cada punto t de Rn S S = 
{t: Iltll = 1} la frontera de la n-bola E(O; 1). Si Q(t) > O para t~doe:,*O 
enton~es Q(t) es positivo en S. Dado que S 'es compacto, Q tiene un mínimo en S 
(lIan:emosle m), y m > O. Ahora bien, Q(ct) = eZQ(t) para cada número real 
HaCiendo c = l / ll t ll d d e. 

I ; en .~n e t ,* O vemos que et 'E S Y por lo tanto e2Q(t) > m, 
luego Q(t) ? m Il t 11 2. UtilIzando esto en (4) obtenemos -

fea + t) - fea) = Q(t) + IItIlZE(t) ?: m IItll Z + 11 tll ZE(t) . 

~uest? que E(t) ~ O cuando t ~ O, existe un número positivo r tal que IE(t)1 < 
'2 111 sIempre que 0< Ilt!1 < r. Para tales t tenemos ° < IItll Z I E(t) I < !mlltll Z 

luego -, 

fea + t) - fea) > mlltll Z 
- !mlltll Z = -tmlltll Z > O. 

Por ~o.nsiguient'e I tiene un mínimo relativo en a que prueba (a). Para probar (b) 
se utIlIza un argumento análogo, o simplemente se aplica la parte (a) a - f. 
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Finalmente, probaremos (c). Para cada A. > O tenemos, de (4), 

Supongamos que Q(t) =F O para un cierto t. Ya que E(y) ~ O cuando y - O, 
existe un r positivo tal que 

si O < ). < r. 

Por consiguiente, para cada uno de estos i\ la cantidad ).2{Q(t) + IItIlZE().t)} 
tiene el mismo signo que Q(t). Luego, si ° < i\ < r, la diferencia f(a + i\t) - fea) 
tiene el mismo signo que Q(t). De donde, si Q(t) toma valor'es positivos y ne­
gativos, se sigue que f tiene un punto de silla en a. 

NOTA. Una función real Q definida en Rn por una ecuación del tipo 
n n 

Q(x) = L: L: aijx¡xj' 
¡~ 1 j~ 1 

en donde x = (x" ... , x,,) y los ai¡ son reales se llama forma cuadrática. 
La forma es simétrica si ai¡ = aji para todo i y j , delinida positiva si x =F O 
implica Q(x) > 0, y definida negativa si x =F O implica Q(x) < O. 

En general, no es fácil determinar cuándo una forma cuadrática es definida 
positiva o negativa. En la referencia 13.1, teorema 9.5 , se desarrolla un criterio 
que utiliza valores propios. Otro criterio, que utiliza determinantes, se puede 
describir como sigue. Sea t:. = det [aij] y sea D.k el determinante de la matriz 
kx k obtenida borrando las (n- k) últimas filas y columnas de [aij]. Además, 
hagamos t:.[) = 1. La teoría de las formas cuadráticas d~ce que una condición 
necesaria y suficiente para que una forma simétrica sea definida positiva es 
que los n + 1 números t:.o, t:.1' ... , t:.n sean positivos. La forma es definida 
negativa si, y sólo si, los mismos n + 1 números son alternativamente positivos 
y negativos. (Ver referencia 13.2, pp. 304-308.) La forma cuadrática que apa­
rece en (5) es simétrica, ya que las derivadas parciales cruzadas Di,i f(a) y 
D j,d(a) son iguales. Por consiguiente, en las condiciones del teorema 13.10. ve­
mos que f tiene un mínimo local en a si los (n + 1) números t:. 1I , D.

" 
... , D.n 

son todos positivos, y un máximo local si estos números son alternadamente 
POSItiVOS y negativos. El caso n = 2 puede tratarse directamente y nos pro­
porciona el siguiente criterio. 

1'eorema 13.11. Sea f una función real con derivadas parciales de segundo 
orden continuas en un punto estacionario a de R2. Sea 

A = Dl,t!(a), B = D1.d(a), e = Dz.z!(a), 
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y sea 

Entonces tenemos: 

a) Si .6. > O Y A > O, f tiene un 1111111mO relativo en a. 
b) Si.6. > O Y A < O, f tiene un máximo relativo en a. 
c) Si.6. < O, f tiene un punto de silla en a. 

Demostración. En el caso bidimensional podemos escribir la forma cuadrá­
tica de (5) como sigue: 

Q(x, y) = HAx2 + 2Bxy + Cy2}. 

Si A *' O, podemos escribirla también 

1 
Q(x, y) = ~ {(Ax + By)2 + Óy2}. 

2A 

Si .6. > O, la expresión de las llaves es la suma de dos cuadrados, luego Q(x, y) 
tiene el mismo signo que A. Por consiguiente, las afirmaciones (a) y (b) se 
siguen inmediatamente de las partes (a) y (b) del teorema 13.10. 

Si .6. < O, la forma cuadrática es el producto de dos factores lineales. Por 
consiguiente, el conjunto de puntos (x, y) tales que Q(x, y) = O consta de dos 
líneas del plano ixy que se cortan en (O, O). Estas líneas dividen el plano en 
cuatro regiones; Q(x, y) es positivo en dos de estas regiones y negativo en las 
otras dos . Por consiguiente f tiene un punto de silla ·en a. 

NOTA. Si .6. = O, puede haber un máximo local, un mínimo local o un punto 
de silla local en a. 

13.7 PROBLEMAS DE EXTREMOS CONDICIONADOS 

Consideremos el siguiente tipo de problemas de extremos. Supongamos que 
f(x, y, z) representa la temperatura del punto (x, y, z) del espacio y pregun­
tamos cuál es el valor máximo o mínimo de la temperatura en una cierta su­
perficie. Si la ecuación de la superficie está dada explícitamente por medio 
de z = h(x, y), entonces en la expresión f(x, y z) podemos substituir z por 
h(x, y) a fin de obtener la temperatura sobre la superficie en función de x e y 
solamente, obteniendo F(x, y) = f[x, y, h(x, y)]. El problema se reduce entonces 
a buscar los valores extremos de P. Sin embargo, en la práctica, se presentan 
ciertas dificultades. La ecuación de la superficie puede estar dada en forma im-
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plícita, por ejemplo g(x, y, z) = O, Y puede ser ~~posible, en la práctica, resol­
ver esta ecuación explícitamente para z en funclOn de x e y, o a~n para x o ,y 
en función de las variables restantes. El problema puede complicarse todavIa 
más si se piden los valores extremos de la temperatura en los puntos ~e una 
curva dada del espacio. Una tal curva es la intersección de dos superficies, por 
ejemplo g¡(x, y, z)= O Y g2(,X, y, z) = O. Si pudiése~~s resolver estas d~s ecua~ 
ciones simultáneamente, por ejemplo .x e y en funclOn de z, entonces mtrodu­
ciríamos estas expresiones en f y obtendríamos una nueva f~nción con la única 
variable z, cuyos extremos serían entonces los buscados. Slll embargo, en ge­
neral, este procedimiento no &e puede llevar a tér~ino y debemos buscar un 
método más practicable. Uno muy elegante y fácil para atacar tales proble­
mas fue desarrollado por Lagrange. 

El método de Lagrange proporciona una condición necesariª para un ex-
tremo y se puede describir como sigue. Sea f(x

" 
oo., .xn ) una expresión a .la 

que se buscan los valores de sus extremos cua~d.o las variab~es se hallan restnn­
gidas por medio de un cierto número de condiciones, por ejemplo gt(x" oo., X.,) 
= 0, ...• g"".(x

" 
... , ~) = O. Formamos entonces la combinación lineal 

en donde A" oo., Am son m constantes. Diferenciamos, entonces, <p respecto a 
cada una de las variables y consideramos el siguiente sistema de n + m ecua-

ciones: 

D r4>(x 1 , •.• , xn) = 0, 

gk(X1, ... , xn) = 0, 

r = 1,2, .. , , n, 

k = 1,2, .. . , m. 

Lagrange descubrió que, si el punto (x" .oo, x n ) es una solución del problema 
del extremo, entonces debe satisfacer también este sistema de n + m ecuacio­
nes. En la práctica, se intenta resolver este sistema para las n + m ((incógni­
tas», '\" oo. , ,\"", y Xl' oo., x". Entonces es preciso determinar si los puntos 
(Xl' oo., X II) así obtenidos pertenecen a un máximo, a un mínimo o a ninguno 
de ellos. Los números A" oo., Am, introducidos únicamente para determinar las 
incógnitas Xl' oo., x n , se conocen con el nombre de multiplicadores de Lagrange. 
Se introduce un multiplicador para cada condición. 

Existe un criterio analítico complicado que permite, en tales problemas, dis­
tinguir entre máximos y mínimos. (Ver, por ejemplo, la referencia 13.3 .) Sin 
embargo, este criterio no es muy útil en la práctica y en cada problema par­
ticular es generalmente más fácil utilizar otros métodos (por ejemplo, consi­
deraciones de tipo físico o geométrico) para realizar esta distinción. 

El teorema que sigue establece la validez del método de Lagrange: 

APOSTOL, análisis - 16 
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Teorema 13.12. Sea f una función real tal que f'E C' en un conjunto abierto S 
de Rn. Sean gl ' .. .. gm m funciones reales tales que g = (g l ' Oo . , gm) E C' en S, y 
suponRamos que m < n. Sea X o el subconjunto de S en el que g se anula. 
esto es, 

Xo = {x: x E S, g(x) = O} . 

SuponRamos que x" 'E X o y que existe una n-bola B(xo) tal que f(x) < f(x
o
) 

para todo x de X o ~ B(xo) o tal que f(x) ¿ f(x o) para todo x de X o n B(x
o
)' 

SuponRam.0s, adem~s, que el determinante de orden m det [Djgi(x
o
)] =1=- O. En­

t~nces e~is~en m numeras reales ,'"'. .. .• Am tales que se satisfacen las n ecua­
CiOnes SigUientes: 

m 

D,f(xo) + L AkDrgk(XO) = O 
k:¡ 

(r = 1, 2, . . . , n). (6) 

NOTA . Las n ecuaciones de (6) son equivalentes a la ecuación vectorial si­
guiente : 

Demostración, Consideremos el siguiente sistema de m ecuaciones lineales con 
las m incógnitas Al' .. " Am: 

m 

L AkDrgk(xO) = - D,f(xo) (r = 1, 2, . .. , m). 
k:¡ 

~ste sistema tiene solución única puesto que, por hipótesis, el determinante del 
sistema es no nulo . Por consiguiente, se satisfacen las m primeras ecuaciones 
de (6). Deb.e,mos verificar ahora que, para esta elección de Al' .... Am. se satis­
facen tamblen las n - m ecuaciones restantes de (6). 

Para ello, aplicamos el teorema de la función implícita. Dado que m < n 
cada punto x de S puede escribirse en la forma x = (x' ; t). en donde x' E R"; 
Y t E R n"4n. En el resto de la demostración. escribiremos x' para designar 
(x, . ... , x,,~), y t par~ designar (x,n+" ... , x ,,). esto es tk = Xm+k' En términos 
de la funClOn vectonal g = (g" ... , gm), podemos escribir 

g(x~; t o) = O si xo = (x~; to). 

Dado que ~ E e' en S, y que el determinante det [Dig¡(X~; to)] #- 0, resulta 
qu.e se venfican las condic.iones. de la función implícita. Por consiguiente, 
eXiste un entorno (n - m)-dlmenslOnal T o de t" y una única función vectorial 

- -- ----- -_._ -----------.....,j 
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h = (h , • .. .. km), definida en T o Y con valores en Rm tales que h 'E C' en Tu, 
h(to) = x'o. y para cada t de T o' tenemos g[h(t); t] = O. Esto nos lleva a dc­
cir que el sistema de m ecuaciones 

permite expresar Xl' .. . , X m en función de x"'+!' .. . , x". obteniéndose solucioncs 
de la forma X r = hr(xm+l> ... . X II). r = 1, 2, ... , m. Substituiremos ahora estas 
expresiones de x, • .. . , Xm en la f(x" .... x,.) y también en cada una de las 
gp(x" .... xn). Así nos queda definida una nueva función F, como sigue: 

F(xm+t>· · ·, xn) = f[h¡(xm+¡,···, xn),·· · , hm(xm+¡, · ··, xn); X m+¡,···, xn]; 

y también m nuevas funciones G, ..... Gm : 

Más brevemente. podemos escribir F(t) = f[H(t)] y G p(t) = gp[H(t)], en donde 
H(t) = (h(t); t). Aquí t está obligado a pertenecer al conjunto Tu. 

Cada función G p así definida es idénticamente cero en el conjunto T" por 
el teorema de la función implícita. Por consiguiente. cada derivada D rG p es 
asimismo idénticamente nula en T o y, en particular. DrG,,(to) = O. Pero por la 
regla de la cadena (Ec. 12.20). podemos calcular estas derivadas, y se tiene: 

n 

DrGp(to) = L Dkgp(XO)DrHk(tO) (r = 1,2, . .. , n-m). 
k:¡ 

Pero Hk(t) = h,.,(t) si 1 < k < m, y Hk(t) = X k si m + 1 < k ::;: n, Por consiguicll­
te, cuando m + 1 < k < n. tenemos DrHk(t) == O si m + r=l=- k y DrHm+r(t):- I 
para cada t. Entonces el anterior conjunto de ecuaciones se convierte en 

m 

L Dkgixo)DA(to) + Dm+rgp(xO) = O 
k:) {

p = 1, 2, . .. , m, 

r = 1, 2, ... , n-m. 

Por la continuidad de h, existe una (n - m)-bola B(to) ~ To tal que t E 11(111) 
implica (h(t); t) 'E B(x,,). en donde B(xo) es la n-bola del enunciado del tC(lI"l'IItll . 
Luego, t 'E B(lo) implica (h(t); t) E X o n B(xo) y entonces, por hipótesis. "ti 

tiene, o bien F(t) < F(to) para todo t de B(to), o si no F(t) ¿ F(to) para todo I 
de B(t o) ' Esto es, F tiene un máximo local o un mínimo local en el punto ¡IItl' 
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rior lo' Cada derivada parcial DrF(to) debe entonces ser cero. Si utilizamos la 
regla de la ·cadena para calcular estas derivads, obtenemos 

n 

DrF(to) = L Dd(xo)DrHk(tO) (r = 1, ... ,n - m), 
k=l 

y entonces podemos escribir 

m 

L Dd(xo)Drhk(tO) + Dm+J(xO) o (r = 1, ... ,n - m). (8) 
k= I 

Si ahora multiplicamos (7) por A/J' sumamos respecto a p, y añadimos el resul­
tado a (8), obtenemos 

para r = 1, ... . , n - '~1. En la suma relativa a k, la expresión en corchetes se 
al~ula en Virtud de como fueron definidos A" ... , Am. Por lo tanto, el primer 
mIembro queda reducido a 

m 

Dm+J(xO) + L ApDm+rg/xo) = O 
p=1 

(r = 1, 2, ... , n-m), 

y estas son pr-ecisamente las ecuaciones que necesitamos para terminar la de­
mostración. 

NOTA. Cuando se pretende hallar la solución de un problema concreto de ex­
tre~os por medio ~el método de Lagrange, se suele obtener muy fácilmente 
el sIstema de ecuacIones (6), pero, en general, no existe un procedimiento sim­
ple p~ra resolver realmente el sistema. A menudo se pueden utilizar artificios 
especlale~ a fin de obtener los valores extremos de f directamente de (6) sin 
hallar pnme~amente los puntos particular-es en los que dichos extremos se al­
canzan. El ejemplo que sigue ilustra alguno de estos artificios: 

Ejemplo. Una superficie cuádrica con centro en el origen tiene la ecuación 

AX2 + By2 + Cz 2 + 2Dyz + 2Ezx + 2Fxy = l. 

Determinar las longitudes de los semiejes. 

i li.; 
. -

I! 
I 
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,'t"lu('ión. Escribamos (xl' x
2

' Xa) en lugar de (x. y. z) e introduzcamos la forma 

~lIndrática 
3 3 

q(x) = L L a/jx¡xj, 
j= 1 i=1 

(9) 

donde x = (xl' X
2

' Xa) y se eligen aij = ají de forma que la ecuación de la superficie 
NO convierta en q(x) = 1. (Luego la forma cuadrática es simétrica y definida posi­
tiva.) El problema equivale a determinar los valores extremos de f(x) = IIxl12 = 
x~ + x~ + x~ sujeta a la condición g(x) = 0, donde g{x) = q(x) - 1. Utilizando el· 
m~todo de Lagrange, introducimos un multiplicador y consideramos la ecuación 

vectorial 

Vf(x) + A Vq(x) = O (10) 

(puesto que'Vg = 'Vq).En este caso particular, tanto / como q son funciones homo­
géneas de grado 2 a las que se les puede aplicar el teorema de Euler (ver ejerci-

cio 12.18) en (10), obteniéndose 

x . Vf(x) + h· Vq(x) = 2f(x) + Uq(x) = O. 

Puesto que q(x) = 1 sobre la superficie, determinamos A = -/(x), y (lO) se con-

vierte en 
t Vf(x) - Vq(x) = 0, (11) 

donde t = 11/(x). (En este problema no puede ser /(x) = O.) La ecuación vectorial 

(11) conduce a las tres ecuaciones para xl' x 2' xa: 

(all - t)XI + al2x 2 + al3x3 = O, 

a23x3 = 0, 

Como x = O no puede ser una solución del problema, el determinante de este sis­
tema debe anularse. Es decir, debemos tener 

= O. ( 12) all - t a12 

a21 a22 -

La ecuación (12) se llama ecuación caraclerísttca de la forma cuadrática de (9). En 
este caso, la naturaleza geométrica del problema nos asegura que las tres raíces 
tI' 1

2
, la deben ser reales y positivas. [puesto que q(x) es simétrica y definida posi · 

tiva, la teoría general de las formas cuadráticas también garantiza que las raíces 
de (12) son todas reales y positivas. (Ver referencia 13.1, teorema 9.5.)] Los se " 
miejes de la superficie cuadrática son (,-1/ 2, ( 2-

1
/

2
, ( 3-

1
/

2
. 
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EJERCICIOS 

Jacobianos 

13.1 Sea f una función compleja definida para cada número complejo z =1= O por 
la ecuación fez) = I/i. Probar que J¡(z) = -lzl-4. Probar que f es uno a uno y 
calcular explícitamente la función f-l . 

13.2 Sea f = (tI' f 2 , f 3 ) la furición vectorial definida {para cada punto (Xl' X 2 , x
3

) 

de R 3 en el que x J + x 2 + x 3 =1= -1) como sigue: 

(k = 1,2,3). 

Probar que Jf(X I , x 2 , X3) = (1 + Xl + x 2 + X3)-4. Probar que ( es uno a uno y 
calcular explícitamente (-1. 

13.3 Sea (= (tI' ... , fn) una función vectorial definida 'ien Rn, supongamos que 
f E e en Rn

, y que J r{x) designa el determinante jacobiano. Sean gl' ... , gn n fun­
ciones reales definidas en R¡ y con derivadas continuas gl' . .. , gn- Sea hk(x) = 
hLr,\(x l ), .. . , gn(Xn)] , k = 1, 2, ... , n, y hagamos h = (h I' ... , hn). Probar que 

Jh(x) = J,[g¡(x¡), ... , g.(xn)]g~(x¡)··· g~(xn)' 

13.4 a) Si x(r, B) = r cos B, y(r, B) = r sen B, probar que 

o(x, y) 
- - =r. 
o(r, 8) 

b) Si xC/", B, 1) = r cos (1 sen i', y(r, e, 1) = r sen (J sen tp, Z = r COS tp, pro­
bar que 

13.5 a) 

o( ,-'x '~Y..:..' -,z) 2 J. - = -r sen '1" 
o(r, (J, rP) 

Establecer condiciones para f y g que permitan asegurar que en las ecua­
ciones x = f(u, v), y = g(u, v) se pueden despejar u y v en un entorno 
de (xo' y,J Si las soluciones son u = F(x, y), v = G(x, y) y si J = 
o(t, g)/B{u, v), probar que 

oF l og oF lof oG oG lof 
iJ-;; = J ov ' ay = - J ov ' ox 

b) Calcular J así como las derivadas parciales de F y G en (xo' Yo) = (1, 1) 
cuando f(u, v) = u2 

- v2
, g(u, v) = 2uv. 

13.6 Sean ( y g relacionadas como en el teorema 13.6. Consideremos el caso n = 3 
Y probemos que se verifica 

c5i • 1 Dd2(x) Dd3(x) 

Jr{x)D1g¡(y) = c5¡.2 Dzfix) D2 f3(X) 

c5u Dd2(X) Dd3(X) 

(i = 1, 2, 3), 
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) ~ O ó 1 segu'n que l' =1= l' o i = J'. Utilizar este resultado en donde y = (x YOi,i = 
para deducir la fórmula 

Existen expresiones análogas para las ocho deriva~as Dkgi re.sta~tes. ",. 
13 7 Sea f = u + iv una función compleja que satIsfaga las SIgUIentes condlclon.cs . 

u E' C' Y v E C', en un disco abierto A = {z: Izl < t}: f es contin~a en
2 
~ d.lsc~) 

cerrado A ={z: lzl< l}; u(x, y)=x y v(x, y)=y sIempre que x +y -J, II 
jaoobiano J¡{z) > O si z E A. Sea B = feA) la imagen de A por f· Demostrar ~uc: 

a) Si X es un subconjunto abierto de A, entonces f(X) es un subconJuntu 

abierto de B. 
b) B es un disco abierto de radio 1. 
c) Para cada punto U o + ivo de B, existe solamente un número finito dc 

puntos Z de A tales que fez) = Uo + ivo' 

Problemas de extremos 

13.8 Hallar y clasificar los valores extremos (si existen) de las funciones definidas 

por medio de las e~uaciones siguientes: 

a) f(x, y) = y2 + x 2y + x 4
, 

b) f(x, y) = X2 + y2 + X + Y + xy, 

c) f(x, y) = (x - 1)4 + (X - y)4, 

d) f(x, y) = y2 - x 3. 

13.9 Hallar la menor distancia del punto (O, b) del eje OY a la pará~~~a 
x" _ 4y = O. Resolver este problema utilizando el método de Lagrange y tam len 

sin utiIizarIo. 
13.10 Revolver, utilizando el método de Lagrange, los siguientes problemas geo-

métricos: 
. a) Hallar la mínima distancia que hay desde un punto (al' a2 , a3 ) al plano 

de ecuación b,xl + b2x2 + b3x 3 + bo = O. 
b) Hallar el punto de la recta intersección de los dos planos 

y 

13.11 

más próx,imo al origen. 
Buscar el valor máximo de ILk=l akxkl, ifLk=1 x¡ = 1, utilizando 
a) la desigualdad de Cauchy-Schwarz. 
b) el método de Lagrange. 



468 Funciones implícitas y problemas de extremos 

13.12 Hallar el máximo de (x¡ x 2 .. . X .. )2 con condición 

xi + ... + x~ = 1. 

Utilizar este resultado para obtener la siguiente desigualdad, válida para números 
reales positivos al' ... , an ; 

(al' .. a
n

)l/n ::5 al + ... + a n 

n 

13.13 Si I(x) = X,k + ... + xn
k

, X = (Xl' .. . , xn), probar que un extremo local de 1, 
sujeto a la condición x, + ... + Xn = a, es d'n1-k. 

13.14 Probar que todos los puntos (x" x 2 ' x
3

' x
4

) en los que X
l

2 + X
2

2 tiene un 
extremo local sujeto a las dos condiciones X

l
2 + X

3
'2 + X 2 = 4, x 2 + 2x 2 + 

3 ·, 9 4 2 3 
X, - = ,se hallan entre 

(O, 0, ± .Ji, ± 1), (0, ± 1, + 2, O), ( ± 1, 0, 0, ± .J3), (± 2, ± 3, 0, O). 

¿Cuáles de ellos determinan máximos locales y cuáles mínimos locales? Dar razo­
nes para las conclusiones. 
13.15 Probar que los valores extremos de I(xl' x

2
' x3 ) = X , 2 + X

2
2 + X

3
2 , sujetos a 

las dos condiciones 

y 

son 

3 3 

L L a/jx¡Xj = 
j= 1 1=1 

,¡-l, t2 - l , en donde tI y '2 son las raíces de la ecuación 

bl b1 b3 ° al1 - I a12 a 13 b l = O. 
a21 a22 - t a23 b2 

a31 a32 a33 - b3 

Probar que esta es una ecuación cuadrática en t y dar un argumento geométrico 
para explicar por qué las raíces tI" t

2 
son reales y positivas. 

13.16 Sea 6. = det [Xij] y sea X i = (X i I' ... , Xin)' Un teorema famoso de Hadamard 
establece que 1,6.1 < dI' ... , dn , si ' dI' ... , dn son n constantes positivas tales que 
IX;!" = d i

2 (i = 1, 2, ... , n). Probar esto considerando que 6. es una función de 
n2 variables sujetas a n restricciones, utilizando el método de Lagrange para probar 
que, cuando 6. tiene un extremo bajo estas condiciones, debe ser 

dt ° ° ° d; ° 
° ° ° 

° 
° 
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CAPíTULO 14 

Integrales 

múltiples de Riemann 

14.1 INTRODUCCIóN 

La integral de Riemann J~f(x) dx se puede generalizar reemplazando el inter­
valo [a, b] por una región n-dimensional en la que f esté definida y acotada. 
Las regiones más convenientes de Rn para este propósito son los intervalos 
n-dimensionales. Por ejemplo, en R2 se toma como región un rectángulo 1 divi­
dido en subrectángulos Ik y se consideran las sumas de Riemann de la forma 
"Lf(xk, Yk)A(Ik), en donde (xk, Yk) E Ik Y A(h) designa el área de h. Esto nos 
conduce ' al concepto de integral doble. Análogamente, en R" utilizamos para­
lelepípedos rectangulares subdivididos en paralelepípedos más pequeños h y, 
considerando sumas de la forma "Lf(xk, Yk> zk)V(Ik), en donde (xk , Yk , Zk) E Ik 
y V(h) es el volumen de h, llegamos al concepto de integral triple. Es tan 
riguroso como fácil discutir las integrales múltiples de R n, si disponemos de una 
generalización conveniente de las nociones de área y volumen. Este « volumen 
generalizado» se llama medida o cO!1tenido y se define en la próxima sccci<'in. 

14.2 MEDIDA DE UN INTERVALO ACOTADO DE Rn 

Sean A" . . . , A n n intervalos de RI; esto es, cada A k puede ser acotado, no 
acotado, abierto, cerrado o semiabierto en R I

• Un conjunto A de Rn de la forma 

A = Al X ". X An = {(x1"" ,Xn) : XkEAk parak = 1, 2, ... , n) , 

se llama intervalo general n-dimensional. Admitimos también el caso dege­
nerado en el que uno o más de los intervalos A k conste de un solo punlo. 

Si cada Ak es abierto, cerrado, o acotado en RI, entonces A posee la pro­
piedad correspondiente de Rn. 

Si cada Ak está acotado, la medida n-dimensional (o n-medida) de A. desig­
nada por t« A), se define por la igualdad 

/leA) = /l(A 1) ... /leAn)' 

471 
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en donde p(A,.) es la medida unidimensional (longitud) de A k. Cuando n = 2, 
ésta se llama área de A, y cuando n = 3, se Barna volumen de A . Obsér­
vese que peA) = O si peAk) = O para un cierto k. 

Estamos ahora en disposición de discutir la integración de Riemann de Rn. 
La única diferencia esencial entre el caso n = 1 Y el caso n > 1 es que la can­
tidad 6.X k = Xk - Xk-l que fue utilizada por la medida de la longitud del subin­
tervalo [Xk~ l' Xk] se reemplaza por la medida p.(h) de un subintervalo n-dimen­
sional. Puesto que el proceso es exactamente el mismo que en el caso unidi­
mensional , omitiremos gran parte de los deta]].es de la discusión que sigue. 

14.3 INTEGRAL DE RIEMANN DE UNA FUNCIÓN ACOTADA 
DEFINIDA EN UN INTERVALO COMPACTO DE Ron 

Definición 14.1. Sea A = A l X .. . X A" un intervalo compacto de Rn. Si P
k 

es una partición de A k , el producto cartesiano 

P = PI X ••• x Pm 

se llama partición de A. Si Pk divide a Ak en m/¡ subintervalos unidimen­
sionales, entonces P determina una descomposición de A como reunión de 
111, ••• m.,. intervalos n-dimensionales (llamados subintervalos de P). Una parti­
ción P' de A se dice que es más fina que P si P ~ P'. El conjunto de todas las 
particiones de A se designará por&(A). 

La figura 14.1 ilustra particiones de intervalos de R2 y de R1. 

/ Figura 14.1 
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Definición 14.2. Sea f una función definida y acotada en un intervalo com~ 
pacto I de R n. Si P es una partición de I en m sub intervalos 110 .. .. 1", Y SI 

" h E h, una suma de la forma 

m 

S(P,!) = ~f(tk)/l(lk)' 
k~l 

se llama suma de Riemann. Decimos que f es integrable de Rie,!:ann en ! 
escribimos fE R en 1, siempre que exista un número real que venflque la Sl­

;uiente propiedad: Para cada E > O existe una partición Pe de I tal que P es 
más fina que Pe implica 

¡S(P,f) - A ¡ < e, 

S(P f) Cuando un tal número A existe, es para todas las sumas de Riemann ,. 
único y se designa por 

If dX, 

NOTA. Para n > 1 la integral se llama integral n:últiple o integr~l n-pl~ . Cuan­
do n = 2 Y 3, se utilizan los términos doble y trtple. Como en R • el sl~bolo x 
de J [ f(x) dx es una « variable muda)) y puede reemplazarse por cualqUIer o~~o 

. . , J f( ) dx dx se usa tamblen símbolo convemente. La notaclOn I x JO .. .. x" " .. .• n . 

d r f(x X ) d(x x) Las integrales dobles se escnben. a me-en vez el . l ' .. . , 1~ ], .•• , n' • 

nudo con d~s signos integrales y las triples con tres símbolos. como por ejemplo: 

f f f(x, y) dx dy, 

1 

f f f f(x, y, z) dx dy dz. 

1 

Definición 14.3. Sea f una función definida y a~otada en un intervalo ('(111/­

pacto I de R n. Si P es una p(1rtición de I en m subtntervalos 1" .... l.,,,. sean 

mi!) = inf {f(x) : x E I k}, 

Los números 

m 

U(P,f) = ~ Mk(!)/l(h) Y 
k~l 

m 

L(P,f) = ~ mk(f)/l(Jk), 
k~1 
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se . lfla¡~an sumas superiores e inferiores de Riemann Las 
e In enor de Riemann de f en 1 s d f' .' integrales superior 

e e Inen como sigue: 

i [dx = inf {U(P,f) : P E eP(/)}, 

i [dx = sup {L(P,f) : P E eP(/)}. 

La función f satisface la condición de Ríe . 
existe una partición P de [ tal m~n~, sobre [ SI, para cada é > O, 
U(P, f) - L(P, f) < é. e que una portlClOn P más fina que Pe implica 

fi
NcOaTnA'l Co~o .en el caso unidimensional, las integrales 

as SIgUIentes propiedades: superior e inferior veri-

a) i (1 + g) dx $ i 1 dx + i g dx, 

f (f + g) dx ¿ f 1 dx + i g dx. 

b) Si un intervalo 1 se descompon . , 
no se solapen, se tiene e en una reumon de dos intervalos 1

1
, 1

2 
que 

r [dx = r [dx + r [dx 
JI JI, j /2 

y 

La demostración del t o . 
del teorema 7 19 l ~ . rema que SIgue es esencialmente la misma que la 

. y a omltlfemos. 

Teorema 14.4. Sea f una función d r 'd 
pacto 1 de Rn. Entonces las . . e 1m ~ ~ acotada en un intervalo com-

propOSIcIOnes sigUientes son equivalentes: 

i) fE R en l. 

ii) f satisface la condición de Riemann en [. 
iii) SI[dx = JI[dx. 

'", 
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14.4 CONJUNTOS DE MEDIDA CERO Y CRITERIO DE LEBESGIlJ.: 
PARA LA EXISTENCIA DE UNA INTEGRAL MúLTIPLE 
DE RIEMANN 

Un subconjunto T de Rn tiene n-medida cero si, para cada é > O, es posible 
recubrir a T por medio de una colección numerable de intervalos n-dimensio­
nales, la suma de cuyas n-medidas sea < é. 

Como en el caso unidimensional, la reunión de una colección numerable de 
conjuntos de n-medida O es asimismo de n-medida O. Si m < n, cada subcon­
junto de R"', considerado como subconjunto de Rn, tiene n-medida O. 

Se dice que una propiedad se verifica casi en todo un conjunto S de Rn 
si se verifica en todo S excepto en un subconjunto de n-medida O. 

El criterio de Lebesgue para la existencia de una integral de Riemann en RI 
admite una extensión directa al caso de integra1es múltiples. La demostración 
es análoga a la del teorema 7.48. 

Teorema 14.5. Sea f una función definida y acotada en un intervalo COII/­

pacto 1 de R". Entonces fE R en 1 si, y sólo si, el conjunto de puntos de dis­
continuidad de f en 1 tiene n-medida cero. 

14.5 CÁLCULO DE UNA INTEGRAL MúLTIPLE 
POR INTEGRACIóN REITERADA 

El lector ha aprendido, en el Cálculo elemental, a calcular ciertas integra Il' .~ 

dobles y triples por integración sucesiva respecto a cada variable. Por ejemplo. 
si f es una función de dos variables continua en un rectángulo compacto Q dd 
plano xy, definido por Q = {(x, y) : a :s;; x :s;; b, e :S y :s, d}, entonces para 
cada y fijo de [c, d] la función F definida por medio de la ecuación F(x) 
f(x, y) es continua (y por lo tanto integrable) en [o, b]. El valor de la inlt'­
gra1 S~ F(x) dx depende de y y define una nueva función G, en donde G(y) -
S~[(x, y) dx. Esta función G es continua (por el teorema 7.38), y por 10 tanlo 
integrable en [c, d]. La integral J~ G(y) dy tiene el mismo valor que la integral 
doble SQ[(x, y) d(x, y). Esto es, se verifica la ecuación 

L [(x, y) d(x, y) = r [f [(x, y) dX] dy. ( I ) 

(Esta fórmula se demostrará más adelante.) La cuestión que ahora se presenta 
consiste en v-er si es válido un resultado análogo cuando f es integrable (y no 
necesariamente continua) en Q. Podemos ver inmediatamente que es imposible 
evitar ciertas dificultades. Por ejemplo, la integral interior J~[(x, y) dx puede 
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no existir para ciertos valores de y, aun cuando la integral doble exista. En 
efecto, si f es discontinua en cada punto del segmento rectilíneo y = Yo' 
a < x < b, entonces S~f(x, Yo) dx no existirá. Sin embargo, este segmento rec­
tilíneo es un conjunto cuya 2-medida es cero y por lo tanto no afecta a la 
integrabilidad de f en el rectángulo entero Q. En un caso de esta naturaleza 
debemos hacer uso de las integrales superior e inferior a fin de obtener una 
generalización conveniente de (1). 

Teorema 14.6. Sea f definida y acotada en un rectángulo compacto 

Q = [a, b] X [c, d] de R2. 

EI/lonces tenemos: 

i) SQfd(x,y) ~ I~[J~f(x,y)dy]dx ~ J~[J~f(x,y)dy]dx.~ JQfd(x, y). 

i i) La proposición (i) se verifica también si se substituye en todas partes S· d 

Id C 
por . c . 

iii) JQ f d(x , y) ~ I~ [J~f(x, y) dx] dy ~ J~ [J~f(x, y) dx] dy ~ JQf d(x, y). 

iv) La proposición (iii) se verifica también si se substituye en todas partes J~ 
por S~ . 

v) Cuando SQf(x, y) d(x, y) existe, tenemos 

f. f(x, y) d(x, y) ~ fU: f(x , y) dyJ dx ~ f [f f(x , y) dyJ dx 

= id [lb f(x, y) dxJ dy = id [f f(x , y) dxJ dy. 

Demostración. Para probar (i), definimos F por medio de la ecuación 

F(x) = id f(x , y) dy, si x E [a, b]. 

Entonces IF(x) I ~ M(d - c), en donde M = sup {If(x, y)1 : (x, y) E Q}, y pode­
mos considerar 

1 = f F(x) dx = f [f f(x, y ) dyJ dx . 
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Análogamente, definimos 

1 = f F(x) dx = Jb [f f(x, y) dyJ dx. 

Sea p¡ {xo, Xl' ... ,xn} una partición de [a, b] y sea 

una partición de [c, d] . Entonces P = PI X Pz es una partición de Q en mn 
subrectángulos Qi j y definimos 

f-
Xi 

[i-YJ ] lij = f(x, y) dy dx, 
Xi-l Yj-I 

Puesto que s'e verifica 

f
-d m íYJ 

e f(x,y) dy = ~ JYJ./(x, y) dy, 

podemos escribir r [f f(x, y) dY] dx ~ ~ J: [[J., f(x, y) dY] dx 

t t f-X' [f-YJ f(x, y) dY] dx. 
)-1 ,-1 X¡-l YJ-l 

Esto es, tenemos la desigualdad 
m n 

1 ~ ¿ ¿ lijo 
j= ¡ i= 1 

Análogamente, se obtiene 
m n 

1 ~ ¿ ¿lu· 
j= ¡ i= ¡ 

Si escribimos 

m ij = inf {f(x, y) : (x, y) E Q/j}, 

y 
Mij = sup {f(x, y) : (x, y) E Qij}, 
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entonces, de la desigualdad mij ~ f(x, y) ~ Mij' (x, y) E Q¡j, obtenemos 

m¡/Yj - Yj_¡)::; IYJ 
f(x, y) dy ::; Mij(yj - Yj-')' 

JYJ . , 

Esto implica, a su vez, 

mijJ1(Qij) ::; L~¡., [J~J./(X, y) dY] dx 

::; ti., [tJ./(x, y) dY] dx ::; MijJ1(Q¡). 

Sumando respecto de i y de j y utilizando las desigualdades establecidas anterior­
mente, encontramos 

L(P,f) ~ 1 ~ 1 ~ U(P,f)· 

Dado que esto se verifica para toda partición P de Q, debemos tener 

Lfd(X, y) ::; 1 ::; 1 ::; Ifd(X, y). 

Esto prueba la proposición (i). 
. Es cla~o que la demostración precedente puede llevarse a término también 

SI la funcIón F es definida originalment-e por la fórmula 

F(x) = f f(x, y) dy, 

y entonces (ii) se deduce utilizando un razonamiento análogo. 
_ Las proposiciones (iii) y (iv) se pueden demostrar análogamente intercam­

?¡and~ los papeles de x e y. Finalmente, la proposición (v) es una consecuencia 
mmedlata de la proposición (i) y de la (iv). 

Como corolario, tenemos la fórmula mencionada anteriormente: 

t f(x, y) d(x, y) = f [f f(x, y) dY] dx = f [f f(x, y) dXJ dy, 

que es válida cuando f es continua en Q. Este resultado se conoce a menudo 
como el teorema de Fubini. 
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NOTA. La existencia de las integrales reiteradas 

f [f f(x, y) dyJ dx y f [f f(x, y) dX] dy, 

no implica la existencia de JQ f(x, y) d(x, y). Un contraejemplo puede verse en 
el ejercicio 14.7. 

Antes de comentar el teorema análogo al teorema 14.6 en Rn, introducimos 
cierta notación y terminología nuevas. Si k < n, el conjunto de x de Rn para los 
que x" = O se llama el hiperplano coordenado TI". Dado un conjunto S de Rn, 
la proyección S" de S en TI" se define como la imagen de S en la aplicación 
cuyo valor en cada punto (Xl> x 2 ' •• • , Xn) de S es (Xl···. Xk-l' O. Xk+l' ...• xn). Es fá­
cil probar que dicha aplicación es continua en S. Se sigue que si S es compacto. 
cada proyección S" es compacta. Asimismo, sí S es conexo. cada Sk es conexo. 
Las proyecciones de R 3 se hallan ilustradas en la fig. 14.2. 

r---I--- ----x2 

Figura 14.2 

Un teorema enteramente análogo al teorema 14.6 se verifica plll'lI IlIk­
gra1es n-plas. Será suficiente indicar cómo se hace la extensión cuando 11 ... :l. 
En este caso, f está definida y acotada en un intervalo compacto (J 1" ,1 "d X 
[0

2
, b

2
] X [a

3
, ha] de R 3 y la proposición (i) del teorema 1:4.6 s-e n·rnlplll~. por 

< 
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en donde Q, es la proyeccIOn de Q en 'el plano coordenado TI,. Cuando 
.r Q f(x) dx existe, la parte análoga a la parte (v) del teorema 14.6 la constituye 
la fórmula 

(3) 

Como en el teorema 14.6, son válidas las proposiciones análogas obtenidas reem­
plazando de forma adecuada las integrales superiores por las integrales infe­
riores, y existen también fórmulas análogas para las proyecciones Q2 y Q3' 

El lector no tendrá dificultad alguna en establecer resultados parecidos para 
el caso de integrales n-plas (pueden probarse mediante el método utilizado en el 
teorema 14.6). El caso particular en que existe la integral n-pla J Qf(x) dx es de 
especial importancia y puede establecerse como sigue: 

Teorema 14.7. Sea f definida y acotada en un intervalo compacto 

de R". Supongamos que J Qf(x) dx existe. Entonces 

t f dx = f' [LI f d(x 2 , •.• , X n)] dx¡ = tI [f~1 f dX 1] d(x 2 , · · · , x"). 

Son válidas también las fórmulas análogas obtenidas reempla'{.ando las integrales 
inferiores por las superiores y Q, por Qk, proyección de Q en TIk, 

14.6 CONJUNTOS MEDIRLES JORDAN EN Rn 

Hasta aquí la int'egral múltiple JI f(x) dx se ha definido únicamente para inter­
valos l. Esto es, naturalmente, demasiado restrictivo para las aplicaciones de 
la integración. No es difícil extender la definición a conjuntos acotados más 
generales, llamados conjuntos medibles lordan. Estos conjuntos se estudian 
en esta sección. La definición hace uso de la frontera de un conjunto S de Rn. 
Recordemos que un punto x de Rn es un punto frontera de S si cada n-bola 
B(x) contiene un punto de S y también un punto que no sea de S. El conjunto 
de todos los puntos frontera de S se frontera de S y se designa por 
as. (Ver sección 3.16.) 

4/11 
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. to de un intervalo compacto J dI' n" 
Definición 14.8. Sea S un s~b,conw:rp S) amo la suma de ,las medida,\' d,' 
Para cada partición P de 1 defI~lmos -'1 ' un~os interiores de S y J(P, S) ('011/ 0 , 

los sub intervalos de P que contIenen ~o o P l d P que contienen puntos dI' J 

la suma de las medidas de los submterva os e 

S U as. Los números 
feS) = sup {l(P, S): PE .9'(/)}, 

c(S) = inf {J(P, S) : P E ~(/)}, 

. ontenido (n-dimensional) interior y conten0ft: C.l-
se llaman, respectivamente, c d'ble lardan si ctS) = C(,\), {,1/ 

S El . to S se llama me I - . 
terior de lardan de, conJun l. 'd de lordan de S y ,I'C dl's/~l/" 
cuyo caso este valor común se llama e contenz o 

por c(S). . (S) c(S) dependen sólo de S y no del inkrvaln I 
Es fácil verificar que f Y -S) 

que contiene a S. A~emás, O <f(S) :- c( ~ c(S) = O. Luego, para cada , . O. 
Si S tiene contellldo O, entonces - (S) 1 ., finl'ta de intervalos, tales qll<' 

. S dio de una ca eCCIOn '1 
se puede recubnr a por me b ' e el contenido cero se dl'Sl'l"I1(, 

d'd ea < E O servese qu . . la suma de sus me I as s . '. 1 edida cero se descnht' 1111 · .' f' 't s mientras que a m , 
utilizando recubrimientos mIO, l' 'unto que tenga COllll'llldll 

. . bies Cua qmer conJ 
lizando recubnm~~ntos n.umera o 'ero el recíproco no es cierto. 
cero tendrá tamblen medida cer • p dible de Jordan Y su contenido, d(J), ('s 

Cada intervalo compacto Q es me 'd -dimensional de cada (;0\11\1\11 11 

. d' (Q) Si k < n, el contem o n Igual a su me la ji . , 

acotado de Rk es cero. . d'bl Jordan S de R" liclll'\I ,,,',',, 
. , d' los conjuntos me I es . . 

TambJen se Ice que S) J(P S) representan aproxllllal'lllm'/j 
c(S). En este caso, las sumas l(P, y : d S respectivamcl1ll'. I '.slo 

.' desde el ((extenofll . e , 
al área desde el ((Illtenofll y en donde los rectángulos sombreados lip,l'l'II-
está representado e~ la figura 1~.3, los rectángulos sombreados COIl I1m)'111 

mente son los considerados en J(P, S), y. d R 3 c(S) se llama tamhlt'11 
intensidad son los de l(P, S), Para los conjuntos e , 

volumen de S. 

Figura 14.3 

d 
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El próximo teorema prueba que un conjunto acotado tiene contenido de 
Jordan si, y sólo si, su frontera no es demasiado «gruesa)). 

Teorema 14.9. Sea S un conjunta acotado de Rn y sea as su frontera. Enton­
ces tenemos 

c(as) = c(S) - feS). 

En consecuencia, S es medible lordan si, y sólo si, as tiene contenido cero. 

Demostración. Sea 1 un intervalo compacto que contenga a S y a as. Entonces 
para cada partición P de 1 tenemos 

l(p, aS) = l(P, S) - ,l(P, S). 

Por consiguiente, l(P, aS) ~ c(S) - feS) y por tanto c(aS) ~ c(S) - feS). Para 
obtener la desigualdad contraria, dado o > O, elegimos'P l tal que l(Pl' S) < 
c(S) + 0/2 Y elegimos P2 tal que ,l(P2 , S) > feS) - e/2. SeaP = PI U P2 .Como 
en l~s refinamientos crecen las sumas interiores 1 y decrecen las sumas exterio­
res l, obtenemos 

c(as) ~ l(P, aS) = l(p, S) - ,l(P, S) ~ l(pt, S) - ,l(P2 , S) 

< c(S) - feS) + e. 

Puesto que E es arbitrario, esto significa que c(aS) ~ c(S) - feS). Por consi­
guiente, c(oS) = c(S) - feS) y la demostración está terminada. 

14.7 INTEGRACIóN MúLTIPLE SOBRE CONJUNTOS MEDIRLES 
JORDAN 

Definidón 14.10.- Sea f definida y acotada en un conjunto medible lordan, 
acotado, S de Rn. Sea 1 un intervalo compacto que contenga a S y definamos g 
en 1 como sigue: 

g(x) = {~(x) si x ES, 

si x 'E I-S. 

Entonces se dice que f es integrable Riemann en S y se escribe f E R en S, 
siempre que existe la integral JI g(x) dx. Escribimos también 

Ss ¡(x) dx = Sr g(x) dx. 
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Las integrales superior e inferior J s ¡(x) dx e Ss ¡(x) dx se definen anóloRo, 

mente. 

NOTA. Considerando las sumas de Riemann que aproximan JI g(x) dx es fácil 
ver que la in~egral J8 f(x) dx no depende de la elección del intervalo 1 utili-

zado para encerrar a S. 

Ahora podemos dar una condición necesaria y suficiente para que exista 

J8 f(x) dx. 

Teorema 14.11. Sea S un conjunto medible lardan de R", Y sea f definida 
y acotada en S. Entonces f 'E R en S si, y sólo si, las discontinuidades de f ('/1 S 

constituyen un conjunto de medida cero. 

Demostración. Sea 1 un intervalo compacto que contenga a S y sea g(x) = f( x) 

cuando x E S, g(x) = O cuando xE 1 - S. Las discontinuidades de f serán dis­
continuidades de g. Sin embargo, g puede tener además discontinuidades en 
alguno o en todos los puntos de la frontera de S. Dado que S es medible de 
Jordan, el teorema 14.9 nos dice que eCos) = O. Por lo tanto, g E R en 1 SI. 

Y sólo si, las discontinuidades de f forman un conjunto de medida cero. 

14.8 EL CONTENIDO DE JORDAN EXPRESADO 
COMO INTEGRAL DE RIEMANN 

Teorema 14.12. Sea S un conjunto compacto medible lardan de Rn. En­

tonces la integral J 8 1 existe y tenemos 

c(S) = t 1. 

Demostración. Sea 1 un intervalo compacto que contenga a S y sea Xs la fun­

ción característica de S. Esto es, 

Xs(x) = {~ si x 'E S, 

si x 'E I-S. 

Las discontinuidades de Xs en 1 son los puntos de la frontera de S y éstos 
constituyen un conjunto de medida cero, luego la integral JI Xs existe, y por 

tanto J s 1 existe. 
Sea P una partición de 1 en sub intervalos 11 , ••• ,1,,,,, y sea 

A = {k: h í\ S es no vacío}. 
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Si k 'E A, tenemos 

Mk(Xs) = sup {Xs(x) : x E Id 1, 

Y Mk(Xs) = O si k E1= A, luego 

m 

U(P, Xs) = k~ M k(Xs)/1(Ik) = ~ /1(Ik) = l(p, Xs). 

Puesto que esto se ve . fi Pero n ca para toda partición, tenemos 1 Xs = c(S) = c(S) . 

I Xs = 1 Xs luego c(S) = 1 Xs = Ss 1. 

14.9 PROPIEDAD ADITIVA DE LA INTEGRAL DE RIEMANN 

El próximo teorema prueba l' .. 
que tienen contenido de Jord~~~ a lllfegral es adItiva respecto de los conjuntos 

Teorema 14.13 Sup f de Rn S • ongamos que E R en un conjunto medible lordan S 
. upongamos que S = A U B en donde A . 

pero sin puntos interiores en comú~. Entonces f E ~ B sAonfmedlbles lardan 
nemos en , E R en B, y te-

Ss ¡(x) dx = L ¡(x) dx + L ¡(x) dx. (4) 

Demostración. Sea l un intervalo como sigue: compacto que contenga a S y definamos g 

g(x) = {~(X) si x E S, 

si x El-S. 

La existencia de J f( ) d J f( ) rema 14 lIPa ~ x x e 8 x dx es una consecuencia inmediata del teo-
I " ra emostrar (4), sea P una partición de l en m sub' 
'/" ... , In. Y formemos una suma d R' mtervalos e lemann 
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Si S4 designa la parte de la suma que procede de aquellos subintervalos que 
contienen puntos de A , Y SR se define análogamente, podemos escribir 

en donde Se contiene los términos procedentes de los sub intervalos que con­
tienen a la vez puntos de A y de B. En particular, todos los puntos comunes 
a las dos fronteras aA y aB pertenecerán a esta tercera clase. Pero S.1 es una 
suma de Riemann que aproxima la integral JA f(x) dx, y S8 es una suma de 
Riemann que aproxima J H f(x) dx. Puesto que c(aA n aB) = O, se sigue qUl' 

ISr;1 puede hacerse suficientemente pequeño cuando P es suficientemente fina. 
La ecuación del teorema se deduce fácilmente de estas consideraciones. 

NOTA. La fórmula (4) se verifica también para integrales superiores e inferiores, 

Para conjuntos S cuya estructura es relativamente simple, es posible ulili/al" 
el teorema 14.6 para obtener fórmulas que den el valor de la integral dohk 
por medio de integrales reiteradas. En el próximo teorema se dan dichas fór-

mulas. 

Teorema 14.14. Sean '1' , y </> 2 dos funciones continuas definidas en [a, b] talt,\' 
que '1'1 (x) < rp2(X) para cada x de [a, b]. Sea S el conjunto compacto; de Ir' 

dado por 

S = {(x, y): a :::; x :::; b, cf>l(X) :::; y :::; cf>z(x)}. 

Si fE R en S, tenemOs 

f(x, y) d(x, y) = f(x, y) dy dx. J fb [J~ c/>2(X) J 
s a ",.(xl 

NOTA. El conjunto S es medible Jordan puesto que su frontera tiene conte­

nido cero. (Ver ejercicio 14.9.) 
Proposiciones análogas son válidas también en el caso de integrales n-múlti-

ples. Las extensiones son obvias y no precisan posteriores comentarios. 
La figura 14.4 ilustra el tipo de región descrita en el teorema. Para conjun­

tos que puedan descomponerse en un número finito de regiones medibles 
Jordan de este tipo, podemos aplicar la integración reiterada a cada parte por 
separado y sumar los resultados de acuerdo con el teorema 14.13. 

http://libreria-universitaria.blogspot.com
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s 

a b 

Figura 14.4 

11,.10 TEOREMA DEL VALOR MEDIO PARA INTEGRALES 
MÚLTIPLES -

e.omo en el caso un!dimensio~al, las integrales múltiples verifican una pró­
piedad de valor medIO. ~e obtiene como consecuencia inmediata del siguiente 
teorema, cuya demostración se deja como ejercicio. 

Teorema 14.15. Supongamos que f 'E R Y que g 'E R en un conjunto medible 
de lordan S de Rn. Si f(x) < g(x) para cada x de S, tenemos 

Ss f(x) dx ::; Ss g(x) dx. 

Teorema 14.16 (Teorema del valor medio para integrales mútiples). 
Supongamos que g 'E R Y que fE R en un conjunto medible de lordan S de Rn 
y supongam~s que g(x) ::::::: ° para cada x de S. Sean m = inf f(S),M = sup feS). 
Entonces eXiste un número real A en el intervalo m < A <M tal que 

Ss f(x)g(x) dx = A Ss g(x) dx. (5) 

En particular, tenemos 

me(S)::; Ss f(x) dx ::; Me(S) . (6) 
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NOTA. Si, además, S es conexo y f es continua en S, entonces A = f(xo) para 
algún x() de .') (por el teorema 4.38) y (5) se transforma en 

Ss f(x)g(x) dx = f(xo) Ss g(x) dx. (7) 

En particular, (7) implica J s f(x) dx = f(xo)c(S), en donde X O ,E S. 

Demostración. Puesto que g(x) ::::::: 0, tenemos mg(x) < f(x) g(x) < Mg(x) para 
cada x de S. Por el teorema 14.15, podemos escribir 

m I g(x) dx ::; I f(x)g(x) dx ::; M I g(x) dx. 

Si J s g(x) dx = O, (5) se verifica para todo A. Si J s g(x) dx > 0, (5) se verifica 
para A = J s f(x) g(x) dx/ J s g(x) dx. Haciendo g(x) == 1, se obtiene (6). 

Podemos utilizar (6) para probar que es posible alterar el integrando f en 
un conjunto de contenido cero sin que quede afectado el valor de la integral. 
En efecto, tenemos el siguiente teorema: 

Teorema 14.17. Supongamos que fE R en un conjunto medible lordan S 
de Rn. Sea T un subconjunto de S que posea contenido n-dimensional de lordan 
cero. Sea g una función, definida y acotada en S, tal que g(x) = f(x) cuando 
x 'E S-T. Entonces g 'E R en S e 

I f(x) dx = t g(x) dx. 

Demostración. Sea h = f - g. Entonces J s h(x) dx = S T h(x) dx + J s- T h(x) dx. 
Sin embargo, h h(x) dx = O en virtud de (6), e JS-T h(x) dx = O ya que 
h(x) = O para cada x de S-T. 

NOTA . El teorema sugiere un método para extender la definición de la integral 
de Riemann J.q f(x) dx a funciones que no estén definidas y acotadas en (odo 

el conjunto S. En efecto, sea S un conjunto acotado de R" que tenga contenido 
de Jordan y sea T un subconjunto de S con contenido cero. Si f está dl'linidll 
y acotada en S - T y si J s _ T f(x) dx existe, convenimos en escribir 

r f(x) dx = r f(x) dx, 
Js JS-T 
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y decimos que f es integrable Riemann en S. A la vista d l t 
acabamos de demo tI' e eorema que 
ción de t a todo el ~o~~~n~~t~, e~efi~i:l~mOt que extender el dominio de defini­
acotada. o en T de tal manera que permanezca 

EJERCICIOS 

Integrales múltiples 

14.1 Si 11 E R en [al' b l ], ... , fn E R en fan• b.,J, probar que 

Ss fl(Xl) ' . . !,,(xn) d(x¡, ... , xn ) = (f' f¡(x¡) dX¡) ... (1:" fn(xn ) dXn ) , 

en donde S = [a , b ] X [a b] X X [a b] 14 2 ~ 1 2' 2 ... n',.. . 
. Sea 1 defimda y acotada en un rectángulo compacto Q = [a: b] X [ d] d R Z 

Supongamos qdue pa~a cada y fijo de [e, d], ¡(x, y) es una funciÓn de ;' crec~nte' 
y que para ca a x fiJO de [a b] I(x) f'ó " 1 E R en Q. ' , ., y es una unCl n de y, cr,eciente. Probar que 

14.3 Evaluar cada una de las integrales dobles siguientes: 

a) J Jsenz x sen2 y dx dy, en donde Q = [O, n] x [O, n]. 

Q 

b) f J Icos (x + y)1 dx dy, en dondeQ = [O, n] x [O, n]. 
Q 

c) J J [x + y] dx dy, dondeQ = [0,2] x [0,2], Y [t] es la parte en­

Q 

tera de t. 

14.4 Sea Q = [O, 1] x [O, 1] Y calcular ffQf(x, y) dx dy en cada caso. 

a) f(x, y) = 1 - x - y si x + y s 1, f(x, y) = O en otro caso. 

b) f(x, y) = X2 + y2 si X2 + y2 S 1, f(x, y) = O en otro caso. 

c) f(x, y) = x + y si X2 s y S 2x2, f(~, y) = O en otro caso. 

14.5 Definimos ¡ en el cuadrado Q = [O, 1] X [0, 1] como sigue: 

f(x, y) = {1 
2y 

si x es racional, 
si x es irraoional. 

a) Probar que J~ f(x, y) dy existe para O < t < 1 Y que 

L1 [f: f(x, y) dY] dx = (2, 
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y I [f~ f(x, y) dY] dx = t. 

Esto prueba que_ J¿ [J¿ f(x, y) dy] dx existe y es igual a 1. 
h) Probar que n (S¿f(x, y) dx] dy existe y buscar su valor. 
c) Probar que la integral doble SQ f(x , y) d(x, y) no existe. 

14.6 Definir 1 en el cuadrado Q = [O, 1] X [O, 1] como sigue: 

f( ) 
= {O si en uno al menos de los valores x, y es irracional, 

x, y . . 1 I 11n SI Y es raCiOna y x = m n, 

en donde m y n 'son p!1imosentre sí, n > O. Probar que 

11 
¡(x, y) dx = Sol [f f(x, y) dX] dy = L f(x, y) d(x, y) = O 

pero que sb f(x, y) dy no existe para x racional. 
14.7 Si Pk designa el k-ésimo número primo, sea 
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S(Pk) = {(;k' ~) : n = 1, 2, .. . , Pk - 1, m = 1, 2, . .. , Pk - 1} , 

sea S = Uf;¡ S(Pk), y sea Q = [0,1] x [0,1]. 
a) Probar que S es denso en Q (esto es, la adherencia de S contiene a Q) pero 

que cualquier recta paralela a los ejes coordenados contiene a lo sumo 
un subconjunto finito de S. 

b) Definir 1 en Q como sigue: 

¡(x, y) = O si (x, y) E S, ¡(x, y) = 1 si (x, y) E Q - S. 

Probar que S ¿ W f(x, y) dy] dx = Só [SÓ f(x, y) dx] dy = 1, pero que la 
integral doble JQ f(x, y) d(x, y) no existe. 

Contenido de Jordan 

14.8 Sea S un conjunto acotado de R" que posea a lo sumo un número finito de 
puntos de acumulación. Demostrar que c(S) = O. 

14.9 Sea f una función real continua, definida en [a, b]. Designemos por S la 
gráfica de 1, esto es, S = {(x, y):y = ¡(x), a<x< b}. Probar que S tiene conteni­
do de lordan 2-dimensional cero. 
14.10 Sea r una curva rectificable de Rn. Probar que r tiene contenido de lordan 

n-dimensional cero. 
14.11 Sea 1 una función no negativa definida en un conjunto S de Rn. El conjunto 
de ordenadas de f sobre S es el siguiente subconjunto de R",+l: 
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~i S es una región medible lordan de R" y si f es continua en S, probar que el con­
¡unto de ordenadas de f sobre S tiene contenido de lordan (n + l)-dimensional cuyo 
valor es f s f{x" ... , xn ) d(x" ... , x,.). Interpretar geométricamente este problema 
cuando n = 1 Y n = 2. 

~4.12 Supongamos que I E R en S y supongamos f s I(x} dx = O (S es un subcon­
¡unto de Rn). Sea A = {x: x E S, I(x) < O} Y supongamos que c(A) = O. Probar que 
existe un conjunto B de medida cero tal que ¡(x) = O para cada x de S-B. 
1.4.13 Supongamos que f E R en S, en donde S es una región de Rn y f es con­
tmua en S. Probar que existe un punto interior Xo de S tal que 

L f(x) dx = f(xo)c(S) . 

1~.14 Sea I continua en un rectángulo Q = [a, b] X [e, d]. Para cada punto inte­
nor (x" x 2 ) de Q, definimos 

F(x¡, X2) = f' (1':2 f(x, y) dY) dx. 

Probar que D¡.2F(X¡, X2) = D2.¡F(x¡, X2) = f(x¡, X2)' 
14.15 Sea T la siguiente región triangular del plano: 

T = {(X, y): O ::; ~ + ~ ::; l}, en donde a > O, b > O. 

Supongamos que I admite derivada parcial segunda D f, continua en T. Probar 
. 1.2 

que eXiste un punto (xo' Yo) del segmento (a, O) y (O, b) tal que 

fT D¡.2f(x, y) d(x, y) = feO, O) - fea, 0)+ aDd(xo, Yo). 

REFERENCIAS SUGERIDAS PARA POSTERIORES ESTUDIOS 

14.1 Apostol, T. M., Calculus, Vol. 2, 2.& ed. Ed. Reverté, S. A. Barcelona, Bogotá 
Buenos Aires, Caracas, México. ' 

14'.2 Kestelman, H., Modern Theories 01 Integration. Oxford University Press 1937. 
14.3 Rogosinski, W. W., Volume and Integral. Wiley, New York, 1952. ' 

CAPíTULO 15 

Integrales 

de Lebesgue múltiples 

15.1 INTRODUCCIóN 

La integral de Lebesgue fue descrita en el capítulo 10 para funciones definidas 
. en subconjuntos de Rl. El método utilizado allí se puede generalizar a fin de 

obtener una teoría de la integración de Lebesgue para funciones definidas en 
subconjuntos del espacio n-dimensional Rn. Las integrales resultantes se llaman 
inte¡;rales múltiples. Cuando n = 2 se llaman integrales dobles, y cuando n = 3 
se llaman integrales triples. 

Como en el caso unidimensional, la integración múltiple de Lebesgue es 
una extensión de la integración múltiple de Riemann. Se puede aplicar a fun­
ciones más generales, trata lo mismo funciones acotadas como funciones no 
acotadas, y maneja conjuntos más generales como regiones de integración. 

Las definiciones básicas y los teoremas principales de convergencia son com­
pletamente análogos a los del caso unidimensional. Sin embargo, aparece un 
rasgo que no aparece en R 1. Una integral múltiple de Rn se puede obtener calcu­
lando una sucesión de n integrales unidimensionales. Este resultado, llamado 
teorema de Fubini, es uno de los más importantes dados en este capítulo. 

Como en el caso unidimensional definimos la integral primeramente para 
funciones escalonadas, después para una clase más amplia (llamadas funciones 
superiores) ' que contiene los límites de ciertas sucesiones crecientes de funcio­
nes escalonadas, y finalmente para una clase todavía más amplia, las funciones 
integrables Lebesgue. Puesto que el desarrollo sigue exactamente las mismas 
líneas que el seguido en el caso unidimensional, omitiremos la mayoría de los 
detalles de las demostraciones. 

Recordemos algunos de los conceptos introducidos en el capítulo 14. Si 1 = 
11 X oo. X In es un intervalo acotado de Rn, la n-medida de 1 se define por 
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en donde j1(h) es la medida unidimensional, o longitud, de h. 
Un subconjunto T de Rn tiene n-medida O si, para cada E > O, podemos re­

cubrir T por una colección numerable de intervalos n-dimensionales, la suma 
de cuyas n-medidas sea < E; 

Una propiedad se verifica casi en todo un conjunto S de Rn si se veri­
fica en todo S excepto en un subconjunto de n-medida O. Por e}emplo, si {in} 
es una sucesión de funciones, se dice que fn -4 f casi en todo S si limn_oo f,,(x) 
= f(x) para todo x de S exoepto para los x de un subconjunto de n-medida O. 

] 5.2 FUNCIONES ESCALONADAS Y SUS INTEGRALES 

Sea 1 un intervalo compacto de Rn, por ejemplo 

1 = 11 X ••• x In, 

en donde cada h es un subintervalo compacto de R'. Si Pk es una partición 
de h, el producto cartesiano P = p¡ X .. , X Pn se llama partición de l. Si Pk 

descompone h en mk subintervalos unidimensionales, entonces P descompone 1 
en m = m¡, ... , mk subintervalos n-dimensionales, por ejemplo J" ... , Jm-

Una función s definida en 1 se llama una función escalonada si existe una 
partición P de 1 tal que s es constante en el interior de cada sub intervalo h, 
o sea 

s(x) = ek si x E int Jk • 

La integral de s sobre 1 se define por medio de la ecuación 

(1) 

Sea ahora G un intervalo general n-dimensional, esto es, un intervalo de Rn 
que no sea necesariamente compacto. Una función s es escalonada en G si existe 
un sub intervalo n-dimensional compacto 1 de G tal que s es una función esca­
lonada en 1 y s(x) = O. si x E G -l. La integral de s sobre G se define por 
medio de la fórmula 

en donde la integral 1 viene dada por (l). Como en el caso unidimensional la 
integral no depende de la elección de l. 
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15.3 FUNCIONES SUPERIORES Y FUNCIONES INTEGRABLES 
LEBESGUE 
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Las funciones superiores y las funciones integrables Lebesgue se definen exac­
tamente igual que en el caso unidimensional. 

Una función real f definida en un intervalo 1 de R n se llama función su­
perior en 1, y se escribe f E V(I), si existe una sucesión creciente de funciones 
escalonadas {sn} tal que: 

a) S1' -4 f casi en todo 1, 
y 
b) limn_oo SI sn existe. 

Se dice que la sucesión {sn} genera f. La integral de f sobre 1 se define por medio 
de la ecuación 

(I f = lim f Sn-J j n ..... oo 1 
(2) 

Designamos por L(l) el conjunto de todas las funciones f de .la forma 
f = u - v, en donde u E V(I) Y v'E V(I). Cada función f de L(I) es mtegrable 
Lebesgue en 1, y su integral se define por medio de la ecuación 

Puesto que estas definiciones son totalmente análogas' a las del caso unidi­
mensional, no es sorprendente para quien estudia esta materia el saber que 
muchos de los teoremas derivados de estas definiciones son también válidos. En 
particular, los teoremas 10.5, 10.6, 10.7, 10.9, 10.10, 10.11, 10.13, 10.14, 10.16, 
1O.17(a) y (c), 10.18 y 10.19 son todos ellos válidos para integrables múltiples. 
El teorema 10.17 (b), que describe el comportamiento de una integral bajo las 
dilataciones o contracciones del intervalo de integración, debe ser modificado 
como sigue: 

Si fE L(l) y si g(x) = f(x/e), en donde e > O, entonces 9 E L(cI) e 

f g=en (¡ 
el JI 

En otras palabras, la dilatación de un intervalo por un factor positivo c tiene 
el efecto de multiplicar la integral por en, en donde n es la dimensión del es­
pacio. 

APOSTOL. análisis - 17 
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Los teoremas de convergencia de Levi (teoremas del 10.22 al 10.26) y el 
teorema de convergencia dominada de Lebesgue (teorema 10.27) y sus conse­
cuencias (teoremas 10.28, 10.29 Y 10.30) son también válidos para integrales 
múltiples. 

NOTACIÓN. La integral f ¡ t se designa también por 

L¡(X) dx o 

También se utiliza la notación SI ¡(Xl' ... , x n) dx¡ ... dXn Las integrales do­
bles se escriben a menudo con dos signos de integral, y las integrales triples 
con tres de estos signos, o sea: 

f f ¡(x, y) d.\ dy, f f f ¡(x, y, z) dx dy dz. 

I l 

1 ;:;.4 FUNCIONES MEDIBLE S y CONJUNTOS MEDIBLE S DE Rn 

Una función real t definida en un intervalo 1 de Rn es medible en 1, y se es­
cribe toE M(!), si existe una sucesión de funciones escalonadas {sn} en 1 de 
modo que 

lim s n(x) = ¡(x) c.e.t. 1 

También son válidas en esta situación más general las propiedades de las fun­
ciones medibles que fueron descritas en los teoremas 10.35, 10.36 Y 10.37. 

Un subconjunto S de Rn es medible si su función característica Xs es medible. 
Si, además, Xs es integrable Lebesgue en Rll, entonces la n-medida p.(S) del 
conjunto S se define por medio de la ecuación 

Si Xs es medible pero no pertenece a L(R"), definimos p.(S) = +00. La fun­
ción p. así definida se Hama medida n-dimensional de Lebesgue. 

Las propiedades de la medida descritas desde el teorema 10.44 al teore­
ma 10.47 son también válidas para medidas de Lebesgue n-dimensionales. Ade-
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más, utilizando el método de la sección 10.19 es posible definir la integral de 
Lebesgue para subconjuntos arbitrarios S de Rn. 

Hacemos especial mención de la propiedad de la aditividad numerable de la 
medida de Lebesgue descrita en el teorema 10.47: 

Si {Al' A 2 , ... } es una colección disjunta numerable de conjuntos medi­
bIes de R ", entonces la unión U ~ ¡ A i es medible y 

El teorema que se da a continuación demuestra que cada subconjunto abier­
to de R " es medible. 

Teorema 15.1. Cada conjunto abierto S de Rn se puede expresar como reunión 
de una colección disjunta numerable de cubos acotados cuyas adherencias estún 
contenidas en S. Por consiguiente, S es medible. Por otra parte, si S estú aco­
tado, entonces ¡.;.(S) es finita. 

Demostración. Fijamos un entero m ;;:::: 1 Y consideramos todos los intervalos 
semiabiertos de R' de la forma 

(~, k + 1J para k = O, ± 1, ± 2, ... 
2m 2m 

Todso los intervalos tienen longitud 2- m , y forman una colección disjunta nu­
merable cuya unión es R 1. El producto cartesiano de n de estos intervalos es 
un cubo n-dimensional de longitud lateral 2-1

/t. Sea F", la colección de todos 
estos cubos. Entonces F m es una colección disjunta numerable cuya unión es R n. 

In G~ 

'\ 
\ 

\ 
\ 
\ 
\ 

GI \ 

\ 
\ 
\ 
I L _______________ ~ 

Figura 15.1 
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Obsérvese que los cubos de F m+l se obtienen bisecando los lados de los de F m ' 

Por consiguiente, si Q'm es un cubo de Fm Y si Qm+ l es un cubo de Fm+1, enton­
ces o Q ",+¡ <;; Q m, o Q m+l Y Qm son disjuntos. 

Ahora extraemos una subcolección Gm de F m como sigue: Si m = 1, G¡ 
consta de todos los cubos de F¡ cuya adherencia pertenece a S. Si m = 2, 
G" consta de todos los cubos de F 2 cuya adherencia pertenece a S, pero a nin­
guno de los cubos de G¡ . Si m = 3, G3 consta de todos los cubos de F3 cuya 
adherencia pertenece a S, pero a ninguno de los cubos de G

1 
o G

2
, y así suce­

sivamente. La construcción se halla ilustrada en la Fig. 15.1, en donde S es una 
cuarta parte de un disco abierto de R 2

• El cuadrado blanco está en G
1

, los 
sombreados ligeramente pertenecen a G2 , y los oscuros pertenecen a G

3
• 

Sea ahora 

00 

T= U U Q. 
m; 1 QeG", 

Esto es, T es la unión de todos los cubos de G¡, G 2 , • • • Probaremos que S = T 
de lo que resultará la demostración del teorema, ya que T será una colección 
disjunta numerable de cubos cuya adherencia pertenece a S. Ahora bien, T <;; S, 
ya que cada Q de Gm es un subconjunto de S. Luego, sólo necesitamos de­
mostrar que S <;; T. 

Sea P = (PI' . " , Pn) un punto de S. Puesto que S es abierto, existe un 
cubo con centro en p y arista lateral 8 > O, que pertenece a S. Elijamos m 
de modo que 2-m < 8/2. Entonces, para cada i tenemos 

() 1 1 () 
Pi - 2 < Pi - 2m < Pi < Pi + 2m < Pi + "2 . 

Ahora elegimos ki , tal que 

k i k· + 1 < p . < - '--
2m 

• - 2m 

y sea Q el producto cartesiano de los intervalos (k i2- m , (k¡ + 1)2- m] para 
i = 1, 2, . ", n. Entonces p E Q para algún cubo Q de F'1I" Si m es el menor 
entero con esta propiedad, entonces Q E Cm, luego p 'E T. Por tanto, S <;; T. 
Las proposiciones sobre la mesurabilidad de S se siguen inmediatamente de la 
propiedad de aditividad numerable de la medida de Lebesgue. 

NOTA. Si S es medible, también lo es Rn - S, puesto que XRn-s = I - Xs. Por 
consiguiente, cada subconjunto cerrado de R " es medible. 

,-
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Excepto en este punto, la teoría de Lebesgue de Rn es completamente análoga 
a la del caso unidimensional. Se requieren ideas nuevas para tratar el teorema 
de Fubini que permite calcular una integral múltiple de Rn por medio de inte­
grales reiteradas de dimensión inferior. Para conocer mejor lo necesario, consi­
deramos primeramente el caso bidimensional. 

Recordemos el resultado correspondiente para integrales múltiples de Rie­
mann. Si 1 = [a, b]x[c, d] es un intervalo compacto de R 2 y si f es integrable de 
Riemann en 1, entonces tenemos la siguiente fórmula de reducción (de la par­
te (v) del teorema 14.6): 

1 f(x, y) d(x, y) = f [f f(x, y) dXJ dy. (3) 

Existe una fórmula compañera de ésta que se obtiene re·emplazando la inte­
gral inferior J~ por la integral superior J~, y existen dos fórmulas semejantes 
a éstas, pero con el orden de integración invertido. En estas fórmulas, las inte­
grales superior e inferior son necesarias, puesto que la hipótesis de integrabi­
lidad de Riemann en 1 no es lo suficientemente fuerte para asegurar la exis­
tencia de la integral de Riemann unidimensional J~f(x, y) dx. Esta dificul­
tad no aparece en la teoría de Lebesgue. El teorema de Fubini para integrales 
de Lebesgue dobles nos da las fórmulas de reducción 

1 f(x, y) d(x, y) = f [f f(x, y) dXJ dy = f [f f(x, y) dyJ dx, 

con la única hipótesis de que f sea integrable Lebesgue en l. Probaremos que 
las integrales interiores existen siempre como integrales de Lebesgue. Esto 
constituye otro de los ejemplos que ilustran cómo la teoría de Lebesgue supera 
dificultades inherentes a la teoría de Riemann. 

En esta sección demostramos el teor'ema de Fubini para funciones escalo­
nadas, y en una sección posterior lo extenderemos a funciones integrables Le­
besgue arbitrarias. 

Teorema 15.2 (Teorema de Fubini para .funciones escalonadas). Sea s 
una función escalonada en R 2. Entonces para cada y fijo de RI existe la inte-
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gral fR' s(x, y) dx y, como función de y, es integrable Lebesgue en Rl . Ade­
más, tenemos 

{f ,(x, y) d(x, y) ~ f.. [J" ,(x, y) dX] dy (4) 

Análogamente, para cada x fijo de RI existe la integral IR! s(x, y) dy y, como 
función de x, es integrable Lebesgue en Rl. Se tiene también 

!J s(x, y) d(x, y) = L, [L, s(x , y) dY] dx. (5) 

Dem~stración. Este .teorema se puede deducir de la fórmula de reducción (3) 
para mtegrales de Rlemann, pero preferimos dar una demostración directa in­
dependiente de la teoría de Riemann. 

Existe un intervalo compacto l = [a, b] X [c, d] tal que s es una función 
escalonada en l y s(x, y) = O si (x, y) 'E R2 - l. Existe una partición de l en 
IIlfl subrectángulos lij = [X i_ l , x;] X [Yj-i, yJ tales que s es constante en el 
interior de l i j, esto es 

s(x, y) = cij si (x, y) E int lij' 

Entonces 

Sumando para i y para ¡obtenemos 

ff s(x, y) d(x, y) = Ld [lb s(x, y) dX] dy. 

Dado que s se anula fuera de l, esto demuestra (4), y un argumento análogo 
prueba (5). 

~ara extender el teorema de Fubini a las funciones integrables de Lebesgue 
precisamos de algunos otros resultados concernientes a conjuntos de medida 
cero, que se desarrollan en la sección siguiente. 
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Teorema 15.3. Sea S un subconjunto de Rn. Entonces S tiene n-medida O si, 
y sólo si, existe una colección numerable de intervalos n-dimensionales 
{J l' J 2' •• • }. tal que la suma de sus n-medidas sea finita, y tal que cada punto 
de S pertenezca a Jk para una infinidad de k. 

Demostración. Supongamos primeramente que S tiene n-medida O. Entonces. 
para cada m > 1. se puede recubrir S por una colección numerable de inter­
valos n-dimensionales {1m,,, l m,2' ... } , la suma de cuyas n-medidas sea <2-m. 
El conjunto A que consta de todos los intervalos 1 m.k para m = l. 2 ..... Y 
k = 1,2, ...• es una colección numerable que recubre a S, y tal que la suma de 
las n-medidas de todos sus intervalos es < :L:= l 2- m = 1. Además, si a 'E S 
entonces, para cada m, aE lm.k para un cierto k. Por consiguient'e. si escribimos 
A = {J,. J2 • .. . }. vemos que a pertenece a Jk para una infinidad de k. 

Recíprocamente, supongamos que existe una colección numerable de inter­
valos n-dimensionales {JI' J 2' ... } tal que la serie :L:'= l Il(Jk) sea convergente y 
tal que cada punto de S penenezca a h para una infinidad de k. Dado ó > O. 
existe un entero N tal que 

Cada uno de los puntos de S pertenece al conjunto U:':N Jk , luego S S; U;~ N .lA ' 
Entonces. S se ha recubierto por medio de una colección numerable de inh'l' 
valos, la suma de cuyas n-medidas es < E, luego S tiene n-medida O. 

If 

Figura 15.2 
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Definición 15.4. Si S es un subconjunto arbitrario de R2, y si (x, y) E R2, 
designamos por Sy y por sr a los siguientes subconjuntos de R': 

Sy = {x:xER 1 y (X,Y)ES}, 

SX = {y: y E R 1 Y (x, y) E S}. 

En la figura 15.2 se muestran algunos ejemplos. Geométricamente, Sy es 
la proyección sobre el eje x de una sección transversal horizontal de S; Y SI/) es la 
proyección sobre el eje y de una sección transversal vertical de S. 

Tf'orema 15.5. Si S es un subconjunto de R2 con 2-medida O, entonces Sy tiene 
1-lI1edida O para casi todos los y de R 1 , Y S" tiene l-medida O para casi todos 
los x de RI. 

DClI1ostración. Probaremos que Sy tiene l-medida O para casi fodos los y de RI. 
La demostración utiliza el teorema 15.3. 

Puesto que S ti'ene 2-medida O, en virtud del teorema 15.3 existe una colec­
ción numerable de rectángulos {h} tal que la serie 

converge, (6) 

y lal que cada punto (x, y) de S pertenece a h para una infinidad de k. Ahora 
hacemos h = X" X Y", en donde X" e Y" son subintervalos de RI. Entonces 

en donde XYk es la función característica del intervalo Y k. Sea gk = J.L(Xk)XYk. 
Entonces (6) implica la convergencia de la serie 

Ahora C(,'d es una sucesión de funciones no negativas de L(Rl) tal que con­
verge la serie Lr'= 1 SRI gk. Por consiguiente, en virtud del teorema de Levi (teo­
rema 10.25), la serie Lr'=l gk converge casi en todo R 1 • En otras palabras, 
existe un subconjunto T de RI de medida unidimensional O tal que la serie 

00 

L: J.L(Xk)XyJy) converge para todo y de R 1 - T. (7) 
k=1 
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Tomemos un punto y de R' - T, fijémoslo y consideremos el conjunto Sy. Pro-
baremos que Sy tiene medida unidimensional O. . . 

Podemos suponer que Sy es no vacío; en otro caso es tnvlal. Sea 

A(y) = {Xk : Y E Yk , k = 1,2, .. . }. 

Entonces A(y) constituye una colección numerable de intervalos unidimensio­
nales que representaremos por {J 1> J 2' ... }. La suma de las longitudes de todos 
los intervalos h converge en virtud de (7). Si x 'E Sy, entonoes (x, y) 'E S, luego 
(x, y ) 'E h = X k X Y" para una infinidad de k, y por lo tanto x ,E h para una 
infinidad de k. Aplicando la versión unidimensional del teorema 15.3 vemos 
que S,! tiene medida unidimensional O. Esto demuestra que S" tiene medida 
unidimensional cero casi en todo y de R 1

, y un argumento análogo demuestra 
que sx tiene medida unidimensional cero casi en todo x de R l. 

15.7 TEOREMA DE FUBINI PARA LA REDUCCIóN 
DE INTEGRALES DOBLES 

Teorema 1.5.6. Supongamos que f es integrable Lebesgue en R2. Entonces 
tenemos: 

a) Existe un conjunto T de medida unidimensional O tal que la integral de 
Lebesgue SR' [(x, y) dx existe para todo y de Rl - T. 

b) La función G definida en R' por medio de la ecuación 

{ 
r [(x, y) dx 

G(y) = JR' 
O 

es integrable Lebesgue en R '. 

c) f f [= t, C(y) dy . Esto es, 

R2 

si yER'_T, 

si yE T, 

f f [(x, y) d(x, y) = t. [fR' [(x, y) dX] dy. 
R2 
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NOTA. Existe un resultado análogo que afirma 

iJ f(x, y) d(x, y) = 1, [1, ¡(x, y) dyJ dx . 

Demostración. Hemos demostrado ya este mismo teorema para funciones es­
calonadas. A continuación se demuestra este teorema para funciones superiores. 
Si f 'E V(R2) existe una sucesión creciente de funciones escalonadas {s,,} tal que 
.\·,,(x, y ) ~ f(x, y) para todo (x, y ) de R 2 - S, en donde S es un conjunto de 
medida bidimensional O; luego 

!~ f f sn(x, y) d(x , y) = f f ¡(x, y) d(x, y). 

R2 R2 

Ahora bien, (x, Y)'E R 2 
- S si, y sólo si, xE R I 

- Sr Por lo tanto, 

snCx, y) ..... f(x, y) si x E R1 
- Sr (8) 

Sea tn(y) = SR' Sn(X, y) dx. Esta integral existe para cada número real y y es 
una función de y integrable. Además, en virtud del teorema 15.2 tenemos 

1, tn(y) dy = 1, [1, s.(x, y) dX] dy = f f s"(x, y) d(x, y) ::; f f f 
R2 R2 

Puesto que la sucesión {tn} es creciente, esta última desigualdad prueba que 
existe limn~<Xl SR' tn(y) dy. Por lo tanto, aplicando el teorema de Levi (teore­
ma 10.24) existe una función t de L(R') tal que t" ~ t casi por todo en RI. En 
otras palabras, existe un conjunto T, de medida unidimensional O tal que 
t,,(y) ~ t(y) si y E R I 

- TI' Además, 

f. t(y) dy = lim f. tn(y) dy. 
Rl "-+ 00 Rl 

Puesto que {tn} es creciente, tenemos de nuevo 

In(y) = f. Sn(X, y) dx :$ t(y) 
R' 

Aplicando el t'eorema de Levi a {sn} vemos que si y 'E RI_ T I existe una fun­
ción g de L(R') tal que Sn(x, y) ~ g(x, y) para x de R i 

- A, en donde A es un 

j 
t 
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conjunto de medida unidimensional O. (El conjunto A depende sólo de y.) Com­
parando este resultado con (8) vemos que si y 'E R 1 - TI entonces 

g(x, y) = ¡(x, y) (9) 

Pero A tiene medida unidimensional O y Sy tiene medida unidimensional O casi 
para todo y, esto es para todo y de R i 

- T 2 , en donde T 2 tiene medida uni­
dimensional O. Sea T = T i U T 2 • Entonces T tiene medida unidimensional O. 
Si yE R I - T, el conjunto A u Sy tiene medida unidimensional O y (9) se ve­
rifica. Dado que existe la integral SR' g(x, y) dx si y E Ri - T, tenemos que, 
si y E R' - T, existe también la integral SR' ¡(x, y) dx. Esto demuestra (a). 
Además, si y E R 1 - T , tenemos 

i ¡(x, y) dx = r g(x, y) dx = lim r sn(x, y) dx = t(y). 
RI JR1 n- oo JRl 

( 10) 

Puesto que tE L(R'), (b) está demostrado. Finalmente, tenemos 

r t(y) dy = r lim In( y ) dy = lim r tn(y) dy 
JRl JRI n- oo n- oo JRl 

lim r [r Sn(X, y) dX] dy = lim ff Sn(X, y) d(x, y) 
n-+ oo JR! JR! "- 00 

R2 

= f f ¡(x, y) d(x, y). 

R2 

Comparando este resultado con (lO) obtenemos (e). Esto demuestra el teorema 
de Fubini para funciones superiores. 

Para demostrarlo para funciones integrables de Lebesgue escribimos 
f = u - v, en donde u 'E L(R2

) Y v E L(R2
) y obtenemos 

= t, [tI {u(x, y) - v(x, y)} dX] dy = t, [tI ¡(x, y) dX] dy. 

Como corolario inmediato del teorema 15.6 y del teorema bidimensional 
análogo al teorema 10.11 obtenemos: 
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Teorema 15.7. Supongamos que f está definida y acotada en un rectángulo 
compacto 1 = [a, b] X [c, d], y que f es continua casi todo en l. Entonces 
fE L(I) Y se verifica 

I I f(x, y) d(x, y ) = f [f f(x, y) dX] dy = f [f f( x , y ) dY] dx . 

1 

NOTA. La integral unidimensional S!f(x, y) dx existe casi para todo y de 
[e, d] como integral de Lebesgue. No es preciso que exista como integral 
de Riemann. Una observación análoga se aplica a la integral S~f(x, y) dy. 
En la teoría de Riemann, las integrales interiores de la fórmula de reducción 
deben ser reemplazadas por integrales superiores o inferiores. (Ver teorema 14.6, 
parte (v).) 

Existe, además, una extensión del teorema de Fubini a integrales de orden 
superior. Si f es integrable Lebesgue en R1n+k el teorema análogo al teore­
ma 15.6 concluye que 

f. f = f. [f. f(x; y) dX] dy = f. [f. f(x; y) dY] dx. 
Rm+k Rk Rm Km Rk 

En esta fórmula hemos escrito (x; y) para designar un punto de R m+k, en el que 
x e R'" e y t: Rk. Se puede probar esto, por medio de una extensión del mé­
todo utilizado para demostrar el caso bidimensional, pero omitiremos los de­
talles. 

] 5.8 CRITERIO DE TONELLI·HOBSON DE INTEGRABILIDAD 

¿Qué funciones son integrables de Lebesgue en R2? El teorema que sigue pro­
porciona una condición suficiente de integrabilidad muy útil. Su demostración 
hace uso del teorema de Fubini. 

Teorema 15.8. Supongamos que f es medible en R2 y que existe una por lo 
menos de las dos integrales reiteradas 

o 

L, [L, ¡f(x, y)¡ dxJ dy 

IR' [L, ¡f(x, y)¡ dyJ dx, 

Integrales de Lebesgue múltiples 505 

Elltonces tenemos: 

b) f f f = t, [t, f(x , y ) dX] dy = t, [t, f(x , y ) dyJ dx. 

R' 

Demostración . La parte (b) se sigue de la parte (a) en virtud del teorema de 
Fubini. Utilizaremos también el teorema de Fubini para demostrar la parte (a). 
Supongamos que existe la integral reiterada SR' [SR' ¡f(x, y)¡ dx] dy . Designa­
mos por {~n } la sucesión creciente de funciones escalonadas no negativas defi· 
nidas por medio de: 

si Ixl < n e Iyl < n, 

en otro caso. 

Sea fn(x, y) = min {sn(x , y), ¡f(x, y)¡}. Tanto Sn como Ifl son medibles, luego l n 

es medible. Además, tenemos O S fn(x , y) s sn(x, y), luego tn está dominada 
por una función integrable Lebesgue. Por consiguiente, fn E L(R2). Entonces 
podemos aplicar el teorema de Fubini a fn junto con la desigualdad O < t,,(x, y) < 
It(x, y)1 a fin de obtener 

I I fn = t, [t, f.(x , y) dX] dy ~ t, [t, ¡f(x, y)¡ dX] dy. 

R' 

Puesto que {in} es creciente, esto demuestra la existencia del límite 
limn_ ro HR2 f.. Por el teorema de Levi (el teorema bidi~ensional a.~álo~o .al 
teorema 10.24), {in} converge casi en todo R 2 haCIa una funclOn lImite 
de L(R2). Pero tn(x, y) -> It(x, y)1 cuando n -> 00, luego Itl E L(R

2
). Puesto que 

f es medible , tenemos que fE L(R2
). Ello demuestra (a). La demostración es 

análoga si existe la otra integral reiterada. 

15.9 CAMBIOS DE COORDENADAS 

Uno de los resultados más importantes en la teoría de la integración múltiple 
lo constituye la fórmula que da el cambio de variables. Constituye una ex· 

tensión de la fórmula 

f
9(d) Id 

f(x) dx = f[g(t)]g '(t) dt, 
9(C) e 

http://libreria-universitaria.blogspot.com
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que fue demostrada en el teorema 7.36 para integrales de Riemann en el su­
puesto de que g posea derivada continua g' en un intervalo T = [e, d] y 
que f sea continua en la imagen g(T). 

Consideremos el caso especial en que g' no se anule (esto es de signo cons­
tante) en T. Si g' es positiva en T, entonces g es creciente, luego g(c) < g(d), 
g(T) = [g(c), g(d)] , y la fórmula anterior se puede escribir como sigue: 

r f(x) dx = f f[g(t)Jg'(t) dt . 
J9(T) T 

Por otro lado, si g' es negativa en T, entonces g(T) = [g(d), g(c)] y la fórmula 
anterior se convierte en 

f f(x) dx = - f f[g(t)Jg'(t) dI . 
g(T) T 

Ámbos casos se hallan, por lo tanto, incluidos en la única fórmula 

r f(x) dx = f f[g(/)J Ig'(t)1 dI. 
Jg(T) T 

(11) 

La ecuación (11) es también válida cuando c > d, Y es en esta forma que el 
resultado puede generalizarse a integrales múltiples. La función g que trans­
forma las variables deh¡: substituirse por una función vectorial llamada 
cambio de coordenadas * que se define como sigue: 

Definición 15.9. Sea T un subconjunto abierto de Rn. Una función vecto­
rial g: T ~ Rn se llama cambio (o transformación) de coordenadas en T si 
verifica las tres propiedades siguientes: 

a) g E C' en T. 
b) g es uno a uno en T. 
c) El determinante jacobiano J.(t) = det Og(t) "# O para todo t de T. 

NOTA. Un cambio de coordenadas se llama a v'eces un diffeomorfismo. 

La propiedad (a) establece que g es diferenciable con continuidad en T. 
En virtud del teorema 13.4 sabemos que una función diferenciable con conti-

* Se llama también una transfo.rmación de coordenadas. 
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nuidad es localmente uno a uno en las proximidades de los puntos en los 
que no se anula el determinante jacobiano. La propiedad (b) afirma que g es 
globalmente uno a uno en T. Ello garantiza la existencia de una inv'ersa glo­
bal g-l que está definida y es uno a uno en la imagen g(T). Las propiedades 
(a) y (c) conjuntamente implican que g es una aplicación abi'erta (en virtud 
del teorema 13.5). Además, g- ¡ es diferenciable con continuidad en g(T) (en 
virtud del teorema 13.6). 

Propiedades ulteriores de los cambios de coordenadas se deducirán a partir 
de la siguiente propiedad multiplicativa de los determinantes jacobianos. 

Teorema 15.10 (teorema de multiplicación para determinantes jacobia­
no.~). Supongamos que g es diferenciable en un conjunto abierto T de Rn y que 
h es diferenciable en la imagen g(T). Entonces la función compuesta k = h o g 
es difereneiable en T, y para cada t de T se tiene 

(12) 

Demostración. La regla de la cadena (teorema 12.7) nos dice que la función 
compuesta k es diferenciable en T, y la forma matricial de la regla de la ca­
dena nos dice que las correspondientes matrices jacobianas se hallan relacio­
nadas como sigue: 

Ok(t) = Oh[g(t)JOg(t). (1 J) 

Por la teoría de los determinantes sabemos que det (AB) = del A del n. luego 
(13) implica (12). 

Este teorema demuestra que si g es un cambio de coordenadas en 'J' y si h es 
un cambio de cordenadas en g(T), entonces la compuesta k es un cambio de 
coordenadas en T. En consecuencia, si h = g-l, entonces 

k(t) = t para todo t de T y 

luego Jb[g(t)JJ g(t) = 1 Y g-l es una transformación de coordenadas en Il( n. 
Un cambio de coordenadas g y su inverso g-l proporcionan una (:Clrn:spOll­

dencia uno a uno entre los subconjuntos abiertos de T y los subconjunlCls IIhi('l'­
tos de g(T), y también entre los subconjuntos compactos de T y los SUhCCllljlltlh IN 

compactos de g(T). Los ejemplos que siguen constituyen cambios dl~ l'oordo­
nadas utilizados frecuentemente. 

Ejemplo 1. Coordenadas polares de R2. En este caso tomamos 
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y consideramos una función g = (gl' g2) definida en T como sigue: 

gl(t) = 1I COS 12 , 

Es usual designar por (r, e) las componentes de t en vez de designarlas (tI' t
2

). El 
cambio de coordenadas g aplica cada punto (r, e) de T en el punto (x, y) de g(T) dado 
por las fórmulas familiares 

x = r cos e, y = rsen e. 
La imagen g(T) es el conjunto R 2_{{X, O):x > O}, y el determinante jacobiano es 

J.(t) = 1 cos e sen e 1 = r. 
-rsen e reos e 

Ejemplo 2. Coordenadas cilíndricas de R3. Aquí escribimos t = (r, e, z) y tomamos 

T = {(r, e, z) : r > O, o < o < 21<, - ro < z < + ro}. 

El cambio de coordenadas g aplica cada punto (r, O, z) de Ten el punto (x, y, z) 
de g(T) dado por las ecuaciones 

x = reos e, 

x 

z 

y = r senO, z = z. 

T (x, y, z) 

1 
1 
1 

_ 1-- Y Figura 15.3 
/-- 1 

O 7--.J 
r 

La imagen g(T) es el conjunto R 3 - ({x, O, O): x ~ O} , Y el determinante jacobiano 
está dado por 

cos O sen O O 

Jit ) = -rsenO rcosO O = r. 

O O 1 

El significado geométrico de r, e y z se halla representado en la figura 15.3. 
Ejemplo 3. Coordenadas esféricas de R3. En este .caso escribimos t = (p, e, ~) 
y tomamos 

T = {(p, O, ({J): p > O, O < O < 21<, O < ({J < 1<}. 

1 
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El cambio de coordenadas g aplica cada punto (p, e, 'f) de T en el punto (x, y, z) de 
g(T) dado por las ecuaciones 

x = p cos O sen ({J, y = p sen e sen '~, Z = P cos 'f. 

La imagen g(n es el conjunto R3 - [{ (x, O, O): x > O} U ({O, O, z): z E R}], Y el de­
terminante jacobiano es 

cos O sen ({J 

Ja(t) = - p senO sen ({J 

p cos O cos ({J 

sen e sen 'f 

p cos O sen 1> 
psen ecos 'f 

co~ ({J J = _p:2 sen '~. 
-psen 

El significado geométrico de p, e y .~ puede verse en la figura 15.4. 

z 

p " (x, y, z) 
\,-/1 

'I''y'/ /" i------ p cos '1' 

/" 1 
,/ I __ 1 __ y Figura 15.4 

o7-/-J 
p sen '1' 

x 

Ejempo 4. Transformaciones lineales de Rn. Sea g: Rn~. Rn una transform:tc1i6n 
lineal representada por una matriz (aij) = m(g), esto es 

g(t) = (t al/j' ... , t anjtj ) • 

j= I J= 1 

Entonces g = (gl' .. . , g.,.) en donde g¡(t) = "L.J= I aljlj , y la matriz jacobiana es 

Dg(t) = (Djg¡(t» = (aij)' 

Así el determinante jacobiano Jlt) es constante, e igual a det {a;'j~, determinante 
de la matriz (aij)' Se llama también el determinante de g y se escnbe 

det g = det (aij)' 

Una transformación lineal g, uno a uno en R n, se llama no-singular. Utili­
zaremos los siguientes resultados elementales concernientes a transformacio~es 
no singulares de R" en Rn. (Las demostraciones pueden hallarse en cualqUier 
texto de Álgebra lineal: ver también la referencia 14.1.) 

Una transformación lineal g es no singular si, y sólo si, su matriz A = m(A) 
tiene una inversa A-l tal que AA-1 = 1, en donde l es la matriz identidad (la 
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matriz correspondiente a la transformación identidad), en cuyo caso A se llama 
también no singular. Una matriz A n X n es no singular si, y sólo si, det A =1= O. 
Luego, una función lineal g es un cambio de coordenadas si, y sólo si, det g =1= O. 

T oda g no singular se puede expresar como composición de tres tipos es­
peciales de transformaciones no singulares llamadas transformaciones elemen­
tales, a las que nos referiremos como de tipo a, b y c. Se definen como sigue: 

Tipo a: g,,(t l , •.. , tk, ... , t,,) = (tI ' ... , Atb ... , t n), en donde A =1= O. En otras 
palabras, gil multiplica una componente de t por un escalar no nulo A. En par­
ticular, ga transforma los vectores coordenados unitarios como sigue: 

ga(uk) = ),uk para un k, ga(u;) = U¡ para todo i =1= k. 
La matriz de g" se obti-ene multiplicando los elementos de la k-ésima fila de 
la matriz identidad por A. Además, det ga = A. 

Tipo b : g¡,(t , , ... , tb ... , tn) = (t" ... , tk + t j , ... , tn ), en donde j =1= k. Enton­
ces. g/J remplaza una componente de t por ella misma más ótra. En particular, 
gl¡ transforma los vectores coordenados como sigue: 

gb(Uk) = Uk + u j para ciertos k y j fijos, k =1= j, 

gb(U) = U¡ para todo i =1= k. 

[ .a matri z g l¡ puede obtenerse a partir de la matriz identidad reemplazando la 
k-ésima fila de 1 por la k-ésima fij a de 1 más la j-ésima fila de l . Además, 
det g l¡ = 1. 

Tipo c : g,.(t, , ... , ti, ... , t j , ... , tn ) = (t" ... , t j , ... , ti, ... , t ,,) , en donde i =1= j. 
Esto es, g, intercambia las componentes i-ésima y j-ésima de t para ciertos i y j 
con i =1= j. En particular, g(u ¡) = 11 j, g(U j) = 11i, Y g(Uk) = U k para todo k =1= i, 
k =1= j. La matriz de gc es la matriz identidad con las filas i y j intercambiadas. 
En este caso det gr = -1. 

La inversa de una transformación elemental es otra transformación elemen­
tal del mi smo tipo. La matriz de una transformación elemental se llama una 
matriz elemental. Cada matriz no singular A se puede transformar en la ma­
triz identidad 1 multiplicando la matriz A de la izquierda por una sucesión 
de matrices elementales. (Esto constituye -el familiar procedimiento de Gauss­
lordan del Álgebra lineal.) Así pues , 

1 = T¡T2" ·T,A, 

en donde cada T k es una matriz elemental. Luego, 
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Si A = m(g), esto da una descomposición de g en producto de transformacio­
nes elementales. 

15.10 FóRMULA DE CAMBIO DE VARIABLES 
EN INTEGRALES MúLTIPLES 

El resto de este capítulo está dedicado a dar una demostración de la fórmula 
del cambio de variables para integrales múltipl'es. 

Teorema 15.11. Sea T un subconjunto abierto de R" y sea g un cambio de 
coordenadas en T. Sea f una función real definida en la imagen g(T) y supon­
gamos que existe la integral de Lebesgue f g(T)f(x) dx Entonces existe también 
la integral de Lebesgue Ir f[g(t)] /Jg(t)/ dt y se tiene 

r f(x) dx = f f[g(t)] IJg(t) 1 dt. 
Jg( T) T 

( 14) 

NOTA. La ecuación (14) es válida aSImIsmo si el determinante jacobiano 1 ,.(1) 

se anula en un subconjunto de T de medida O, puesto que ello no afecta ni 
a la existencia ni al valor de la integral de la derecha. 

La demostración del teorema 15.11 se divide en tr'es partes. La parte 1 
prueba que la fórmula es válida para cada transformación lineal de coordena­
das x. Como corolario obtenemos la relación 

~[oc(A)] = Idet ocl ~(A), 

para cada subconjunto A de Rn con medida de Lebesgue finita. En la parte 2 
consideramos un cambio de coordenadas general g y probamos que (14) se veri­
fica cuando f es la función característica de un cubo compacto. Esto nos da 

~(K) = r IJg(t)1 dt, (15) 
Jg-l(K) 

para cada cubo compacto K de g(T). Ésta es la parte más larga de la demos­
tración. En la parte 3 se utiliza (15) para deducir (14) en su forma general. 

15.ll DEMOSTRACIóN DE LA FóRMULA DE CAMBIO 
DE VARIABLES PARA TRANSFORMACIONES 
LINEALES DE COORDENADAS 

Teorema 15.12. Seac.:: Rn ~ Hn una transformación lineal de coordenadas. 
Si existe la integral de Lebesgue fRnf(x) dx, entonces también existe la integral 
de Lebesgue SRnf[oc(t)] IJ,,(t)1 dt y ambas integrales son iguales. 
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Demostración. Ante todo obsérvese que si el teorema es cierto para ot y p, en­
tonoes es cierto también para la función compuesta y = ot o P puesto que 

fR/(X) dx = L/[ot(t)J [J",(t)[ dt = L/(ot[p(t)J) [J",[P(t)J[[Jp(t)[ dt 

= Ln f[1(t)J [Jit )[ dt, 

ya que Jit) = J",[P(t)J Jp(t). 
Por consiguiente, puesto que toda transformación lineal no singular ot es 

una composición de transformaciones elementales, es suficiente probar el teo­
r'ema para cada transformación elemental. Es suficiente también suponer 
que f > O, 

Supongamos que ot es de tipo a. A fin de simplificar, suponemos que ot mul­
tiplica la última componente de t por un escalar no nulo '\, esto es 

Entonces [J",(t) [ = [det ot[ = [J.f. Aplicamos el teorema de Fubini a fin de escri­
bir la integral de f sobre R" como la reiteración de una integral (n - 1)-dimen­
sional sobre R ,¡-l y una integral unidimensional sobre Rl. Para la integral so­
br-e R' utilizamos el teorema IO.17(b) y (e), y obtenemos 

f. f(x) dx = f. [f oo f(x¡, .. " x n) dXn] dX I ••• dxn _¡ 
R" R" - 1 - 00 

= f. [[;o[ f oo f(x¡, .. " Xn -¡, Aln) dtn] dx¡ ... dxn _¡ 
R" - 1 - 00 

= fRn -, [f:oo f[ot(t)J [J,,(t)[ dln] dt¡·,· dtn _¡ 

= Ln f[ot(t)J [J",(t)[ dt, 

en donde en el último paso hemos utilizado el teorema de Tonelli-Hobson. Esto 
prueba el teorema si ot es del tipo a. Si ot es del tipo b la demostración es aná­
loga salvo que se utiliza el teorema 1O.17(a) en el caso unidimensional. En este 
caso [J",(t) [ = 1, Finalmente, si ot es del tipo c se utiliza sólo el teorema de 
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Fubini para intercambiar el orden de integración sobre las coordenadas i·(;siIllH 
y j-ésima, De nuevo, en este caso, [J",(t) [ = l . 

Como corolario inmediato tenemos: 

Teorema 15.13. Si ot: Rn ---+ Rn es una transformación lineal de ('(lOrd/'IIt/tlt/,1 

y si A es un subconjunto de Rn tal que existe la integral de LebesRuc S",(A,I( x) tlx, 

entonces la integral de Lebesgue SA f[ ot(t)J [J",(t) [ dt también existe, y il/l/hll,l' .1'011 

iguales. 

Demostración. Sea f(x) = f(x) SI x 'E ot(A), y sea ¡ex) = o en cllalqllil'l' 011''' 

caso. Entonces 

f f(x) dx = f. ](x) dx = f. J[ot(t)J [J",(t) [ dt = f f[ot(t)l[./,,(1)1 tll. 
",(A) R" R" A 

Como corolario del teorema 15.13 tenemos la siguient'e rclacilín l'nln' 111 
medida de A y la medida de oteA). 

Teorema 15.14. Sea ot: Rn ---+ Rn una transformación lineal de ('(lOrd/'lIl1dll ,I' , 

Si A es un subconjunto de Rn con medida de Lebesgue ¡leA) ¡illilil, /'III"",.n 
oteA) tiene también medida de Lebesgue finita y 

/l[ oteA) J = [det ot[ /leA). ( I h) 

Demostración. Escribimos A = ot-I(B), en donde B = ot(A), Puesto que IX ' l'S 

también una transformación lineal de coordenadas, obtenemos, 

Ello prueba (16) ya que B = oteA) y det (ot-¡) = (det otr l. 

Teorema 15.15. Si A es un subconjunto compacto de Rn medible de lortlllll, 
entonces para cada transformación lineal de corodenadas ot: R" ---+ Rn la illlll­
gen oteA) es un conjunto compacto medible de lordan y su contenido vi('II/' 
dado por 

c[ ot(A)J = [det ot[ c(A), 
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Demostración. El conjunto a(A) es compacto puesto que a es continua en A. 
Para probar el teorema se arguye como en la demostración del teorema 15.14. 
En este caso, sin embargo, todas las integrales existen como integrales de Le­
besgue y como integrales de Riemann. 

1!').12 DEMOSTRACiÓN DE LA FóRMULA DE CAMBIO DE 
VARIABLES PARA LA FUNCióN CARACTERíSTICA 
DE UN CUBO COMPACTO 

Esta sección contiene la parte 2 de la demostración del teorema 15.11. A lo 
largo de ella suponemos que g es un cambio de coordenadas en un conjunto 
ahierto T de R ". Nuestro propósito consiste en demostrar que 

¡;.(K) = f IJ/T)I dt, 
Jg-I(K) 

para cada cubo compacto K de T. Los resultados auxiliares precisos para pro­
ha r csta fórmula se dan por medio de lemas. 

A fin de simplificar los detalles, introducimos ciertas notaciones convenien­
tes . En vez de utilizar la métrica euclídea usual de Rn utilizaremos la métrica d 
dada por 

d(x, y) = max Ix¡ - y;l. 
1 ::f i::fn 

Esta métrica fue introducida en el ejemplo 9, secclOn 3.13. En esta sección, 
sólo escribiremos [[ x - y[[ para designar d(x, y). 

Con esta métrica, una bola B(a; r) con centro en a y radio r es un cubo 
l/-dimensional con centro a y longitud lateral 2r; esto es, B(a; r) es el pro­
ducto cartesiano de n intervalos unidimensionales, cada uno de ellos de lon­
gitud 2r. La medida de uno de tales cubos es (2r)", producto de las longitudes 
de sus lados. 

Si a: R " ~ R n es una transformación lineal representada por una matriz 
(a ji), o sea 

entonces 

11 oc(x) 11 max It aijXj ! :$ 
1 si::fn j= 1 ( 17) 

n 

li xll max L laijl. 
1 ::fiSn j= 1 

T 
~. 
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Definimos también 

n 

Ilocll max L: laijl· (18) 
1 ::fi::fn j= 1 

Esto define una métrica Iloc - PII en el espacio de todas las transforma~io~es 
lineales de Rn en R". El primer lema da ciertas propiedades de esta metnca. 

Lema 1. Supongamos que a y P designan transformaciones lineales de Rn 
en R n. Entonces tenemos: 

a) 11 et 11 = lIet(x)1I para ciertos x tales que [[xII = l. 

b) Ilet(x)11 ~ Iletll Ilxll para todo x de Rn. 

c) lIet o PII ~ lIetll IIPII· 
d) 11I11 = 1, en donde I designa la transformación identidad. 

. "JI la .. 1 es alcanzado para i = p. DemostracIón. Supongamos que max1:,;; ¡,;;" .c....j= 1 1) • • S 

- l ' O - - 1 si n_ · < O Y X' = O SI J =i= p. Entonce Tomemos Xv - SI apj;::: ,xp - '"1'1' 1 

,Ix" = 1 Y II~ 11 = Ilet(x) 11, 10 cual prueba (a). . . 
, La parte (b) se sigue inmediatamente de (17) y (18). Para probar (c) utIlIza-

mos (b) para escribir 

lI(et o P)(x) 11 = Ilet(P(x»)11 ~ Iletll 11 P(x) 11 ~ Iletll IIPII Ilxll· 

Eligiendo x tal que [[xii = 1 se tiene II(et o P)(x) 11 = Ilet o PII, con lo cual se ob­

tiene (c). . (18) cada suma 
Finalmente, si I es la transformación identIdad, entonces en 

LJ= I laijl = l,con lo cual [[ 1[[ = 1. 

La transformación de coordenadas g e~ diferenciable en T, luego para cada t 

de T la derivada total g'(t) es una transformación lineal .de. Rn en R~ represe~ 
tada por la matriz jacobiana Dg(t) = (Djg¡{t») . Por conslgtllente, haCiendo et­
= g'(t) en (18) se obtiene 

n 

Ilg'(t)11 = max L: IDjg¡(t)l. 
I ,; ¡,;;n j= 1 

Observemos que [[g'(t)[1 es una función continua de t ya que todas las derivadas 
parciales D i!:; son continuas en T. 
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Si Q es un subconjunto compacto de T , cada función Djg; está acotada en Q; 
luego Il g'(t) 11 está también acotada 'en Q, y definimos 

)'iQ) = St~~ IIg'(t)1I = St~g {t~7:n ~ IDjg¡(t)I} . (19) 

El lema que sigue establece que la imagen g(Q) de un cubo Q de longitud 
lateral 2r está en otro cubo de longitud lateral 2rA g(Q) . 

Lema 2. Sea Q = {x: Ilx - all :-s; r} un cubo compacto de longitud lateral 2r 
contenido en T. Entonces para cada x de Q tenemos 

IIg(x) - g(a)1I :-s; diQ)· (20) 

Por lo tanto g(Q) está contenido en un cubo de longitud lateral 2rA g(Q). 

Demostración. En virtud del teorema del valor medio para funciones r'eales 
tenemos 

n 

g¡{x) - g¡(a) = Vg¡{zJ' (x - a) = L Djg¡(zJ(Xj - a), 
j=1 

en donde Z i pertenece al segmento rectilíneo que une x y a. Por consiguiente 

n n 

19b) - g¡(a)1 ~ L IDjg¡(Z¡)llxj - ajl ~ 
j=1 

Ilx - all L 1 Djg¡(z¡)1 ~ rAg(Q), 
j=1 

y esto implica (20). 

NOTA. La desigualdad (20) prueba que g(Q) está contenido en un cubo de con­
tenido 

l~ema 3. Si A es un subconjunto compacto de T, medible lardan, entonces 
g(A) es un subconjunto compacto de g(T), medible lardan. 

Demostración. La compacidad de g(A) se sigue de la continuidad de g. Puesto 
que A es medible lordan, su frontera BA tiene contenido cero. Además, 
8(g(A») = g(8A) , puesto que g es uno a uno y continua. Por consiguiente, para 
completar la demostración, es suficiente demostrar que g(BA) tiene contenido 
cero . 
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Dado . > O, existe un número finito de intervalos abiertos A ;, oo., A", con­
tenidos en T, la suma de cuyas medidas es < ., tal que 8A S Ur= I A ¡. En vir­
tud del teorema 15.1 esta unión puede ser expresada como unión V( . ) de 
una colección disjunta numerable de cubos la suma de cuyas medidas es < •. Si 
E < 1 podemos suponer que cada cubo en V(.) está contenido en V(1). (Si no, 
los cubos en V(.) con V(l) se interceptan y se aplica el teorema 15.1 otra vez.) 
Puesto que BA es compacto, una subcolección finita de los cubos de V(.) recu­
bre BA, sean éstos Q" oo. , Q/o. Por el lema 2, la imagen g(Q;) está en un cubo de 
medida {A.g(QJ }'nc(Q;). Sea A = Ag(U(l»). Entonces AiQ;) < A ya que Q¡ <:= l7(T). 

Entonces g(BA) se puede recubrir por un número finito de cubos, taJes qlle 
la suma de sus medidas no exceda a An L~= I c(QJ < eAn

. Puesto que eslo 
se verifica para todo. < 1, se sigue que g(BA) tiene contenido de lord,," O, 
luego g(A) es medible lordan. 

El lema que sigue relaciona el contenido de un cubo Q con el de su illl;¡prll 
g(Q). 

Lema 4. Sea Q un cubo compacto de T y sea h = oc o g, en donde IX : Hn 
' •• " 

es una transformación lineal no singular. Entonces 

c[g(Q)] :-s; Idet ocl- 1 {Ah(Q)} n c(Q). (,'1 ) 

Demostración. Del lema 2 tenemos c[g(Q)] :-s; {A.(Q)}"c(Q). Aplicando "111" 
desigualdad a la transformación de coordenadas h, obtenemos 

c[h(Q)] :-s; {Ah(Q)}nC(Q). 

Pero en virtud del teorema 15.15 tenemos c[h(Q)] = c[oc(g(Q»)] = Idel IXI ,.III(UI!, 
por lo que 

Lema 5. Sea Q un cubo compacto de T. Entonces para cada • > o. ,'\ I,t'" 11,. 
Ó > O tal que si t E Q y a E Q se tiene 

IIg'(a)-l o g'(t) 11 < 1 + e siempre que lit - all < (j . IJ2) 

Demostradón. La función IIg'(t)-lll es continua y por lo tanto acolatl" 1111 (J. 
o sea que IIg'(t)-lll < M para todo t de Q donde M> O. En yirlllll ,l. ". 
continuidad de !!g'(t)ll, existe un ó > O tal que 

IIg'(t) - g'(a)I1 < ~ siempre que lit - all < b. 
M 



518 Integrales de Lebesgue múltiples 

Si I designa la transformación identidad, entonces 

g'(a) -1 o g'(t) - I(t) = g'(a) -1 o {g'(t) - g'(a)}, 

luego si li t - all < o tenemos 

IIg'(a)-1 o g'(t) - I(t) 11 :o; Ilg'(a)-11l IIg'(t) - g'(a)1I < M !- = c. 
M 

La desigualdad triangular nos proporciona 11a:1I ::::; IIPII + l/a: - PII. Haciendo 

a: = g'(a)-1 o g'(t) y P = I(t), 

obtenemos (22). 

l.,ema 6. Sea Q un cubo compacto de T. Entonces tenemos 

c[g(Q)] :o; t IJg(t)1 dt. 

Demostración. La integral de la derecha existe como integral de Riemann 
puesto que el integrando es una función continua y acotada en Q. Por con­
siguiente, dado • > O, existe una partición Pe de Q tal que para cada suma de 
Riemann S(P, IJgl) con P más fina que Pe tenemos 

Elegimos la partición P tal que esté constituida por un número finito de cubos 
QJ, .. . , Qm de longitud lateral < 1) , en donde b es el número (dependiente de E) 
dado por el lema 5. Sea ai el centro de Qi y apliquemos el lema 4 a Qi con 
a: = g'(a¡) -1 a fin de obtener la desigualdad 

c[g(Q;)] ::::; Idet g'(a¡)1 {Ah(QJr c(Q¡), (23) 

donde b = a: o g. En virtud de la regla de la cadena tenemos b'(t) = a:'(x) o g'(t), 
en donde x = g(t). Pero a:'(x) = a: puesto que a: es una función lineal, luego 

b'(t) = a: o g'(t) = g'(a;) -1 o g'(t) . 

Pero por el lema 5 tenemos IIb'(t)/I < l + c si t ·E Qi. luego 

Ah(Q¡) = sup Ilb'(t)11 :o; 1 + c. 
te Q¡ 
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Luego (23) nos da 

c[g(Q¡)] ::::; Idet g'(a)1 (1 + c)" c(QJ 

Sumando para todos los i, hallamos 

m 

c[g(Q)] :o; (l + c)" L Idet g/(a¡)1 c(QJ 
i = 1 

Puesto que det g'(a;) = J g(a), la suma del segundo miembro es una suma de 
Riemann S(P, IJgl), y dado que S(P, IJ gl) < SQ IJ it)1 dt + e, obtenemos 

c[g(Q)] :o; (1 + c)" {t IJit)1 dt + c} . 

Pero. es arbitrario, por lo tanto esto implica c[g(Q)] ::::; SQ IJg(t)1 dt. 

Lema 7. Sea K un cubo compacto de g(T). Entonces 

(24) 

Demostración. La integral existe como integral de Riemann puesto que el 
integrando es continuo en el conjunto compacto g-I(K). Además, por el lema 3, 
la integral sobre g-J(K) es igual a la que se obtiene sobre el interior de g-I(K). 
Por el teorema 15.1 podemos escribir 

00 

int g- I(K) = U A¡, 
¡= 1 

en donde {A H A 2 , ••• } es una colección numerable disjunta de cubos cuya adhe­
rencia está contenida en el interior de g- l(K). Luego int g-l(K) = U~ 1 Q¡ en 
donde cada Q 1 es la adherencia de A ,. Puesto que la integral de (24) es también 
una integral de Lebesgue, podemos utilizar la aditividad numerable junto con 
el lema 6 para escribir 
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Lema 8. Sea K un cubo compacto de g(T). Entonces para cada función supe­
rior no negativa f acotada en K, la integral Sg-l(K¡/[g(t)] IJ (t)1 dt existe, y se 
tiene la desigualdad g 

r f(x) dx :::; r f[g(t)] !Jit) 1 dt. 
JK Jg-l(K) 

(25) 

Demostración. Sea s una función escalonada no negativa en K. Entonces existe 
una partición de K constituida de un número finito de cubos K l , ••• , K. tal que s 
es constante en el interior de cada K i , o sea s(x) = ai > O si x E int Ki. Aplica­
mos (24) a cada cubo K i , multiplicamos por ai Y sumamos, obteniendo 

r s(x) dx :::; r s[g(t)] IJg(t)1 dt. 
JK Jg-l(K) 

(26) 

Sea ahora {Sk} una sucesión creciente de funciones escalonadas no negativas 
convergente casi en todo K hacia la función superior f. Entonces (26) se ve­
rifica para cada Sk, Y si hacemos que k -400 obt·enemos (25). La existencia de la 
integral de la derecha se sigue del teorema de convergencia acotada de Lebesgue 
puesto que tanto f[g(l)] como 1 Jit) 1 están acotadas en el conjunto compacto 
g-I(K). 

Teorema 15.16. Sea K un cubo compacto de g(T). Entonces se tiene 

(27) 

Demostración. En vista del lema 7, basta probar la desigualdad 

(28) 

Igual como en la demostración del lema 7, escribimos 

00 00 

int g-I(K) = U A¡ = U Q¡, 
i= 1 i= 1 

en donde {Al' A 2 , ••• } es una colección numerable disjunta de cubos y Qi es la 
adherencia de A·i . Entonces 

(29) 
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Apliquemos ahora el lema 8 a cada una de las integrales SQ; IJg(t)1 dt, tomando 
f = IJ g[ y utilizando la transformación de coordenadas h = g-l. Esto nos pro­
porciona la desigualdad 

que, usada en (29), da (28). 

15.13 COMPLEMENTO DE LA DEMOSTRACIóN 
DE LA FÓRMULA DE CAMBIO DE VARIABLES 

Ahora es relativamente fácil completar la demostración de la fórmula 

r f(x) dx = f f[g(t)] [Jit )[ dt, 
Jg(T) T 

(30) 

en las condiciones establecidas en el teorema 15.11. Esto es, suponemos que T 
es un subconjunto abierto de Rn, que g es una transformación de coordenadas 
en T, y que existe la integral de la izquierda de (30). Vamos a demostrar que la 
integral del segundo miembro existe y que ambas son iguales. Esto se deducirá 
del caso particular en el que la integral del primer miembro está extendida 
sobre un cubo K. 

Teorema 15.17. Sea K un cubo compacto de g(T) y supongamos que existe la 
integral de Lebesgue S K f(x) dx.Entonces existe también la integral de Lebesgue 
Sg -'(K) f[g(t)] [J g(t)[ dt Y ambas son iguales. 

Demostración. Es suficiente demostrar el teorema cuando f es una función su­
perior en K. Entonces existe una sucesión creciente de funciones escalonadas 
{sd tal que Sk -4 f casi en todo K. Por el teorema 15.16 tenemos's 

para cada función escalonada Sk. Cuando k -4 00, tenemos S K Sk(X) dx -+ S K f(x) dx. 

Sea ahora 

si tE g-l(K), 

si tE Rn 
- g-I(K). 
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Entonces 

luego 

lim r h(t) dt = ¡im r Sk(X) dx = r f(x) dx . 
k-oo JRn k-ro JK JK 

Por el teorema de Levi (el análogo al teorema 10.24), la sucesión {f,.,} converge 
casi en todo R " hacia una función de L(R"). Puesto que se tiene 

lim h(t) = {/[g(t)] IJ,(t)1 
k~oo O 

si tE g- l(K), 

sit E R" - g-l(K), 

casi en todo Rn, se sigue la existencia de la integral J,- l(K)f[g(t)] 1 Jit ) 1 dt 
y que es igual a JK ¡(x) dx. Esto completa la demostración del teorema 15.17. 

Demostración del teorema 15.11. Supongamos ahora que la integralJ.(T)f(x) dx 
existe. Puesto que gen es abierto, podemos escribir 

OC! 

g(T) = U A j , 

j= 1 

en donde {A" A 2' ... } es una colección disjunta numerable de cubos cuya 
adherencia está en g(T). Sea Ki la adherencia de A ;. Utilizando la aditividad 
numerable y el teorema 15.17 tenemos 

1m f(x) dx = ~ ti f(x) dx 

= t f[g(t)] 1 J.(t) 1 dt. 

~ L-'(Ki) f[g(t)] IJ.(t)1 dt 

1 

I 
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EJERCICIOS 

15.1 Si f E L(T), en donde T es la región triangular de R 2 de vértices en (O, O), 
(1, O), (O, 1), probar que 

L [(x, y) d(x, y) = J: [J: [(x, y) dY] dx = Ll [f [(x, y) dX] dy. 

15.2 Fijado e, O < e < 1, definimos f en R2 como sigue: 

[(x, y) = {(1 - yy!(x - y)< si O <y < x, O < x < 1, 
O en otro caso. 

Probar que fE L(R2) Y calcular la integral doble SR2 [(x, y) d(x, y). 
15.3 Sea S un subconjunto medible de R2 con medida }1-(S) finita. Utilizar la no­

tación de la definición 15.4 para probar que 

15.4 Sea f(x, y) = e-XV sen x sen y si x ¿ O, y > 0, Y sea f(x, y) = O en otro caso. 
Probar que las dos integrales reiteradas 

L, [L, [(x, y) dX] dy y L, [L, [(x, y) dY] dx 

existen y son iguales, pero que en cambio no existe la integral doble de f en R2. 
Explicar, además, por qué este resultado no contradice el criterio de Tonelli-Hobson 
(teorema 15.8). 

15.5 Sea f(x, y) = (x2 - y2)f(x2 + y 2)2 para O <x < 1, O < Y < 1, Y sea feO; O) = O. 
Probar que las dos integrales reiteradas 

J: [Sol [(x, y) dY] dx y J: [J: [(x, y) dX] dy 

existen pero no son iguales. Esto prueba que f no es integrable de Lebesgue en 
[O, 1] X [0, 1]. 

15.6 Sea 1 = [0, lJ. X [O, 1], sea f(x, y) = (x - y)f(x + y)3 si (X, y) E 1, (x, y) =F 
(O, O), Y sea feO, O) = O. Probar que f (/; L(l) considerando las integra les reiteradas 

J: [J: [(x, y) dY] dx y J: [J: [(x, y) dX] dy. 
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15.7 Sea 1 = [0, 1] x [1, +00] Y sea !(x, y) = e-Itv - 2e-2 "11 si (x, y) E l. Probar 
que f EJ: L(l) considerando las integrales reiteradas 

J: [rOO ¡(x, y) dY] dx y r OO [f ¡(x, y) dX] dy. 

15.8 Las fórmulas de transformación de integrales dobles y triples que siguen, 
aparecen en Cálculo elemental. Obtenerlas como consecuencia del teorema 15.11 
y dar las restricciones a que hay que someter T y T' para la validez de dichas 
fórmulas . 

a) f f ¡(x, y) dx dy = f f f(r cos O, r sen O)r dr dO. 

T T' 

b) f f f ¡(x, y, z) dx dy dz = f f f t(r cos O, r sen O, z)r dr dO dz. 

T T' • 

e) f f f ¡(x, y, z) dx dy dz 

T 

f f f t(p cos O sen ({), p sen O sen ({7, p cos ~) p2 sen rp dp dO árp. 

T ' 

15.9 a) Proba,r que SR2 e-(x
2
+

y 2
) d(x, y) = 7r transformando la integral a coordena-

das polares. 

b) Utilizar la parte (a) para demostrar que S~ 00 e-
x2 

dx = .J;. 
c) Utilizar la parte (b) para demostrar que SR" e-lIxl1 2 d(x¡, . . . , xn) = 7r

n
/2. 

d) Utilizar la parte (b) para calcular S~oo e- tx2 dx y S~oo x 2 e- tx2 dx, t > O. 

15.10 Sea V n(a) la medida n dimensional de la n-bola BCD, a) de radio a. El ejer­
cicio esboza una demostración de la fórmula 

a) Utilizar un cambio lineal de variables para probar que V,,(a) = anVn(1)· 
b) Suponiendo n > 3, expresar la integral para V ... (1) como la reiteración 

de una integral de orden n - 2 Y una integral doble, y utilizar la parte (a) 
para una (n - 2)-bola, para obtener la fórmula 
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c) De la fórmula de reiteración dada en (b) deducir que 
n/ 2 

V
n
(1) = _ _ 7r _ _ 

n!1/ + 1) 

15.11 Referirse al ejercicio 15.10 V demostrar que 

i x¡ d(x¡, ... , x n ) = v"Q2. 
8(0 ; 1) n + 2 

para cada k = 1, 2, .oo , 1/. 
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15.12 Referirse al ejercicio 15.10 y expresar la integral para Vn (1) como la reitera­
ción de una integral de orden n - 1 Y una integral unidimensional, para obtener la 
fórmula de reiteración 

Hacer x = cos t en la integral y utilizar la fórmula del ejercicio 15.10 para dedu­
cir 

i"/2 .J;r(ln +]) 
cosn t dt = _ "2 "2 

o 2 ntn + 1) 

15.13 Si a> 0, sea S n(a) = { (x l' .o ., xn): Ix]1 + .o. + Ixnl < a}, y sea V In(a) la me­
dida n dimensional de S.,,(a). Este ejercicio esboza una demostra<:Íón de la fórmula 
V lI(a} = '2;nanln! . 

a) Utilizar un cambio de variables lineal para demostrar que Vn(a) = anv,,(1) . 
b) Suponiendo n > 2, expresar la integral de V ... (1) como integral reiterada 

de una integral unidimensional y de una integral de orden n- 1, y usar (a) 
para demostrar que 

v,,(1) = v,,-l(l) fl (1 - Ixl)n- l dx = 2v,,-1(1)/n, 

Deducir además que V ... (1) = 2"'lnL 

15.14 Si a > ° y n > 2, sea Sn(a) el siguiente conjunto de Rn: 

Sn(a) = {(x], . .. , xn): IXil + Ixnl ~ a para cada i = 1, .o ., n-l} . 

Sea V n(a) la medida n-dimensional de Sn(a) . Utilizar un método sugerido por el ejer­
cicio 15.13 para probar que V ,,(a) = 2na"ln. 

15.15 Q,n(a) indica el «cuadrante primerQ)l de la n-bola B(O: a) dado por 
Qn(a) = {(x¡"'" xn) : Ilxll ::5 a y ° ~ Xi :5 a para cada i = 1,2, ... , n}. 
Sea ¡(x) = Xl' •• X n y probar que 

¡(x)dx = - . 1 a2n 

Q"(a) 2
n
n! 

APOSTOl, análisis - 18 

http://libreria-universitaria.blogspot.com
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CAPíTULO 16 

Teorema de Cauchy 

y cálculo de residuos 

16.1 FUNCIONES ANALíTICAS 

El concepto de derivada para funciones de una variable compleja se introdujo 
en el capítulo 5 (sección 5.15). Las funciones más importantes en la teoría de 
variable compleja son las que poseen derivada continua en cada uno de los pun­
tos de un conjunto abi·erto . Se llaman funciones analíticas. 

Definición 16.1. Sea f = u + iv una función compleja definida en un conjun­
to abierto S del plano complejo C. Se dice que f es analítica en S si existe y es 
continua * la derivada r en cada punto de S. 

NOTA . Si T es un subconjunto arbitrario de S (no necesariamente abierto), la 
terminología ((f es analítica en T» significa que f es analítica en algún conjunto 
abierto que contiene a T. En particular, f es analítica en un punto z si existe 
un disco abierto en torno de z en el que f es analítica. 

Es posible que una función posea derivada en un punto sin que sea analítica 
en dicho punto. Por ejemplo, si fez) = Iz12, entonces f tiene derivada en O pero 
carece de ella en cualquier otro punto de C. 

En el capítulo 5 se hallaron ejemplos de funciones analíticas. Si fez) = zn 
(en donde n es un entero positivo), entonces f es analítica en todo en C y su 
derivada es f(z) = nzn-l. Cuando n es un entero negativo, la ecuación fez) = z" 
si z =1= O define una función analítica en todo salvo en O. Las funciones polinó­
micas son analíticas en todo C, y las funciones racionales son analíticas en 
todo e salvo en los puntos en los que se anula el denominador. La funcÍón expo­
nencial, definida por la fórmula eZ .= e"(cos y + i sen y), en donde z = x+ iy, 

* Puede demostrarse que la existencia de f en S implica automáticamente la continuidad 
de r en S (hecho descubierto por Goursat en 1900). De aquÍ que una función analítica 
puede definirse como la que meramente posee una derivada por todo S. Sin embargo, in­
cluimos la 'continuidad de' f' como parte de la definición· de analiticidad, ya que permite 
facilitar algunas demostraciones. 
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es analítica en todo C y es igual a su derivada. Las funciones seno y coseno 
complejos (al ser combinaciones lineales de funciones exponenciales) son tam­
bién analíticas en todo C. 

Sea fez) = In z si z *- O, en donde In z designa el logaritmo principal de z 
(ver definición 1.53). Entonces f es analítica en todo C excepto en aquellos puntos 
z = x + iy para los que x < O e y = O. En estos puntos, el logaritmo principal 
deja de ser continuo. La analiticidad en los otros puntos es fácilmente compro­
bable verificando que las partes real e imaginaria de f satisfacen las ecuaciones 
de Cauchy-Riemann (teorema 12.6). 

Más adelante veremos que la analiticidad en un punto z introduce una res­
tricción muy fuerte a una función. Implica la existencia de todas las derivadas 
de orden superior en un entorno de z y también garantiza la existencia de una 
serie de potencias convergente que representa la función en un entorno de z. Es­
to está en marcado contraste con el comportamiento de las funciones reales, 

las que es posible que exista la derivada primera y que sea continua sin 
que por ello se pueda deducir la existencia de la segunda derivada. 

16.2 CAMINOS Y CURVAS EN EL PLANO COMPLEJO 

Muchas de las propiedades fundamentales de las funciones analíticas se dedu­
cen más fácilmente con la ayuda de integrales calculadas a lo largo de curvas 
del plano complejo. Estas integrales se llaman integrales de contorno (o integrales 
de línea, complejas) y serán eStudiadas en la sección que sigue. Esta sección enu­
mera cierta terminología utilizada para diferentes tipos de curvas, como las de 
la figura 16.1. 

arco arco de Jordan curva cerrada Curva de Jordan 

Figura 16.1 

Recordemos que un camino en el plano complejo es una función compleja y, 
continua sobre un intervalo compacto [a, b]. La imagen de [a, b] por y (la grá­
fica de y) se llama curva descrita por y y se dice que une los puntos y(a) y y(b). 

Si y(a) -=F y(b), la curva se Hama arco de extremos y(a) y -y(b). 
Si y es uno a uno en [a, b], la curva se Hama arco simple o arco de lordan. 

~ : , " 

;1 

L 
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Si y(a) = y(b), la curva se llama curva cerrada. Si y(a) = y(b) Y SI I I'N 

uno a uno en el intervalo semiabierto [a , b), la curva se llama curva ("/'J'llltllI 

simple, o curva de lardan. 
El camino y es rectificable si tiene longitud de arco finita, como se ddilli{l 

en la sección 6.10 .Recordemos que y es rectificable si, y sólo si, y es de varia­
ción acotada en [a, b]. (Ver sección 7.27 y teorema 6.17.) 

Un camino y es regular a trozos en [a, b] si posee derivada acotada y' con­
tinua en todo [a, b] excepto (quizás) en un número finito de puntos. En cslos 
puntos exoepcionales se requiere que existan las dos derivadas laterales. la de­
rivada por la derecha y la derivada por la izquierda. Un camino regular a 
trozos es rectificable y la longitud de su arco la da la integral J~ ly'(t)1 dt. 

Un camino cerrado regular a trozos se Hamará un circuitO'. 

Definición 16.2. Si O'E C y r > O, el camino y definido por la ecuachín 

O ::;; e ::;; 2n, 

se llama círculo de centro a y radio r, orientado positivamente. 

Figura 16.2 

NOTA. El significado geométrico de 1'(8) se halla representado en la figura 16.2. 
Dado que 8 varía de O a 2;¡-, el punto '1(8) se mueve a lo largo del círculo CII 

sentido contrario al de las agujas del ,reloj. 

16.3 INTEGRALES DE CONTORNO 

Las integrales de contorno se definen en términos de integrales de Riemanll­
Stieltjes complejas, discutidas en la sección 7.27. 

Definición 16.3. Sea y un camino en el plano complejo con dominio [a. h). y 
sea f una función compleja definida en la gráfica de y. La integral de contorno 
de f a lo largo de y, designada por medio de Ir f se define por la ecuaciiÍlI 

f/ = r f[y(t)] dy(t), 

siempre que la integral de Riemann-Stieltjes de la derecha exista 
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NOTACIÓN. Para designar la integral se escribe también 

If(Z)dZ 

O 

f
Y(b) 

f(z) dz, 
y( al 

La variable muda z se puede sustituir por cualquier otro símbolo conveniente. 
Por ejemplo, Lf(z) dz = L.f(w) dw. 

Si y es rectificable, entonces una condición suficiente para que exista J y f es 
que f sea continua en la gráfica de y (teorema 7.27). 

El efecto obtenido al reemplazar y por un camino equivalente (tal como s'e 
definió eh la sección 6.12) es, en el peor de los casos, un cambio de signo. En 
efecto, se tiene: 

Teorema 16.4. Sean y y S dos caminos equivalentes que describen una mis­
ma curva r. Si existe Lf entonces existe también JóJ. Además se verifica 

si y y ó recorren la curva r en la misma dirección, mientras que 

si y y S recorren la curva r en direcciones opuestas. 

Demostración. Supongamos que J(t) = y[u(t)] en donde u es estrictamente mo­
nótona en {e, d]. Aplicando la fórmula del cambio de variables para integrales de 
Riemann·Stieltjes (teorema 7.7) tenemos 

fU(dl Id i f[y(I)] dy( t) = f[J(t)] dJ(t) = .r 
u(el e el 

(1) 

Si u es creciente entonces u(c) = a, u(d) = b Y (1) nos da f y f = fol. 
Si u es decreciente entonces u(c) = b, u(d) = a y (1) nos da f y f = - f ~ f. 

El lector puede verificar fácilmente las siguientes propiedades aditivas de 
las integrales de contorno. 
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Teorema 16.5. Sea y un camino con dominio [a, b). 

i) Si existen las integrales f y f y Lg, entonces existe la integral I r(a! I /1,:1 
para cada par de números complejos a, (3, y se tiene 

1 (rxf+ pg) = rxl f + pl g. 

ii) Sean y, y Y2 las restricciones de y a [a, e] y [e, b], respcc/il'lll/II'II/I' , 1'" 

donde a < e < b. Si existen dos de las tres integrales que intavielll'lI 1'1/ (.1 lo 
entonces también existe la tercera y se tiene 

f f=f f+f.r 
y y, Y2 

(.'1 

En la práctica, muchos de los caminos de integración son rcctific:thk~, 1'11111 

tales caminos se utiliza a menudo el siguiente teorema para dar una :tclllnl'i.\1I 
del valor absoluto de la integral de contorno. 

Teorema 16.6. Sea y un camino rectificable de longitud A{y). Si 1'.li,IIt' 111 

integral f y f, y si If(z) I < M para todo z de la gráfica de y, el//I/IIC1'.I· /1'1/1'111",1' 

la desigualdad 

I Ifl $ M A(y). 

Demostración. Basta observar que todas las sumas de Riemann-S(ieltjl's qlll' 

intervienen en la definición de J~f[y(t)] dy(t) tienen un valor absoluto qll(' 1111 

excede a MA(y). 

Las integrales de contorno tomadas sobre curvas regulares a trozos pllrdrll 

expresarse como integrales de Riemann. El teorema que sigue es conscclll~lIcill 

fácil del teorema 7.8. 

Teorema 16.7. Sea y un camino regular a trozos con dominio [a, b]. Si 1'.ri,I'/I' 

la integral de contorno f y f, se tiene 

1 f = r f[y(t)] y'(t) dt. 
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16.4 LA INTEGRAL A LO LARGO DE CAMINOS CIRCULARES 
EXPRESADA EN FUNCIóN DEL RADIO 

Consideremos un camino circular y de radio r > O Y centro a, dado por 

O ~ 8 ~ 2n. 

En esta sección estudiamos la integral J y f en función del radio r. 
Sea 9'(r) = J y f. Como y'B = irei°. el teorema 16.7 nos da 

f
2" 

ep(r) = fea + reiO)ire iO d8. 
. o 

(3) 

Cuando r varía en el intervalo [rl' r2 ]. en donde O < rl < r2 , los puntos y(8) 
dibujan un anillo que se designa por medio de A(a; rl' r2 ) (Ver fig. 16.3.) Luego, 

A(a; r1 , r2) = {z: r1 ~ Iz - al ~ r2}. 

Si r l = O, el anillo es un disco cerrado de radio r2 • Si f es continua en el anillo, 
entonces 9' es continua en el intervalo [r" r J. Si f es analítica en el anillo. en­
tonces '9' es diferenciable en [r" r2 ]. El próximo teorema demuestra que p es 
constante en [r" r 2] si f es analítica 'en todo el anillo excepto quizás en un sub­
conjunto finito, en el supuesto de que f sea continua en dicho subconjunto. 

Figura 16.3 

Teorema 16.8. Suponemos que f es analítica en el anillo A(a; r l' r 2)' ex­
cepto quizás en un número finito de puntos. Suponemos que, en estos puntos 
excepcionales, f es continua. Entonces la fundón rp definida por (3) es constante 
en el intervalo [r1 , ' 2]. Además, si r1 = O, la constante es O. 

Demostración. Si Zl ' .. . , Zn designa los puntos excepcionales en los que falla 
la analiticidad de f, enumeremos estos puntos de acuerdo con el crecimiento de 
distancias al centro, es decir 

Iz¡ - al ~ IZ2 - al ~ ... ~ IZn - al, 

1 .... 

j 

I 

L 
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y sea Rk = IZk - a¡. Igualmente sean Ro = r ¡, Rn+ ¡ = r 2' La umon de los 
intervalos [Rk , R k+1] para k = 1,2, .. . , n-1 es el intervalo [r l' rJ. Proha­
remos querp es constante en cada uno de los intervalos [R k , R k+ l ]. Escribi­
mas (3) en la forma 

ep(r) = J:" g(r, O) d8, en donde g(r, 8) = fea + reio)ireiO
• 

Aplicando la regla de la cadena s'e obtiene fácilmente 

og 
08 

. og 
¡r- . 

or 

(El lector puede verificar dicha fórmula .) La continuidad de r implica la COII ­

tinuidad de las derivadas parciales oglor y oglof). Por consiguiente. en cadn 
intervalo abierto (R k , Rk+l) podemos calcular 9"(r) difer'enciando bajo el si~I\I) 
de integración (teorema 7.40) y entonces utilizar (4) y el segundo teorema fUII ­

damental del Cálculo (teorema 7.34) para obtener 

f27t o l f21< o 1 
ep '(r) = Jt d8 = ~ Jt d8 = ~ {g(r, 2n) - g(l' , O)} 

o o r Ir o 08 1 r 
o. 

Aplicando el teorema 12.10 vemos que 9' es constante en cada suhintcrvlllo 
abierto (R k , Rk+l). Por la continuidad, rp es constante en cada subintervalu C'l'­

rrado [R k , Rk+l] Y por lo tanto en su unión [r l , r 2 ]. En virtud de (l) WIIH1N 

que 9'(r) -- O cuando r -- O, luego el valor constante de 11 es O si r, = O. 

16.5 EL TEOREMA DE LA INTEGRAL DE CAUCHY 
PARA UN CíRCULO 

El caso especial del teor'ema 16.8 que damos a continuación es de particular 
importancia. 

Teorema 16.9 (Teorema de la integral de Cauchy para un círculo). Si 
f es analítica en un disco B(a; R) excepto quizás para un número finito de PUl/­

tos en los que es continua. entonces 
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para cada camino circular y con centro en a y radio r < R. 

Demostración. Elegimos r2 tal que r < r2 < R Y aplicamos el teorema 16.8 
con r¡ = O. 

NOTA. Existe una forma más general del teorema de la integral de Cauchy en 
que el camino circular y se substituye por un camino cerrado más general. 
Estos caminos más generales se introducirán a través del concepto de homotopía. 

Figura 16.4 

16.6 CURVAS HOMOTóPICAS 

La figura 16.4 muestra tres arcos que tienen los mismos puntos extremos A y B 
situados en la región abierta D. El arco 1 puede ser deformado con continuidad 
hasta transformarse en el arco 2 por medio de una colección de arcos inter­
medios, cada uno de los cuales pertenece a D. Dos arcos que posean esta pro­
piedad se llaman hamo tópicos en D. El arco 1 no se puede deformar en el arco 3 
(puesto que existe un agujero que los separa), luego no son homotópicos en D. 

En esta sección damos una definición formal de homotopía. A continuación 
vemos que, si f es analítica en D, la integral de contorno de f de A a B tiene 
el mismo valor a lo largo de dos caminos homotópicos en D . En otras palabras, 
el valor de una integral de contorno f! f permanece inalterado en las deforma­
ciones continuas del camino, en el supuesto de que los contornos intermedios 
permanezcan en el interior de la región de analiticidad de f . Esta propiedad 
de las integrales de contorno es de máxima importancia en las aplicaciones de 
la integración compleja. 

Definición 16.10. Sean Yo Y Yl dos caminos con dominio común la, b]. Su­
pongamos que o bien 

a) Yo Y y¡ tienen los mismos extremos: yo(a) = y¡(a) y yo(b) =y¡(b), o bien 
b) Yo Y y ¡ son ambos caminos cerrados: yo(a) = yo(b) y y¡(a) = y¡(b). 

t 
f 

L 
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Sea D un subconjunto de e que contenga las gráficas de y" y y, . bllolll, '.\' 

Yo Y Yl son homotópicas en D si existe una función h, continua en el ,,'l'Itíl/ ­

gula [O, 1] X [a, b], y con valores en D, tal que 

1) h(O, t)= yo(t) si tE [a, b], 
2) h(1, t) = y,(t) si t E [a, b]. 

Además ex igimos que cada s de [O, 1] verifique 

3a) hes, a) = yo(a) y hes, b) = y oCb), en el caso (a); 
o bien 
3b) hes, a) = hes, b), en el caso (b). 

La función h se llama una homotopía. 

El concepto de homotopía admite una interpretación geométrica simple 1'11111 

cada s de [O, 1], fijo, sea ys(t) = hes, t) . Entonces Ys se puede cntelldl'r l'llllll1 
un camino intermedio que se deforma desde Yo cuando s = O hasta y , l'lIlell 

do s = 1. 

Ejemplo 1. Homotopía en un punto. Si Yl es una función constante, por lo qllo NII 

gráfico es un solo punto, y si Yo es homotópico en Yl en D, decimos que y" I' ,~ 11" 
motópico a un punto en D. 

Ejemplo 2. Homotopía lineal. Si para cada t en [a. b] el segmento de n'da 1(11" 

une y,, (t) con YI(t) está situado en D, entonces Yo y y¡ son homotópicos l'n /) pOI 

que la función hes, t) = sy¡(t) + (1 - s)yo(t) sirve como homotopía. Fn l'~tl' l ' II~1I 
se dice que Yo y y ¡ son homotópicas linealmente en D. En particular, dos l':11I111I1I~ 
con dominio [a, b] son homotópicos lineales en e (el plano complejo) o, ,.tl'1I1'1i11l 

zando, en cualquier conjunto convexo conteniendo sus grafos. 

NOTA. La homotopía es una relación de equivalencia. 

El teorema que sigue demuestra que entre dos caminos homotópicos l'1I,,11'~ 
quiera se puede interpolar un número finito de caminos poligonales intrllllr ­
dios , cada uno de los cuales es linealmente homotópico a su vecino. 

Teorema 16.11 (Teorema de interpolación poligonal). Sean y" y T' , '1/" 

minos homotópicos en un conjunto abierto D. Entonces existe un nÚlI/cro jil/lttl 
de caminoslXo' <X H .. . , Cl.n tales que: 

a) 'lXo = Yo Y Cl.n = Yl' 
b) <X ¡ es un camino poligonal para 1 < i < n -1, 
e) <X j es linealmente homotópico en D a ,1Xi+¡ para O < j < n- 1. 
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Demostración. Puesto que Yo Y y ¡ son homotópicos en D, existe una homo­
topía h que satisface las condiciones de la definición 16.10. Consideremos las 
particiones 

{so, SI' ... , s,,} de [O, 1] Y {to, ti' . . . , t.n } de [a, b] , 

en n partes iguales, eligiendo n suficientemente grande para que la imagen 
por h de cada rectángulo [si, Si+'] X [tk, tk+l] esté contenida en el disco abier­
to D j k contenido en D. (El lector verificará que esto es posible puesto que h es 
uniformemente continua.) 

En el camino intermedio Ysi dado por medio de 

ys/t) = h(sj, t) para O < j < n, 

inscribimos un camino poligonal (Xi con vértices en los puntos h(Si' tk). Esto es, 

y 'rij es lineal en cada subintervalo [h, tk+l] para O < k < n - 1. Definimos 
1ambién ri" = Yo Y 'ri" = y¡. (En la figura 16.5 puede verse un ejemplo.) 

Los cuatro vértices a/tk ), a/tk +¡), rx j+¡(tk ) , Y rxj+¡(tk +¡) pertenecen todos al 
disco D ik. Puesto que D ik es convexo, el segmento rectilíneo que los une per­
tenece asimismo a D j " y por lo tanto los puntos 

(5) 

pertenecen a D jk para cada (s, t) de [O, 1] X [tk , tk + ¡]. Por lo tanto los 
puntos de (5) pertenecen a D para cada (s, t) de [O, 1] X [o, b], luego (Xi+¡ es 
linealmente horno tópico ari j en D. 

Figura 16.5 

] 6.7 INV ARIANCIA DE LAS INTEGRALES DE CONTORNO 
EN LAS HOMOTOPíAS 

Teorema 16.12. Supongamos que f es analítica en un conjunto abierto D, 
excepto quizás para un número finito de puntos en los que es continua. Si Yo 
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y y, son caminos regulares a trozos que, además, son homotópicos en D, se 
tiene 

Demostración. Consideremos ante todo el caso en que Yo Y Y. son linealmente 
homotópicos. Para cada s de [O, 1] sea 

y,(t) = sy¡(t) + (I - s)yo(t) si t E [a, b]. 

Entonces y. es regular a trozos y su gráfica pertenece a D. Escribimos 

y,(t) = yo(t) + sa(t), en donde a(t) = y¡(t) - yo(t), 

y definimos 

cp(s) = Is f = r f[y,(t)] dyo(t) + s r f[ y.(t)] da(t), 

para O < s <1. Queremos demostrar que \?(O) = \?(l). Realmente lo que pro­
baremos es que '\? es constante en [O, 1]. 

Utilizamos el teorema 7.40 para calcular g¡'(s), diferenciando bajo signo de 
integración. Puesto que 

a 
- y.(t) = a(t), 
as 

esto nos da 

cp'(s) = r j'[Ys(t)]a(t) dyo(t) + s r j'[Ys(t)]a(t) da(t) + r f[ysC t )] da(t) 

= r rx(t)j'[ys(t)] dy.(t) + r f[y,(t)] da(t) 

= r a(t)f'[y.(t)]y~(t) dI + r f[ y.(t)] da(l) 

= r a(t) d {t[YsCt )]} + r f[ysCt)] da(t) 

= rx(b)f[y.(b)] - a(a)f[ys(a)], 
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aplicando la fórmula de integración por partes (teorema 7.6). Pero como puede 
verificar el lector fácilmente, la última expresión se anula, puesto que Yo Y Yl 
son homotópicas, luego <p'(s) = O para todo s de [O, 1]. Por consiguiente <p es 
constante en [O, 1]. Esto demuestra el teorema cuando Yo Y y, son linealmente 
homotópicos en D. 

Si son homotópicos en D en una homotopía general, interpolamos caminos 
poligonales 'ClJj tal como hemos descrito en el teorema 16.11. Puesto que cada 
camino poligonal es regular a trozos, podemos aplicar repetidamente el resul­
tado ya demostrado para obtener 

f f= r f= r f= ... = r f= f f 
}'o Jao J«1 Jan Y¡ 

16.8 FORMA GENERAL DEL TEOREMA DE LA INl:EGRAL 
DE CAUCHY 

La forma general del teorema de Cauchy enunciada anteriormente se puede 
ahora deducir fácilmente de los teoremas 16.9 y 16.12. Recordamos al lector 
que un circuito es un camino cerrado regular a trozos. 

Teorema 16.13 (teorema de la integral de Cauchy para circuitos homo­
tópicos a un punto). Supongamos que f es analítica en un conjunto abierto D, 
excepto quizás en un número finito de puntos en los que suponemos que f es 
continua. EntO'nces, para cada circuitO' Y homotópico a un punto en D, tenemos 

1f= o. 

Demostración. Puesto que Y es horno tópico a un punto en D, Y es también 
homotópico en D a un camino circular ó de radio suficientemente pequeño. 
Por lo tanto f y f = f ó f, e f ó = O en virtud del teorema 16.9. 

Definición 16.14. Un conjunto abierto y conexo D es llamado simplemente 
conexo si cada camino cerrado en D es homotópico a un punto en D. 

Geométricamente, una región simplemente conexa es la que carece de agu­
jeros. El teorema de Cauchy prueba que, en una región D simplemente conexa 
la integral de una función analítica a lo largo de cualquier circuito contenido 
en D es cero. 

> 

Teorema de Cauchy y cálculo de residuos 539 

16.9 FóRMULA DE LA INTEGRAL DE CAUCHY 

El teorema que damos a continuación pone de manifiesto una pr~~iedad ~.uy 
notable de las funciones analíticas. Relaciona el valor de una funClon anahtlca 
en un punto con los valores en una curva cerrada que no contenga al punto. 

Teorema 16.15 (fórmula de la integral de Ca.uch.y). Supo~gamos que/.es 
analítca en un conjunto abierto D, y sea Y un CircUIto cualqUIera homotoplcO 
a un punto en D. Entonces, para cada punto z de D que no pertenezca a la 

gráfica de Y tenemos 

f f(w) f 1 - --- dw = fez) - - dw. 
yW-Z yW-Z 

(6) 

Demostración. Definimos una nueva función g en D como sigue: 

{

f(W) - fez) 

g(w) = w - z 

I'(z) 

si w~z 

si w = z. 

Entonces g es analítica en cada punto w =1= z de D y, en el mismo punto Z, g es 
continua. Aplicando el teorema de la integral de Cauchy a g tenemos f y g = O 
para cada circuito Y horno tópico a un punto de D. Pero si z no pertenece a la 
gráfica de Y podemos escribir 

J = J f(w) - fez) dw = J f(w) dw - fez) J ~ dw, 
9 w-z yW-Z yW Z 

y y 

que prueba (6). 

NOTA. La misma demostración prueba que (6) es también válida si existe un 
subconjunto finito T de D en el que f no es analítica, en el supuesto de que f 
sea continua en T y de que z no pertenezca a T. 

La integral f y (w - Z)-l dw que aparece en (6) juega un papel import~nte 
en la teoría de la integración y será estudiada más ampliam~nte ~n la próxima 
sección. Podemos calcular fácilmente su valor para un camillO circular. 

Ejemplo. Si es un camino circular con centro en z y radio r orientado posi­
tivamente, po~emosescribir y(O) = z + réo, O < O < 271". Entonces y'(e) = ire

iO = 
i{y(O) - z}, y obtenemos 



I 
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--- = de = 1 de = 2m. J dw i2
" y'(e) i2

" • . 

y w - z o y(e) - z o 

NOTA. En este caso la fórmula de la integral de Cauchy (6) toma la forma 

2nif(z) = f f(w) dw. 
y w - z 

Escribiendo de nuevo y(B) = z + re i O, podemos poner la anterior expresión en 
la forma 

f(z) = - fez + rei8
) dO. 1 f2" 

2n o 
(7) 

Esto se puede interpretar como un teorema del valor medio que expresa el va­
lor de f en el centro de un disco como un promedio de los valores que toma 
en la frontera del disco. La función f se ha supuesto analítica en la adherencia 
del disco, excepto quizás para un subconjunto finito en el que es continua. 

16.10 NÚMERO DE GIROS DE UN CIRCUITO CON RESPECTO 
A UN PUNTO 

Teorema 16.16. Sea y un circuito y sea z un punto que no pertenezca a la 
gráfica de y. Entonces existe un entero n (que depende de y y de z) tal que 

f dw 2' - - = nln. 
y w - z (8) 

Demostración. Supongamos que y tiene dominio [a, b]. En virtud del teore­
ma 16.7 podemos expresar la integral de (8) como una integral de Riemann, 

f ~ = Ib 
y'(t) d,- . 

y w - Z a y( t) - z 

Definimos una función compleja en el intervalo [a, b] por medio de la ecuación 

F(x) ~ IX y'(t) dt 
a y(t) - z 

si a < x< b. 
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Para demostrar el teorema debemos probar que F(b) = 211"in para un l'lIh'l" 11 

Ahora bien, F es continua en [a, b] y tiene una derivada 

F'(x) = y'(x) 
y(x) - z 

en cada punto de continuidad de '1' . Por consiguiente la función G definida 1'"1 

G(t) = e -F(t){y(t) - z} si tE [a, b], 

es también continua en [a, b]. Sin embargo, en cada uno de los rllI110 ,~ de' 
continuidad de r.' tenemos 

G'(t) = e-F(t)y'(t) - F'(t)e-F(t){y(t) - z} = O. 

Por consiguiente G'(t) = O para cada t de [a, b] excepto (quizás) para un 11"1 -

mero finito de puntos. Por la continuidad, G es constante en todo [u, "l. 1'01' 

lo tanto, G(b) = G(a). En otras palabras, tenemos 

e-F(b){y(b) - z} = y(a) - z. 

Dado que y(b) = y(a) =1= Z, obtenemos 

e-F(b) = 1, 

que implica F(b) = 2 .. in, en donde n es un entero. Esto termina la demoslral'i(\1I 

Definición 16.17. Si Y es un circuito cuya gráfica no contiene a z. ('/1/0111 '1',1' 

eL entero n definido por (8) se llama número de giros (o índice) de y 1'(//1 

respecto a z, y se designa por medio de n(y, z) . Así pues, 

n(y, z) = - . -- . 1 f dw 
2m y w - z 

NOTA. La fórmula de la integral de Cauchy (6) se puede establecer ahora ell 

la forma 

n(y, z )f(z) = - . - - dw. 1 f f(w) 
2m y w - z 

El término «número de giros» se usa puesto que n(y, z) da un método ma­
temático preciso para contar el número de veces que el punto y(t) «gira alre-
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d;dor» de! punto z c~~ndo t recorre el intervalo [a. b]. Por ejemplo, si 'Y es un 
cIrculo orte~tado pOSItIvamente dado por y(8) = z + rei O, en donde O < 8 < 2 .. , 
ya hemos VIstO que el número de giros es 1. Esto está de acuerdo con la in­
terp~etación física del hecho de que el punto y(8) recorre una vez una circunfe­
rencIa en sentido positivo cuando 8 varía de O a 2IT. Si () varía sobre el intervalo 
[?', 2ITn],. ~l punto y\8) recorre n veces la circunferencia siguiendo la direc­
clan posItiva y constI~uye un cálculo fácil comprobar que el número de giros 
es n. Por otro lado, SI 8(8) = z + re-te para O < 8 < 27(n, entonces 8(8) recorre 
n veces ~a circunferencia en la dirección opuesta y el número de giros es - n. 
Un cammo tal como 1) se llama camino orientado negativamente. 

16.11 LA NO ACOTACIóN DEL CONJUNTO DE PUNTOS 
CON NÚMERO DE GIROS IGUAL A CERO 

Des.ignemos por medio de r la gráfica de un circuito ')'. Dado que r es un 
conjunto compacto, su complementario C - r es un conjunto abierto que, por 
e~ ~eorema 4.44, es la unión de una infinidad numerable de regiones abiertas 
dJsjunt~s (las componentes de C - r). Si consideramos las componentes como 
~ubconjuntos del plano ampliado C*, una de ellas y sólo una contiene el punto 
Ideal '::xl. En otras palabras, una y sólo una de las componentes de C - r está 
no acotada. El próximo teorema prueba que el número de vueltas n(y, z) es O 
para cada z de la componente no acotada. 

Teorema 16.18. Sea l' un circuito de gráfica r. Dividimos el conjunto C - r 
en dos subconjuntos: 

E = {z:n(y,z) = O} e 1 = {z: n(y, z) # O}. 

Entonces tanto E como 1 son abiertos. Además, E está no acotado e 1 está 
acotado. 

Demostración. Definimos una función g en C - r por medio de la fórmula 

1 f dw g(z) = n(y, z) = - , ---- . 
2ni y w - z 

Por el teorema 7.38, g es continua en C - r y, dado que g(z) es siempre un 
entero, se sigue que g es constante en cada una de las componentes de C - r. 
Por consiguiente, tanto E como 1 son abiertos puesto que cada uno de ellos es 
unión de component'es de C - r. 

Designe~os por U la componente no acotada de c-r. Si probamos 
que E contIene a U habremos demostrado que E no está acotado y que 

Teorema de Cauchy y cálculo de residuos 543 

T sí lo está. Sea K una constante tal que ly(t)1 < K para todo t del dOJllilli" 
de y, y sea c un punto de U tal que Icl > K + A(y) en donde A(I') es la 1011 -

gitud de ')'. Entonces tenemos 

1 1 < ---o- o 
lel - ly(t)1 lel - K 

Acotando la integral que nos da n(y, c), por medio del teorema 16.6 OhlL'lIl'III"~ 

o $: Ig(e)1 $: 
A(y) 

lel - K 
< 1. 

Dado que g(c) es un entero debemos tener g(c) = O, luego g toma el valor (1 

en U. Por lo tanto E contiene al punto e, y por consiguiente E contiene a tndoN 
los puntos de U. 

Existe un teorema general, llamado el teorema de la curva de Jor(/(/I/. qll!' 

establece que si r es una curva de Jordan (curva cerrada simple) descrita p"r ¡. 

entonces cada uno de los conjuntos E e 1 del teorema 16.18 es conexo. 1:11 
otras palabras, una curva de Jordan l' divide a C - l' exacta/l/CII/(' ell d".\· 
componentes E e 1 que tienen a r por frontera común. El conjunto I se Ihllllll 
la región interior (o interior) de r, y se dice que sus puntos están dl'l//ro (k 1' .. 
El conjunto E se llama la región exterior (o exterior) de r, y sc diCt~ !Jlll' ~IIN 
puntos están fuera de r. 

A pesar de que el teorema de la curva de Jordan es intuitivamclIll' l'vidl'lItr 
y es fácil de demostrar para cierto tipo familiar de curvas de Jordan tales l'nllll' 
círculos, triángulos y rectángulos, la demostración para una curva de .Inrdllll 
arbitraria no es sencilla. (Pueden hallarse demostraciones en las rercrl'lIl'il\~ 
16.3 y 16.5.) 

No necesitaremos en absoluto el teorema de la curva de Jordan para dr ­
mostrar los teoremas de este capítulo. Sin embargo, el lector debe observar qlll' 

las curvas de Jordan que intervienen en las aplicaciones ordinarias de la Il'orfll 
de la integración compleja se hallan usualmente constituidas de un nt'lllll'l'lI 
finito de segmentos rectilíneos y arcos circulares, y para tales ejemplos es, ('11 

general, totalmente obvio que C - r consta exactamente de dos componenll's. 
Para los puntos z del interior de tales curvas el número de giros n(l', z) es .~ I 
o -1 ya que ')' es homotópico en 1 a un camino circular 8 con centro en ~. 
luego n(')', z) = n(8, z), y n(8, z) es + 1 o -1 según que el camino circular estL' 
orientado positiva o negativamente. Por esta razón decimos que un circuito de 
Jordan ')' está orientado positivamente si, para algún z del interior de 1" tene­
mos n(')', z) = + 1, y orientado negativamente si n(')', z) = -1. 
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16.12 FUNCIONES ANALíTICAS DEFINIDAS POR 
INTEGRALES DE CONTORNO 

La fórmula de la integral de Cauchy, que establece 

n(y, z)f(z ) = _1 f f(w) dw, 
2ni y w - z 

tiene muchas consecuencias importantes. Algunas de ellas se deducen del próxi­
mo teorema que maneja integrales de un tipo ligeramente más general en las 
que el integrando f(w) /(w - z) se substituye por '9'(w)/(w - z), en donde 9' sólo 
es continua y no necesariamente analítica, y y es un camino rectificable y no 
necesariamente un circuito. 

Teorema 16.19. Sea y un camino rectificable de gráfica r. Sea <p una fun­
ción compleja continua en r, y sea f definida en C - r por 'la ecuación 

fez) = f q¡(w) dw si z f$. r. 
y w - z 

Entonces f posee las siguientes propiedades: 
a) Para cada punto a de C - r, f posee un desarrollo en serie de potencias 

00 

f(z) = L: c"(z - a)", (9) 

"=0 

en donde 

c = f q¡(w) . dw 
" y (w_a)n+l 

para n = O, 1, 2, ... (10) 

b) La serie de (a) posee un radio de convergencia positivo > R, en donde 

R = inf {Iw - al : w E n· (11) 

e) Para cada n, la función f posee derivada de orden n en e - r dada por 

¡<n)(z) = n! f q¡(w) dw 
y(w - Z)"+1 

si z f$. r. (12) 

Demostración. Obsérvese, ante todo, que el número R definido por medio 
de (11) es positivo puesto que la función g(w) = Iw - al tiene un mínimo en el 
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r 

Figura 16.6 

conjunto compacto r, y este mínimo no es cero ya que a f$. 1'. Entonces, U es 
la distancia de a al punto más próximo de r. (Ver fig . 16.6.) 

Para demostrar (a) consideremos la identidad 

1 k t k + 1 

- - .. - = L: t" + - - . , 
1 - t "=0 1 - t 

( 111 

válida para todo t of= 1. Tomemos t = (z - a)/(w - a) en donde Iz · 111· U 
y w E r. Entonces tenemos 1/(1 - t) = (w - a)/(w - z). Multiplicando (111 plll' 

9'(w)/(w - a) e integrando a lo largo de y, obtenemos 

f 
q¡(w) fez) = _ ... dw 

y w - z 

t (z - a)n f -- q¡.(~ - dw + f q¡(w) (z - a)k II dI\' 
n = o y (w - a)" + 1 Y W - Z W - a 

k 

L cn(z - a)" + Ek , 
n=O 

en donde en viene dada por (lO) y Ek por 

f q¡(w) (z - a)k+l Ek = -- --- dw. 
y W-Z w-a 

( 1·1) 

Vemos ahora, acotando el integrando de (14), que Ek ---)o O cuando k - ) 'Y' . Te­
nemos 

I~ - al Iz - al -- < - _ ... -
w - a - R 

y 
1 1 

--- - - - - - < - ---
Iw - zl Iw - a + a - zl - R - la - zl 

http://libreria-universitaria.blogspot.com
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Sea M = max {lll(w)l: w 'E r}, y sea 1\.("}') la longitud de "}'. Entonces (14) nos da 

IEd ~ -- _.- . M A(y) (IZ - al)k+J 
R - la - zl R 

Puesto que Iz - al < R obtenemos que Ek ~ O cuando k ~ oo. Ello prueba 
(a) y (b). 

Aplicando el teorema 9.23 a (9) vemos que f posee derivadas de todos los 
órdenes en el disco B(a; R) Y que f <n) (a) = n! cn • Puesto que a es un punto ar­
bitrario de C - r, (e). queda demostrado. 

NOTA. La serie de (9) puede tener un radio de convergencia mayor que R, en 
cuyo caso puede o no representar a f en los puntos más distantes. 

16.13 DESARROLLO EN SERIE DE POTENCIAS 
DE LAS FUNCIONES ANALíTICAS 

Una combinación de la fórmula de la integral de Cauchy con el teorema 16.19 
nos proporciona: 

Ttwrema 16.20. Supongamos que f es analítica en un conjunto abierto S de C, 
y sea (J¡ un punto de S. Entonces existen todas las derivadas f<n)(a), y f se puede 
representar por medio de la serie de potencias convergente 

", f(n)(a) n 
f(z) = L · -- (z - a) , 

n=O n! 
(15) 

en cada disco B(a; R) cuya adherencia esté en S. A demás, para cada n ¿ O te­
nemos 

f(n)(a) = ~ f _J(w) . dw, 
2rri y (w - a)"+ 1 

(16) 

en donde"}' es un camino circular de centro en a y radio r < R, orientado po­
sitivamente. 

NOTA. La serie dada en (15) se conoce con el nombre de desarrollo de Taylor 
de f en torno de a. La 'ecuación dada en (16) se llama fórmula de la integral de 
Cauchy para ¡<n)(a). 
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Demostración. Sea"}' un circuito homotópico a un punto de S, y sea l' la gr:í ­
fica de "}'. Definimos g en C - r por medio de la ecuación 

g(z) = f f(wl dw si z~r. 
y w - z 

Si z E B(a; R), la fórmula de la integral de Cauchy nos dice que g{z) = 
2rrin("}', z) fez). Luego, 

n(y, z )f(z) = .~ f J(~L dw 
2ITi y w - z 

si Iz -- al < R. 

Sea ahora "}'(O) = a + rei°, en donde Iz - al < r < R Y O < 0< 2rr. Entonces 
n("}' , z) = 1, luego aplicando el teorema 16.19 a ll(w) = f(w)/(2m) ohtenemos 
una representación en serie 

00 

fez) = L Cn(Z - ar, 
n=O 

convergente para Iz - al < R, en donde Cn = f< 1I)(a)/n!. Luego la parte (e) 
del teorema 16.19 da (16). 

Los teoremas 16.20 y 9.23 considerados simultáneamente nos dicen que una 
condición necesaria y suficiente para que una función compleja f sea analítica 
en un punto a es que f se pueda representar como serie de potencias en un 
cierto entorno de a. Cuando tal serie de pot'encias existe, su radio de conver­
gencia es por lo menos tan grande como el radio de cualquier disco B(a) con­
tenido en la región de analiticidad de f. Dado que el círculo de convergencia 
no puede contener en su interior puntos en los que la analiticidad .de f no se 
verifique, se deduce que el radio de convergencia es exactamente igual a la 
distancia de a al punto más próximo en el que f deja de ser analítica. 

Esta observación nos da un conocimiento profundo acerca de los desarrollos 
en serie de potencias de las funciones reales de variable real. Por ejemplo, sea 
f(x) = 1/(1 + X2) si x es real. Esta función está definida en todo Rl y tiene 
derivada de cualquier orden en cada uno de los puntos de R l

. Además, admite 
un desarrollo en serie de potencias en torno al origen, a saber, 

No obstante, esta representación es válida sólo en el intervalo abierto (-1, 1). 
Desde el punto de vista de la teoría de la variable real, no hay nada en el 
comportamiento de f que explique este hecho. Pero cuando examinamos la 
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situación en el plano complejo, vemos al momento que la función f(z) = 
1/(1 + Z2) es analítica en todo C excepto en los puntos Z = ± i. Por consi­
guienteel radio de convergencia del desarrollo en serie de potencias en torno 
del O debe ser 1, que es la distancia de O a i y a -i. 

Ejemplos. Los siguientes desarrollos en serie de potencias son válidos para todo 
,. en C: 

00 (_1)"Z2" 
e) cos z = L -'-------'--­

"=0 (2n)! 

00 (_1)"Z2"+1 
b) sen z = L .... _-- ._­

"=0 (2n + 1)! ' 

1 (,.14 DESIGUALDADES DE CAUCHY. TEOREMA DE LIOUVILLE 

Si f es analítica en un disco cerrado B(a; R), la fórmula de la integral de 
Cauchy (16) prueba que 

f(")(a) = ~ f f(w) dw, 
2m y (w - a)"+ 1 

en donde " es un camino circular con centro en a y radio r < R, orientado 
positivamente. Podemos escribir ,,(e) = a + re i O, O < e < 27r Y ponerla en la 
forma 

f(II)(a) = - fea + re'O) e-mo de. n! f2" .. 
211:r" o 

(17) 

Esta fórmula expresa la n-ésima derivada en a como promedio ponderado de 
los valores de f en un círculo con centro en a. El caso especial n = O fue ob­
tenido anteriormente en la sección 16.9. 

Sea ahora M(r) el valor máximo de Ifl sobre la gráfica de ". Considerando 
la integral dada en (17), obtenemos inmediatamente las desigualdades de Cauchy: 

M(r)n! 
:s; 

r" 
(n = O, 1, 2, ... ). 

El próximo teorema es una consecuencia fácil del caso n = 1. 

(18) 

Teorema 16.21 (teorema de Liouville). Si f es analítica en todo C yaco­
tada en C, entonces f es constante. 
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Demostración. Supongamos If(z)1 < M para todo z de C. La desigualdad de 
Cauchy con n = l nos da lf(a)1 ~ M /r para cada r > O. Si hacemos que r ~ +oc. 
obtenemos fea) = O para todo a de C y entonces, por el teorema 5.23, f es 
constante. 

NOTA. Una función analítica en todo e se llama una función entera. Ejemplos 
de ellas son las funciones polinómicas, el seno y el coseno y la función expo­
nencial. El teorema de Liouvilleestablece que toda función entera acotada es 
constante. 

El teorema de ~iouville nos conduce a una demostración simple del teorema 
fundamental del Algebra . 

Teorema 16.22 (teorema fundamental del Álgebra). Todo polinomio de 
grado n > 1 tiene un cero. 

Demostración. Sea pez) = a" + a,z + ... + a"z", en donde n ?: 1 Y a" -1 O. Su­
ponemos que P no tiene ningún cero y probamos que P es constante. Sea 
f(z) = l/pez). Entonces f es analítica en todo C ya que P carece de ceros. Ade­
más, puesto que 

z = z _ . + --; + . .. + -_. + an , P() "(ao al a,,_\) 
zn Z,,-I Z 

vemos que IP(z)1 ~ +00 cuando Izl ~ +00, luego fe z) ~ O cuando Izl ~ + 'Xl. Por 
consiguiente f está acotada en C y, por el teorema de Liouville, f y por 10 
tanto P, son constantes. 

16.15 SEPARACIóN DE LOS CEROS DE UNA FUNCIóN 
ANALíTICA 

Si f es analítica en a y si fea) = O, el desarrollo de Taylor de f en torno de a 
tiene término constante igual a cero y por lo tanto toma la forma siguiente: 

00 

fe z ) = L c,,(z - a)" . 
n= 1 

Esto es válido para cada z de un cierto disco B(a). Si f es idénticamente igual 
a cero en este disco [esto es, si fez) = O para cada z de B(a)] , entonces cada 
C n = O, ya que Cn = f (n l(a) /n!. Si f no es idénticamente cero en este entorno, 
existirá un primer coeficiente no nulo Ck en el desarrollo en serie de potencias, 
en cuyo caso el punto a se llama un cero de orden k . Ahora demostraremos 
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que existe un entorno de a que no contiene otros ceros de f. Esta propiedad 
se describe diciendo que los ceros de una función analítica son aislados. 

Teorema 16.23. Supongamos que f es analítica en un conjunto abierto S de C. 
Supongamos que fea) = O para cierto punto a de S y que f no es idénticamente 
nula en ningún entorno de a. Entonces existe un disco B(a) en el que f no posee 
ningún otro cero. 

Demostración. El desarrollo de Taylor en torno de a nos da fez) = (z - aY'g(z), 
en donde k > 1, 

g(z) = Ck + Ck+l(Z - a) + . . . , 

y 

g(a) = Ck :f= O. 

Ya que g es continua en a, existe un disco B(a) <:; S en el que g no se anula. 
Por lo tanto, fez) =1= O para todo z =1= a en B(a). 

Est~ .teorema tiene algunas consecuencias importantes. Por ejemplo, pode­
m~s utIlIzarlo para demostrar que una función que es analítica en una región 
abierta S no puede ser nula en ningún subconjunto abierto no vacío de S sin 
ser .idéntica~ente nula en todo S. Recordemos que una región abierta es un 
conjunto abIerto conexo. (Ver las definiciones 4.34 y 4.45.) 

Teorema 16.24. Supongamos que f es analítica en una región abierta S de C. 
D~s;gnemos. por medio de A el conjunto de los puntos Z de S para .los que 
eXiste un diSCO B(z) en el que f es idénticamente cero, y sea B = S-A. En­
tonces uno de los dos conjuntos A o B es vacío y el otro es todo S. 

Demos~ración. Tenemos S = A u B, en donde A y B son conjuntos disjuntos. 
El conjunto A es abierto en virtud de su misma definición. Si demostramos 
que B también es abierto, se seguirá de la conexión de S que uno por lo menos 
de los conjuntos A o B es vacío. 

Para demostrar que B es abierto, sea a un punto de B y consideremos las 
dos posibilidades siguientes: f(a) =1= O, fea) = o. Si fea) =1= O, existe un disco 
'8(a) ~ S en el que f no se anula. Por lo tanto, cada uno de los .puntos de B(a) 
debera pertenecer a B. Luego a es un punto interior de B si f(a):f= O. Y si 
fea) = O, el teorema 16.23 nos suministra un disco B(a) que no contiene otros 
ceros de f. Esto significa que B(a) <:; B. Luego, tanto en un caso corno en 
el otro, a e~ un punto interior de B. Por consiguiente, B es abierto y uno de 
los dos conjuntos A o B debe ser vacío. 
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16.16 EL TEOREMA DE IDENTIDAD PARA FUNCIONES 
ANALíTICAS 
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Teorema 16.25. Supongamos qué f es analítica en una región abierta S dc (: . 
Sea T un subconjunto de S que tenga un punto de acumulación a ('1/ S. Si 
fe z) = O para cada z de T, entonces fez) = O para todo Z de S. 

Demostración. Existe una sucesión infinita {z ... },cuyos términos son pUlllos dl' 
T, tal que limn~ oo z" = a. Por continuidad,f(a) = lim,,~ oo f (z,.) = O. Proharl'lIlos 
ahora que existe un entorno de a en el que f es idénticamente nula . SU)1ollg:l­
mos que no existe dicho entorno. Entonces el teorema 16.23 nos dice qlll' dehe' 
existir un disco B(a) en el que fez) =1= O si z =1= a. Pero esto es imposihll'. YII 
que cada disco B(a) contiene puntos de T distintos de a. Por cOllsigllil'IIIl' 
debe existir un entorno de a en el que f se anule idénticamente. Por lo I:lIIlo.rl 
conjunto A del teorema 16.24 no puede ser vaCÍo. Luego A = S. y l'slo~iJ.l. · 
nifica que fez) = O para todo z de S. 

Corno corolario tenemos el siguiente resultado importante, llamado a vrl'rN 

el teorema de identidad para funciones analíticas: 

Teorema 16.26. Sean f y g analíticas en una región abierta S de C. s,' '/' /',1' 

un subconjunto de S que posea un punto de acumu!Qf:ión a en S, y si fez) :- gl ~l 
para cada z de T, entonces fe z) = g(z) para todo Z de S. 

Demostración. Apliquemos el teorema 16.25 a f - g. 

16.17 MóDULOS MÁXIMO y MíNIMO DE UNA FUNCIóN 
ANALíTICA 

El valor absoluto o módulo Ifl de una función analítica f es una función real no 
negativa. Los teoremas de esta sección se refieren a los máximos y mínimos de IJI· 

Teorema 16.27 (principio del máximo local del módulo). Supongamos 
que f es analítica y que no es constante en una región abierta S. Entonces Ifl 
carece de máximos locales en S. Esto es, cada disco B(a; R) de S contiene 
puntos Z tales que If(z) 1 > If(a)l· 

Demostración. Supongamos que exista un disco B(a; R) de S en el que If(z) 1 S 
If(a)1 y veamos entonces que f es constante en S. Consideremos el disco con-
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céntrico B(a; r) con O < r S R. De la fórmula de la integral de Cauchy, tal 
como se halla expresada en (7), tenemos 

I/(a)1 :$ - - I/(a + rei8)1 de. 
1 f21< 

2n o 
(19) 

Ah~ra bien, I/(a + re i6)1 < I/(a) 1 para todo e. Vemos a continuación que no es 
posIble que se dé la desigualdad estricta I/(a + rei8) 1 < 1/(a)1 para ningún e. En 
otro caso, por continuidad tendríamos I/(a + rei8)1 < I/(a) 1 - € para cierto E > O 
Y para todo () de un cierto subintervalo 1 de [O, 2rr] de longitud positiva, que 
llamaremos h. Sea J = [O, 2rr] - l. Entonces J tiene medida 2rr - h, Y (19) 
nos da 

2nl/(a)1 :$ 1lf(a + rei8
) 1 de + L I/(a . + rei8)1 de 

:$ h{l/(a)1 - e} + (2n - h) I/(a)1 = 2n I/(a)1 - he < 2n I/(a)l. 

Esto nos lleva a la contradicción !/(a)1 < 1/(a)l. Esto prueba que, si r < R, no 
es posible que se dé la desigualdad estricta l/Ca + rei6) 1 < If(a)1 para ningún e. 
Luego If\z) 1 = If(a)1 para todo z de B(a; R). Por consiguiente Itl es constante 
en este dISCO y, por el teorema 5.23, / es asimismo constante en este disco. Por 
el teorema de identidad, f es constante en S. 

Teorema 16.28 (principio del máximo absoluto del módulo). Sea T un 
subconjunto compacto del plano complejo C. Supongamos que f es continua 
en T y analítica en el interior de T. Entonces el máximo absoluto de 1/1 en T 
se alcanza en oT, frontera de T. 

Demostración. Dado que T es compacto, 1/1 alcanza su maxlmo absoluto en 
algún punto de T, llamémosle a. Si aE oT no hay nada que demostrar. Si 
a E in~ !, sea S la componente del int T que . contiene a a. Puesto que 1/1 tiene 
un maXImo local en a, el teorma 16.27 implica que / es constante en S. Por 
continuidad, / es constante en as ~ T, luego el valor máximo, ¡f(a)I, se alcanza 
en as. Pero as ~ oT (¿por qué?) implica que el máximo es alcanzado en oTo 

Teorema 16.29 (principio del módulo mínimo). Supongamos que / es 
a~al!tica y que no es constante en una región abierta S. Si 1/1 tiene un 
mlnlmO local en S en un punto a, entonces fea) = O. 

Demostración. Si /Ca) *" O aplicamos el teorema 16.27 a la función g = lff. 
Entonces g es analítica en un cierto disco abierto B(a; R) y Igi tiene un máxi-
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mo local en a. Por consiguiente g y también t son constantes en este disco y por 
lo tanto en S, lo cual contradice la hipótesis. 

16.18 EL TEOREMA DE LA APLICACIóN ABIERTA 

Las funciones analíticas no constantes son aplicaciones abiertas; esto es, aplican 
conjuntos abiertos en conjuntos abiertos. Demostramos esto basándonos en el 
principio del módulo mínimo. 

Teorema 16.30 (teorema de la aplicación abierta). Si / es analítica y no 
es constante en una región abierta S, entonces t es abierta. 

Demostración. Sea A un subconjunto abierto de S. Probaremos que /(A) es 
abierto. Sea b un elemento de feA) y escribamos b = tea), en donde a 'E A. Oh­
servemos ante todo que a es un punto aislado de la imagen inversa /-I( {¡')). 
(Si no, por el teorema de la identidad t s-ería constante en S.) Luego existe un 

disco B = B(a; r) cuya adherencia E está contenida en A y no contiene plintos 
de /-l({b}) si exceptuamos a a. Puesto que t(E) ~ f(A) la demostración quedad 
terminada si probamos que /(13) contiene un disco centrado en b. 

Designemos por medio de oB la frontera de B, oB= {z:lz-al =r} . En­
tonces f(aH) es un conjunto compacto que no contiene a b. Entonces el 1It'!­
mero m definido por -

m = inf {If(z) - bl : z E oB}, 

es positivo. Probaremos que t(E) contiene al disco B(b; mI2). Para ello. to­
mamos un punto ,w de B(b; m12) y vemos que w = t(zo) para un z" de /l. 

Sea g(z) = tez) - w si zE E. Probaremos que g(zo) = O para un cierto "tu 

de E. Dado que Igl es continua en E y, puesto que E es compacto. existe UII 

punto Zo de E en el que Igl alcanza su mínimo. Como a E E, tenemos 

m 
Ig(zo)1 :$ Ig(a)1 = I/(a) - wl = lb - wl < - - . 

2 

Pero si z 'E o B, tenemos 

Ig( z )1 = I/(z) - b + b - wl :?: I/(z) - bl - Iw - bl > 111 
111 

2 

111 

2 

Luego Zo f/: aB, por lo que Zo es un punto interior de 13. En otras palabras. 
Igl tiene un mínimo local en zo. Pero g es analítica y no constante en B, luego 
el principio del módulo mínimo prueba que g(zo) = O y la demostración queda 
terminada. 
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16.19 DESARROLLOS DE LAURENT PARA FUNCIONES 
ANALíTICAS EN UN ANILLO 

Consideremos dos funciones f I Y g l ' ambas analíticas en un punto a, con 
gl(a) = O. Tenemos entonces los siguientes desarrollos en series de potencias 

00 

g,(z) = L bll(z _ a)n, para Iz - al < rl , 

n=1 

y 
'" 

f ,(z ) = L C"(Z - a)" , para Iz - al < r2 • (20) 
n=O 

Sea f2 la función compuesta dada por 

f 2(z ) = 9 1(--~' -+ a). 
z - a 

Entonces f2 está definida y es analítica en la región Iz - al > r l Y se halla re­
presentada en dicha región por medio de la serie convergente 

00 

fz{ z ) = L b,lz - a) -n, para Iz-al > rl . (21) 
n=1 

Ahora si r l < r2 , las series que aparecen en (20) y (21) tendrán en común una 
cierta región de convergencia, a saber el conjunto de los z para los que 

r, < Iz - al < '2' 

En esta región, el interior del anillo A (a; r" r 2)' tanto fl como f 2 son analíticas 
y su suma fl + f2 viene dada por 

ifJ :n 

f,( z ) + fi z ) = L e,lz - a)" + L biz - a)- ". 
n= O n=1 

La suma del segundo miembro se escribe más brevemente por medio de 
efe 

L CIl( Z - a)", 

en donde Ln = bn para n = 1, 2, ... Una serie de potencias de este tipo, for­
mada de potencias positivas y negativas de z - a, se llama serie de Laurent. 
Se dice que es convergente si 10 son su parte positiva y su parte negativa, se­
paradamente. 
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Cada serie convergente de Laurent representa una función analítica en el 
interior del anillo A(a; rJo r2). Probaremos ahora que, recíprocamente, cada 
función f, analítica en un anillo, admite una representación en el interior del 
anillo por medio de una serie convergente de Laurent. 

Teorema 16.31. Supongamos que f es analítica en el anillo A(a; r lO r2). En­
tonces para cada punto interior z de este anillo tenemos 

fez) = fl(z) + f2(z), (22) 

en donde 
00 00 

fl( z ) = L en(z - a)" y f2( z ) = L c.(z - a)-n. 
n~O n~ 1 

Los coeficientes vienen dados por las fórmulas 

(n = O, ±l, ±2, ... ), (23) 

en donde 'Y es un camino circular de centro en a con radio r, y r l < r < r2, orien­
tado positivamente. La función fl (llamada la parte regular de f en a) es ana­
lítica en el disco B(a; r2). La función f2 (llamada la parte principal de f en a) 
es analítica fuera de la adherencia del disco B(a; r1) . 

Demostración. Elegimos un punto interior z del anillo,fijamos el punto z y defi­
nimos una función g en A(a; r,. r2 ) como sigue: 

{

f(W) - fCz] 

g(w) = w - z 

f'(z) 

si w,*z, 

si w = z. 

Entonces g es analítica en w si w '* z y g es continua en Z. Sea 

cp(r) = f g(w) dw, 
Yr 

en donde "Ir es un camino circular con centro en a y radio r, con r1 < r < '2' 
orientados positivamente. Por el teorema l6.8,¡?(r l ) = <p(r2), luego 

f g(w) dw = f g(w) dw, 
Yl }'2 

(24) 
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en donde 1'1 = Y" Y 1'2 = 1"2' Dado que z no pertenece ni a la gráfica de 1'1 
ni a la de 1'2' en cada una de las integrales podemos escribir 

g(w) = f(w) _ fez) . 
w-z w-z 

Substituyendo en (24) y trasponiendo términos, obtenemos 

fez) - - dw - - - dw = -~ dw - - - dw. . {f 1 f 1 } f f(w) f f(w) 
12 W - Z Yl W - Z Y2 W - Z Yt W - Z 

(25) 

Pero f ~ l (w - Z)-l dw = O puesto que el integrando es analítico en el disco 
H(a; rJ, e f~2 (w - Z)-l dw = 2rri ya que n(Y2' z) = 1. Por consiguiente, (25) 
nos da la ecuación 

fez) = fl(Z) + f2(Z), 

en donde 

fl(Z) = _1 f J(w) - dw 
2rri Y2 w - Z 

y f2(Z) = - _1_ f f(w) dw. 
2rri Yl w - Z 

Por el teorema 16.19, f, es analítica en el disco B(a; r2 ) Y entonces tenemos 
un desarroIlo de Taylor 

00 

f¡(z) = L cn(z - a)n para Iz - al < r2 , 

11=0 

en donde 
(26) 

Además, por el teorema 16.8, el camino 1'2 se puede substituir por cualquier 
camino y. siempre que r pertenezca al intervalo r1 < r < r2 • 

Para obtener un desarroIlo en serie para f 2(Z), 'argüimos como en la demos­
tración del teorema 16.19, utilizando la identidad (13) con t = (w - a)f(z - a). 

Esto nos da 

t(~)n + (~)k+l(~). 
n=O Z - a z - a z - w 

(27) 
- (w - a)/(z - a) 
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Si w. e~tá en la gráfica de Y H tenemos Iw - al = r, < Iz - al, luego Itl < 1. 
~uItlphcamos ahora (27) por - f(w)f(z - a), integrando a 10 largo de )'1' y ha­
cIendo k -+ 00 obtenemos 

00 

f2(Z) = L bn(z - a)-n para Iz-al > r, 
n=1 

en donde 

bn = _1 f f(w) dw. 
2ni Yl (w - a)l-n 

(28) 

En virtud del teorema 16.8, el camino 1'1 se puede substituir por el camino )'. 
para todo· r de [r H r 2]' Si tomamos el mismo camino )'r tanto en (28) como 
en (26) y si utilizamos Ln para designar bn, es posible combinar ambas fórmu­
las en una sola tal como indicábamos en (23). Como sea que z designaba un 
punto arbitrario del interior del aniIlo, la demostración está terminada. 

NOTA. La fórmula (23) prueba que una función puede tener, a 10 sumo, un 
desarroIlo de Laurent en un aniIIo dado. 

16.20 SINGULARIDADES AISLADAS 

Un disco B(a; r) menos su centro, esto es, el conjunto B(a; r)- {a}, se Ilama 
un entorno perforado de a y se designa por medio de B'(a; r) o B'(a). 

Definición 16.32. Un punto a se llama una singularidad aislada de f si 

a) f es analítica en un entorno perforado de a, 
y 
b) f no es analítica en a. 

NOTA. No es preciso que f esté definida en a. 

Si a es una singularidad aislada de f, existe un aniIIo A(a; r l , r 2 ) en el 
que f es analítica. Luego f admite un desarroIlo en serie de Laurent, determi­
nado de forma unívoca, a saber: 

fez) = f cn(z - a)n + f en(z - ar n• 
n=O n=1 

(29) 

Dado que el radio interior r l puede ser tan pequeño como se quiera, la expre­
sión dada en (29) es válida en el entorno perforado B'(a; r2 ). La singularidad a 

APOSTOL. análisis - 19 
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se clasifica en uno de los tres tipos siguientes (según la forma de la parte prin­
cipal) : 

Si en (29) no aparecen potencias negativas, esto es, si en = O para cada 
n = 1, 2, ... , el punto a se llama singularidad evitable. En este caso, fez) ~ co 
cuando z ~ a y la singularidad puede evitarse definiendo f en a por medio de 
f(a) = Co ' (Ver el ejemplo 1 que sigue.) 

Si sólo aparece un número finito de potencias negativas, esto es si en =1= O 
para algún n pero C--m = O para todo m > n, el punto a se Barna polo de 
orden n. En este caso, la parte principal se reduce a una suma finita, a saber 

C - I C- 2 C- n -- _. + - - - - + ... + - - --- . 
z - a (z - a)2 (z - ay 

Un polo de orden 1 se llama usualmente polo simple. Si existe un polo en a, 
entonces I f(z) I ~ 00 cuando z ~ a. _ 

Finalmente, si en =1= O para infinitos valores de n, el punto a se llama 
singularidad esencial. En este caso, fez) carece de límite cuando z ~ a. 

Ejemplo l. Singularidad evitable. Sea f(z) = (sen z)!z si z =1= 0, feO) = O. Esta fun­
ción es analítica en todo punto excepto en el O. (Es discontinua en el 0, ya que 
(sen z)!z ~ 1 cuando z ~ O.) El desarrollo de Laurent en torno de O tiene la forma 

senz 

z 

Z2 Z4 
1- - +--+··· 

3! 5! 

Puesto que no aparecen potencias negativas de z, el punto ° es una singularidad 
evitable. Si volvemos a definir f de forma que tome el valor 1 en 0, la función mo­
dificada es analítica ' en O. 

Ejemplo 2. Polo. Sea fez) = (sen Z)iz5 si z =1= O. El desarrollo de Laurent en torno 
del O es 

senz Z -4_~Z-2+~_~Z2+ ... 
Z5 3! 5! 7! 

En este caso, el punto O es un polo de orden 4. Obsérvese que no se ha dicho nada 
acerca del valor de f en O. 

Ejempo 3. Singularidad esencial. Sea fez) = e'!" si z =1= O. El punto O es una singu­
laridad esencial, ya que 

1/ -1 1 -2 l_n eZ=l+z + - z +"'+ - z + ... 
2! n! 

Teorema 16.33. Supongamos que f es analítica en una región abierta S de e 
y definamos g por la ecuación g(z) = l/fez) si fez) =1= O. Entonces f tiene un 
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cero de orden k en un punto a de S si, y sólo si, g tiene un polo dI' /lft/t'" ~ 

en a. 

Demostración. Si f tiene un cero de orden k en a, existe un entorno pnfClllldo 

B'(a) en el que f no se anula. En el entorno B(a) tenemos fez) = (z. tl)~"(:), 

en donde hez) =1= O si z 'E B(a). Luego l/h es analítica en B(a) y pOSl'l' 1111 dI' 
sarroBo 

1 

hez) 
bo + bl(z - a) + "', en donde bo 

Por consiguiente, si Z 'E B'(a), tenemos 

1 bo b¡ 
g(z) = - - - - = -- -- + - ._-

(z - alh(z ) (z - a)k (z - al - ¡ 

I () 
II( 1/) 

y por lo tanto a es un polo de orden k de g. El recíproco se c!c11 IIl1'Nt 1'11 1111" 
logamente. 

16.21 RESIDUO DE UNA FUNCIÓN EN UN PUNTO 
SINGULAR AISLADO 

Si a es un punto singular aislado de f, existe un entorno perforado /1'111) 1'11 .. 1 
que f admite un desarrollo de Laurent, a saber 

00 00 

f(z) = :E cn(z a)n + :E cn(z - a)-". ( m, 
n ~ O n=l 

El coeficiente e l que mult~plica a (z - a)- l se Barna residuo de f t'1I t/ V',,, 
designa por medio del símbolo 

C l = Resf(z). 
z=a 

La fórmula (23) nos dice que 

If(Z) dz = 2ni ~~f(z), 

si y es un camino circular con centro en a, orientado positivamente y cuyu J'I'I\ 
fica esté contenida en el disco B(a). 
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En muchos casos es relativamente fácil calcular el residuo en un punto 
sin necesidad de utilizar la integrabón. Por ejemplo, si a es un polo simple, 
podemos utilizar la fórmula (30) a fin de obtener 

Resf(z) = Iim (z - a)f(z). (32) 
z=a z-a 

Análogamente, si a es un polo de orden 2, es fácil probar que 

Resf(z) = g'(a), en dondeg(z) = (z - a)2f(z). 
z=a 

1':11 casos como éstos, en los que el residuo se puede obtener muy simplemente, 
(.11) nos da un método simple para calcular las integrales de contorno alre­
lIedor de circuitos. 

Cuuchy fue el primero en explotar esta idea y la desarrolló obteniendo un 
poderoso método conocido como cálculo de residuos. Está fundamentado en 
1)1 tC'orema de Cauchy del residuo, que es una generalización de- (31). 

1(,.22 TEOREMA DE CAUCHY DEL RESIDUO 

7'f·orf·mn 16.34. Sea f analítica en una región abierta S excepto para un 
",i/l/cro finito de singularidades aisladas z" ... , Zn de S. Sea y un circuito homo­
ItSplt·o ([ un punto de S, y supongamos que ninguna de las singularidades per­
'''I/'{'("{' 1I la gráfica de y. Entonces se tiene 

f fez) dz = 2n; t n(y, Zk) ~:~f(z), 
y 

(33) 

"" donde n(y, Zk) es el número de giros de y con respecto a Zk. 

DC'/l/ostración. La demostración está basada en la siguiente fórmula, en la que 
", designa un entero (positivo, negativo o cero): 

f ( )m d - {2n;n(y, Zk) 
Z - Zk z-

7 O 
si m = -1, 

si m =1= -1. 
(34) 

1.11 fórmula para m = -1 es, precisamente, la definición del número de giros 
,,('1. Zk). Sea [a, b] el dominio de y. Si m =1= -1, sea g(t) = {y(t)-Zk}"'+I para 
I de [a, b]. Entonces tenemos 

f (z - Zk)m dz = fb {y(t) - zdrny'(t) dt = _l~ fb g'(t) dt 
, a m + 1 a 

= _~ ~l_ {g(b) _ g(a)} = O, 
m + I 

1 
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ya que g(b) = g(a). Esto prueba (34). 
Para demostrar el teorema del residuo, sea h la parte principal de f en el 

punto Zk. Por el teorema 16.31, h es analítica en todo C excepto en Zk. Por 
consiguiente, f - f1 es analítica en S excepto en Z2' ... , Zn' Análogamente, 
f - fl - f2 es analítica en S excepto en Z3' ... , Zn, y, por inducción, obtenemos 
que f - LZ= 1 h es analítica en todo S. Por consiguiente, por el teorema de 
la integral de Cauchy, S, (f - LZ = 1 fk) = O, o 

f f=tf k 
y k- 1 Y 

Ahora expresamos h como una serie de Laurent en torno de Zk e integramos 
esta serie término a término, y obtenemos (33), utilizando (34) y la definición 
de residuo. 

NOTA. Si y es una curva de Jordan orientada positivamente con gráfica r, en­
tonces n(y, Zk) = 1 para cada Zk interior a r, y n(y, Zk) = O para cada Zk del 
exterior de r. En este caso, la integral de f a lo largo de y es 2IT; veces la 
suma de los residuos de las singularidades que se hallan en el interior de r. 

Algunas de las aplicaciones del teorema de Cauchy del residuo se dan en 
las secciones que siguen. 

16.23 NúMEROS DE CEROS Y DE POLOS EN UNA REGIóN 

Si f es analítica o bien si tiene un polo en a, y si f no es idénticamente O, el 
desarrollo de Laurent en torno de a tiene la forma 

00 

f(z) = L: cnez - a)", 
n=m 

en donde Cm =1= O. Si m > O existe un cero de orden m en a; si m < O existe 
un polo de orden - m en a, si m = O no existe ni cero ni polo en a. 

NOTA. Se usa también m(f; a) para poner de manifiesto que m depende tanto 
de f como de a. 

Teorema 16.35. Sea f una función, no idénticamente nula, analítica en una 
región abierta S, excepto quizás en un número finito de polos. Sea y un cir­
cuito que sea homotópico a un punto en S y cuya gráfica no contenga ni ceros 
ni polos de f. Entonces tenemos 

1 f f'(z) '" ) (f' ) _ -- dz = ~ n(y, a m ,a, 
2n; , fez) aE5 

(35) 

g 
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en donde la suma de la derecha contiene sólo un número finito de términos 
no nulos. 

NOTA. Si y es una curva de Jordan orientada positivamente con gráfica r, en­
tonces n(y, a) = 1 para cada a del interior de r y la expresión (35) se escribe 
normalmente en la forma 

_1 f f'( z ) d z = N - P 
2rci y fez) , 

(36) 

en donde N designa el número de ceros y P el número de polos de f interio­
res a r, cada uno de ellos contado tantas veces como indica su orden. 

Demostración. Supongamos que en un entorno perforado, de un punto a tene­
mos fez) = (z - a)"'g(z), en donde g es analítica en a y g(a) 0:/= O, siendo m un 
entero (positivo o negativo). Entonces existe un entorno perforado de a en el 
que podemos escribir 

f'(z) m g'( z ) --- = ---- + ---
fe z ) z-a g(z) , 

en donde el cociente g'/g es analítico en a. Esta ecuación nos dice que un cero 
de f de orden m es un polo simple de r If con residuo m. Análogamente, un 
polo de f de orden m es un polo simple de r If con residuo - m. Este hecho, 
junto con el teorema de Cauchy del residuo, nos proporciona (35). 

16.24 CÁLCULO DE INTEGRALES REALES POR MEDIO 
DE RESIDUOS 

El teorema de Cauchy del residuo se puede utilizar para calcular integrales de 
Riemann reales. Se dispone de varias técnicas, que dependel). de la forma de la 
integral. Describiremos brevemente dos de dichos métodos. 

El primer método trata de integrales de la forma f6" R(sen O, cos O) dO, en 
donde R es una función racional * de dos variables. 

* Una función P definida en e x e por una ecuación de la forma 

p q 

P(Zl, Z2).= L: L: am,nzTz~ 
m=O n=O 

es llamada polinomio con dos variables. Los coeficientes am ,. pueden ser reales o comple­
jos. Un cociente de dos de estos polinomios es una función racional de dos variables, 
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Teorema 16.36. Sea R una función racional de dos variables y sea 

(

Z 2 - 1 Z 2 + 1) 
fez) = R -.-, --,-- - , 

2lZ 2z 
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siempre que la expresión del segundo miembro sea finita. Sea y la circunfe­
rencia orientada positivamente con centro en O. Entonces 

f 2nR(sen e, cos e) de = f f~z) dz, 
o y IZ 

en el supuesto de que f carezca de polos en la gráfica de y. 

Demostración. Puesto que "1(0) = ei O con O < 0< 21l', tenemos 

y'(e) = ¡y(e), y(e)2 ,_ 1 = sen B 
2iy(e) 

y (37) se sigue inmediatamente del teorema 16.7. 

y(e)2 + 1 -'---'------'------- = cos e, 
2y(e) 

(37) 

NOTA. Para calcular la integral del segundo miembro de (37), necesitamos tan 
sólo calcular los residuos del integrando en aquellos de sus polos que se hallen 
en el interior del drculo unidad. 

Ejemplo. Calcular 1 = S~lt dB/(a + cos 6), en donde a es un número real, lal > 1. 
Aplicando (37), obtenemos 

1 = -2i f dz 
y Z2 + 2az + 1 " 

El integrando posee polos simples en las raíces de la ecuación Z2 + 2az + 1 = O. 

Son los puntos 

Z1 = -a+~, 

- a - -J~i----=-t . 

Los residuos correspondientes R 1 Y Rz vienen dados por 

z - Z1 
Rl = lim 

z-z, Z2 + 2az + 
= ---- , 

ZI Z2 

R l · z - Z2 
2 = 1m 

z-Z2 z2 + 2az + Z2 - Z1 



564 Teorema de Cauchy y cálculo de residuos 

Si a> 1, Zl es interior al círculo unidad, Z2 es exterior, e 1 = 4tr/{Z l - Z2) = 
2nl .Ja2 - T. Si a < -1, Z2 es interior, Z, es exterior, y obtenemos 1 = -2r.1 .Ja2 -1. 

Muchas integrales impropias pueden tratarse por medio del siguiente teorema: 

Teorema 16.37. Sea T = {x + iy : y > O} el semiplano superior. Sea S una 
reRión abierta de C que contenga a T y supongamos que f es analWca en S, 
('xcepto, quizás, en un número finito de polos. Supongamos además que nin­
f.!uno de estos polos está sobre el eje real. Si 

(38) 

('ntonees 

I
R n 

R~~CX) -R f(x) dx = 2rri ~ !::~f(z). (39) 

('11 donde z l' ... , Zn son los. polos de t que están en T. 

Demostración. Sea y un camino orientado positivamente formado tomando una 
porción de eje real desde - R a R y una semicircunferencia en T que tenga a 
r . R, R] como diámetro, habiendo tomado R lo bastante grande para que 
induya todos los polos Z" ... , Zn' Entonces 

Cuando R ~ +00, la última integral tiende a cero en virtud de (38) y obte­
nemos (39). 

NOTA. La ecuación (38) se satisface automáticamente si f es el cociente de dos 
polinomios, por ejemplo f = P/Q, con la condición de que el grado de Q ex­
ceda al grado de P en 2, por lo menos. (Ver ejercicio 16.36.) 

Ejemplo. Para calcular f':' 00 dxl(I + x4), sea fez) = lf:(z4 + 1). Entonces pez) = 1. 
Q(z) = 1 + z4, y entonces (38) se verifica. Los polos de f son las raíces de la ecua­
ci6n 1 + Z4 = O. Estas raíces son zl' Z2' Z3' ' Z4' donde 

Zk = e(2k-Ihri/4 (k = 1, 2,3,4). 

• 

1 
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De éstas sólo z¡ y Z2 pertenecen al semi plano superior. El residuo l' n :' , ¡.~ 

Análogamente, encontramos que ResZ =Z2 fez) = (l/4i)e"i /4. Por consiglli¡',nll', 

f"" .. ~ = 2ni (e-"i/4 + e"iI4) = rr cos 1'1: = n ,h .. 
-00 1 + x4 

• 4i 4 2 

16.25 CÁLCULO DE LA SUMA DE GAUSS 
POR EL MÉTODO DE LOS RESIDUOS 

!ilI5 

El teorema del residuo es utilizado a menudo para calcular sumas por IlIrdlll 
de integración. Ilustramos esto con un famoso ejemplo llamado SllIIllI di' (,'II/1.\W 

G(n), definida por la fórmula 

n-l 

G(n) = L:: e2nir21n, 
r=O 

en donde n > 1. Esta suma aparece en varias partes de la Teoría de Ntílllt' I'IIS . 

Para valores pequeños de n es fácil calcularla a partir de su definición . I'or 
ejemplo, tenemos 

G(l) = 1, G(2) = 0, G(3) = i.J'3, G(4) = 2(1 + i). 

A pesar de que cad~ término de la suma tiene valor absolQto 1, la suma tiene 
valor absoluto 0, .J n, o 5n. De hecho, Gauss demostró la notable fórmula 

G(n) = t.J~(l + i)(l + e-ninI2), (41 ) 

para cada n ;::::: 1. Se conocen algunas demostraciones diferentes de la fórmu­
la (41). Nosotros la deduciremos considerando una suma más general S(a. n). 
introducida por Dirichlet, 

n-l 

Sea, n) = L:: e"ia,2In, 
r=O 

en donde n y a son enteros positivos. Si a = 2, entonces S(2, n) = G(n). Di­
richlet demostró (41) como corolario de una ley de reciprocidad para Sea, n) 
que se puede establecer como sigue: 

7""1 
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Teorema 16.38. Si el producto na es par, tenemos 

(n (1 + i) Sea, n) = v~ J2 Sen, a), (42) 

('n donde la barra designa el complejo conjugado. 

NOTA. Para deducir la fórmula de Gauss (41), hagamos a = 2en (42), y ob-
servemos que 

f)(,l/losfración. La demostración que damos aquí es particularmente instructiva, 
puesto que ilustra varias técnicas utilizadas en análisis complejo. Algunos de 
los detalles de cálculo de menor importancia se dejan al lector como ejercicio. 

Sea K una función definida por medio de la ecuación 

n-l 

g(z) = L e"ia(z+r)2/n. 

r=O 
(43) 

Entonces K es analítica en todo el plano complejo, y g(O) = Sea, n). Puesto 
que na es par se obtiene 

a-l 

g(z + 1) - g(z) = e"iaz
2
/n(e 2"iaZ - 1) = e"iaz

2
/n(e 2"iz - 1) L e 2rcimz, 

m=O 

(ejercicio 16.41). Definimos f por medio de la ecuación 

fez) = g(Z)j(é"iz - 1). 

Entonces f es analítica en todo e excepto para un polo de primer orden en 
cada entero, y f satisface la ecuación 

en donde 

fez + 1) = fez) + <pez), 

0-1 

<pez) = erciaz2/n L e2rcimz. 

m=O 

La funciónrp es analítica en todo C. 
Enz = O el residuo de f es g(O)j(2rri) (ejercicio 16.41), y entonces 

Sea, n) = g(O) = 2ni ~:~f(z) = 1 fez) dz, 

(44) 

(45) 

(46) 

1 
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en donde y es un camino cerrado simple orientado positivamente cuyu grá­
fica contiene sólo al polo z = O en su región interior. Eligiremos y lal que 
describa un paralelogramo de vértices A, A + 1, B+ 1, B, en donde 

A = --!- - Re"i/4 y 

__ ---' .. --~ B + 1 

Figura 16.7 

tal como hemos representado en la figura 16.7. Integrando f a lo IIIIV-II .1 .. ',' 
tenemos 

J f
A+l fB+l fB fA 

f= f+ f+ f+ I 
y A A+ 1 B+ 1 8 

En la integral J!!! f realizamos el cambio de variable w = z 1 1 Y 1111111,11, 
mos (44) a fin de obtener 

f
B+l fB fB f8 f(w) dw = fez + 1) dz = fez) dz + <¡>(z) tI;- , 
A+ 1 A A A 

Por 10 tanto (46) se transforma en 

f
B fA+l fB+l 

Sea, n) = A <pez) dz + A fez) dz - B fez) elz. (47) 

Demostraremos ahora que las integrales a 10 largo de los segmentos hori/,oll­
tales que unen A con A + 1 Y B con B+ 1 tienden a O cuando R , • +1Jf', 
Para ello calculamos el integrando en estos segmentos. Escribimos 

z = Ig(z)1 
If()1 le2"iz _ 1/ ' (4X) 
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y acotamos separadamente el numerador y el denominador. 
En el segmento que une B con B + 1 obtenemos 

y(t) = t + Re"i/4, en donde - i < t < i· 

De (43) obtenemos 

Ig[y(t)]1 ::; ~ lexp tia(t + R:"i/4 + r)2}1, (49) 

l'1I donde exp z = eZ
• La expresión contenida entre llaves tiene como parte real 

(c,;cn;icio 16.41) 

-na(J2tR + R 2 + J2rR)/n. 

Puesto que 1 eZ+i 111 = eZ Y exp {-rra J2rR/n} < 1, cada uno de los tél]Ilinos de 
(49) tiene un valor absoluto que no excede a exp { -rraR 2/n} exp { - ,hrratR/n}. 
Pero _ .~ :<:: t < i, luego obtenemos la acotación 

Ig[y(t )]1 :s; n e".j2aR/ (2n) e- "a R 2/n• 

Pura el denominador de (48) utilizamos la desigualdad triangular en la forma 

Dado que /exp {2niy(t)}/ = exp {-2nRsen(n/4)} = exp {-J2nR},obtenemos 

Por consiguiente, sobre el segmento rectilíneo que une B con B + 1 tenemos la 
acotación 

ne".j2aR /(2n) e- "aR2 /n . 

If(z)1 :s; - --- .-=---- - = 0(1) cuando R ~ +00. 
1 - e- .j2"R 

Aquí 0(1) designa una función de R que tiende a O cuando R ~ +00. 
Un argumento análogo prueba que el integrando tiende a O en el segmento 

rectilíneo que une A con A + 1 cuando R ~ +00. Puesto que la longitud del 
camino deiñtegración es 1 en cada uno de los 'casos, todo esto demuestra que 
la segunda y tercera integrales que aparecen en el segundo miembro de (47) 

l 
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tienden a O cuando R ~ +00. Por consiguiente, la expresión de (47) se puede 
escribir en la forma 

Sea, n) = f: cp(z ) dz + 0(1) cuando R ~ +00. (50) 

Para tratar la integral J! cp aplicamos el teorema de la integral de Cauchy, 
integrando <p a lo largo del paralelogramo de vértices A, B,oc, -oc, en donde 

A---.' -
Figura 16.8 

-

oc = B + i = Re"i /4
• (Ver fig. 16.8.) Puesto que <p es analítica en todas partes, 

su integral en torno a este paralelogramo es O, luego 

f
B f~ l-~ fA cp + cp + cp + cp = O. 

A B a -a 

(51) 

A causa del factor exponencial e " iaz'/ n que aparece en (45), un argumento aná­
logo al dado anteriormente prueba que la integral de <p a lo largo de cada seg­
mento horizontal ~ O cuando R ~ +00. Por consiguiente (51) nos da 

SB cp = fa cp + 0(1) cuando R ~ +00. 
A -a 

y (50) se transforma en 

Sea, n) = fa cp(z) dz + 0(1) cuando R ~ +OCJ. (52) 

en donde oc = Re"i/4. Utilizando (45) se obtiene 

a-l a - l 

f_aa cp(z) dz = L f~ e,,¡az
2
/n e 2 ,,¡mz dz = L (' . n¡"",I /" 1(11, 1/1, 11, R). 

m=O -a m-O 

s 
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en donde 
f" {nía ( I1m)2} I(a , m, n, R) = _" exp ----;; :: + a- tl z. 

Aplicando de nuevo el teorema de Cauchy al paralelogramo de vértices -O(, 0(, 

oc-nm/a, - O( - nm/a, obtenemos como antes que las integrales a lo largo de 
los segmentos horizontales ~ ° cuando R ~ +00, luego 

I(a, m, 11, R) = f,,-mn 1a exp {n~a (z + ~;)2} dz + 0(1) cuando R ~oo. 
-a-nmla 

El cambio de variables w = .J a/n(z + nm/a) transforma esto en 

J~ f" .Jatn 
J(a, m, n, R) = - _ e"iw

2 
dw + 0(1) 

a -".Jatn 
cuando R ~ +00. 

Si hacemos que R ~ +00 en (52), obtenemos 

Sea, n) = L e-"inm2ta !!. lim e"iw
2 dw. 

a-l J- JR./a1ne"'/4 

m=O aR-++oo -R.j~/n(!1d / 4 

(53) 

Escribiendo T = .J a/nR, vemos que el último límite es igual a 

f
Te"'/4 

Iim e"iw
2 dw = J. 

T - + ex) _ Te'Tttj4 

donde se ha indicado con 1 un número independiente de a y de n. Por consi­
guiente (53) nos da 

J~ -
Sea, n) = ~ IS(n, a). (54) 

Para calcular 1 hacemos a = 1 Y n = 2 en (54). Entonces S(l, 2) = 1 + i Y 
S(2, 1) = 1, luego (54) implica / = (l +¡)/ J2, y (54) se reduce a (42). 

16.26 APLICACIóN DEL TEOREMA DEL RESIDUO 
A LA FóRMULA DE INVERSIóN 
PARA TRANSFORMADAS DE LAPLACE 

El teorema que sigue es, en muchos casos, el método más fácil para calcular 
el límite que aparece en la fórmula de inversión 'para transformadas de Laplace. 
(Ver ejercicio 1l.38.) 

Teorema de Cauchy y cálculo de residuos 571 

Teorema 16.39. Sea F una función analítica en todo e excepto, quizá, en 
un número finito de polos. Supongamos que existen tres constantes positivas, 
M , b, c tales que 

M 
IF(z)1 < - siempre que Izl ~ b. 

Iz le 

Sea a un número positivo tal que la línea vertical x = a no contenga polos 
de F y sean Z .l' ... , Zn los polos de F que se hallan a la izquierda de esta línea. 
Entonces, para cada número real t > 0, tenemos 

f
T n 

T~~C() -T e<a+iv)t F(a + iv) dv = 2n ~ ~~~ {e"F(z)}. (55) 

Demostración. Aplicamos el teorema de Cauchy del residuo al camino r orien­
tado positivamente representado en la figura 16.9, en donde el radio T de la 
parte circular se toma lo suficientemente grande para que en ella queden in-

e 

--- B 

I 
I 

TI 
I 

I 

D I~,\ a 

__ ~_-_ A 

E 

Figura 16.9 

cluidos todos los polos de F que están a la izquierda de la línea x = a y tam­
bién T > b. El teorema del residuo nos da 

t ezt 
F(z) dz = 2n; ~ ~~~ {eztF(z)}. (56) 

Escribimos 

en donde A, B, e, D E son los puntos indicados en la figura 16.9, y desig­
namos por medio de /¡, / 2' 13 , /4' 1; estas integrales. Probaremos que h -> ° 



572 Teorema de Cauchy y cálculo de residuos 

si T ~ +00 cuado k > l. 
Tenemos, en primer lugar, 

/12 / < M'I."/2 etTcos 6 T dO :$ Me
at (~ _ a.) = Me

at 
T arc sen(~). 

Te a T e-¡ 2 T C T 

Puesto que T arc sen (a/T) ~ a cuando T ~ +00, se tiene que 12 ~ O cuando 
T ~ +00. De la misma manera se demuestra que 15 ~ O cuando T ~ +00. 

Consideremos a continuación 13' Tenemos 

M i" M f"/2 /1 / < - - etTcos 6 dO = __ -tToen", d 
3 Te-¡ T C -¡ e ({J. 

,,/ 2 o 

Pero sen ''P > 2orp/rr si O < orp < rr/2, y entonces 

Análogamente, tenemos que 14 ~ O cuando T ~ +00. Pero cuando T ~ +00 
el segundo miembro de (56) permanece inalterable. Luego limr-++«> 1

1 
existe 

y se tiene 

¡im 1¡ 
T-+ oo 

Ejemplo. Sea Fez) = zJ(Z2 + ex 2
), en donde ex es real. Entonces P tiene polos sim­

ples en ± ¡ex. Puesto que ?/(z2 + (2) = t[l/(~ + ¡a) + lJ(z - ¡a) l, obtenemos 

Res {eZtp(z)} = t e lat, 
z=ta 

Res {eZfP(t)} = -!- e-la,. 
z = -Ia 

Por consiguiente el límite que aparece en (55) tieIle el valor 2rri cos at. A partir del 
ejerc,icio 11.38 vemos que la función f, continua en (0, +:lO), cuya transformada de 
Laplace es F, viene dada por f(t) = cos at. 

16.27 APLICACIONES CONFORMES 

Una función analítica f aplicará dos segmentos rectilíneos, convergentes en un 
punto e, en dos curvas que se cortarán en f(e). En esta sección probaremos que 
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las rectas tangentes a dichas curvas se cortan según el mismo ángulo que los 
segmentos rectilíneos si f'(c) =1= O. 

Esta propiedad es geométricamente evidente para funciones lineales. Por 
ejemplo. supongamos que fez) = z + b. Representa una traslación que mueve 
cada línea paralelamente a sí misma. y es claro que se conservan los ángulos. 
Otro ejemplo es fez) = az. en donde a =1= O. Si lal = 1. entonces a = eia y re­
presenta una rotación de centro en el origen y ángulo ex. Si lal =1= 1. entonces 
a = Reía y f representa una rotación seguida de una dilatación (si R > 1) o de 
una contracción (si R < 1). De nuevo se conservan los ángulos. Una función 
lineal general fez) = az + b. con a =1= O. es una composición de estos tipos y por 
tanto conserva también los ángulos. 

En el caso general, la diferenciabilidad en e significa que se dispone de una 
aproximación lineal en las proximidades de e, a saber fez) = f(e) + (e)(z - eH 
o(z - e). y si f'(e) =1= O podemos esperar que se conserven los ángulos en las 
proximidades de e. 

Para formalizar ·estas ideas. sean 1'1 y 1'2 dos caminos regulares a trozos con 
gráficas rspectivas r 1 y r 2' secantes en e. Supongamos que "'(1 es uno a uno en 
un intervalo que contiene a tI> y que "'(2 es uno a uno en un intervalo que con­
tiene a t 2 , en donde "'(1(t)=1'2(t2)=e. Supongamos también quey~(tl) cf () 
Y y;(t2 ) 1= O. La diferencia . 

arg [yí(t2)] - arg [y~(t¡)], 

se llama el ángulo formado por r 1 y r 2 en e. 
Supongamos ahora que f'(e) =1= O. Entonces (por el teorema 13.4) existe un 

disco B(e) en el que f es uno a uno. Luego las funciones compuestas. 

y 

serán localmente uno a uno en las proximidades de ti y t2 • respectivamente. 
y describirán arcos C1 y C2 que se cortarán en f(e). (Ver fig. 16.10.) Por la regla 

r¡ 

Figura 16.10 
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de la cadena tenemos 

y 

Por consiguiente, por el teorema 1.48 existen enteros n, Y n2 tales que 

arg [W;(tl)] = arg [I'(e)] + arg [y;(t¡)] + 2nn¡, 

arg [w;(t2)] = arg [I'(e)] + arg [y;(t2)] + 2nn2' 

luego el ángulo formado por C, y C2 en f(e) es igual al ángulo formado por r, 
y r 2 en e más un múltiplo entero de 2IT. Por esta razón decimos que f conserva 
los ángulos en e. Una tal función se llama también una función conforme en e. 

Los ángulos no se conservan en aquellos puntos en los que la derivada es 
cero. Por ejemplo, si fez) = Z2, una recta que pase por el origen y forme con 
el eje real un ángulo a se transforma por medio de f en una línea recta que 
forma con el eje real un ángulo 2,a. En general, cuando f'(e) = O, el desarrollo 
de Taylor de f toma la forma 

fez) - f(e) = (z - 4[ak + ak+¡(z - e) + "'], 

en donde k ¿ 2. Utilizando esta ecuación, es fácil ver que los ángulos formados 
por las curvas que se cortan en e quedan multiplicados por un factor k en la 
aplicación determinada por f. 

Entre los ejemplos importantes de las aplicaciones conformes se hallan las 
transformaciones de Mobius. Son las funciones t definidas como sigue: Si a, b, 
e, d son cuatro números complejos tales que ad - be =1= O, definimos 

fez) = az + b , 
ez + d 

(57) 

siempre que ez + d =1= O. Es conveniente definir f en todas partes del plano com­
plejo ampliado C* haciendo f( -die) = 00 y f(oo) = ale. (Si e = O, estas dos 
últimas ecuaciones se tienen que substituir por la ecuación singular f(oo) = oo.) 
Ahora (55) se puede resolver en z en términos de fez), obteniéndose 

-df(z) + b z = _..::.....:.....:.-._ -
ef(z) - a . 

Esto significa que la función inversa t-' existe y está dada por 

f-¡(z) = -dz + b 
ez - a 

s 
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entendiendo que f-'(a/c) = 00 y f-'(oo) = -dIc. Entonces vemos que las trans­
formaciones de Mobius son aplicaciones uno a uno de C* en sí mismo. Son. 
además, conformes en cada punto finito z =1= -dIe, ya que 

1'(z) = be - ad =1 O. 
(ez + d)2 

Una de las propiedades más importantes de estas aplicaciones es que aplica 
circunferencias en circunferencias (incluyendo las líneas rectas como casos cs· 
peciales de circunferencias). Las demostraciones de lo que acabamos de enull­
ciar se esbozan en el ejercicio 16.46. Otras propiedades de las transformacionl's 
de Mobius se hallan descritas también en ' los ejercicios al final del Capíl{IIo . 

EJERCICIOS 

Integración compleja; fórmulas de la integral de Cauchy 

16.1 Sea y un camino regular a trozos con dominio [a, b] y gráfica r. Supongalllns 
que la integral f yf existe. Sea S una región abierta que contenga r y sea ¡.: una 
función tal que g'{z) exista y sea igual a fez) para cada z de r. Probar que 

i f = i g' = g(B) - g(A), en donde A = y(a} y B = y(h). 

En particular, si y es un circuito, entonces A = B Y la .integral es O. lllc!;' '11(';';11, 
Aplicar el teorema 7.34 a cada intervalo de continuidad de y'. 
16.2 Sea y un camino circular de centro O y radio 2, orientado positivamente. Ve­

rificar cada una de las siguientes expresiones utilizando alguna de las fórmulas inte­
grales de Cauchy. 

f
ez 

a) - dz = 2ni. 
y Z 

c) - dz = -. f ez ni 

y Z4 3 

e) r __ e_% - - dz = 2ni(e - 1). 
) y z(z - 1) 

f ez . 
b) -- dz = m . 

z3 
y 

d) - - dz = 2nie. f 
e% 

y z - 1 

f) dz = 2ni(e - 2). f
ez 

yZ 2(Z - 1) 

16.3 Sea f = u + iv analítica en un disco S(a; R). Si O < r < R, probar que 

1 f2" . /,(a) = - u(a + re,o)e- iO dO. 
nr o 
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16.4 a) Probar la siguiente versión más fuerte del teorema de Liouville: Si / es 
una función entera tal que limz400 I/(z)/zl = O, entonces / es constante. 

b) ¿ Qué puede afirmarse acerca de una función entera que satisface una desi­
gualdad de la forma 1/(z)1 < M Iz lc para todo z del plano complejo, sien­
do c > 07 

16.5 Supongamos que / es analática en B(O; R). Sea "Y una circunferencia orientada 
positivamente con centro en O y radio r, en donde O < r < R. Si a es interior a y, 
probar que 

fea) = _1 . lf(Z) {_1_ _ 1 } dz. 
2m 1 z - a z - r 2Jii 

Si a = Aeia , probar que esto se reduce a la fórmula 

fea) = - dO. 1 12
" (r 2 - A2)f(ri8

) 

2n o r 2 - 2rA cos (IX - O) + A2 

Igualando las partes reales de esta ecuación se obtiene la exp~esión conocida con el 
nombre de fórmula integral de Poisson. 
16.6 Supongamos que / es analítica en la adherencia del disco B(O; 1) Si lal < 1, 

probar que 

(1 - laI 2)f(a) = _1 f fez) 1 - zii dz, 
2ni 1 z - a . 

en donde y es una circunferencia unidad con centro O, orientada positivamente. 
Deducir la desigualdad 

16.7 Sea fez) = L~o 2nznf3" si Izl < 3/2, Y sea g(z) = L~o (2z)-n si Izl > l· Sea y 
un camino circular de radio 1 y centro O, orientado positivamente, y definimos h(a) 
para la l =1= 1 como sigue: 

Probar que 

Desarrollos de Taylor 

h(a) = ~. r (f(z) + a
2g

(z») dz. 
2m)1 z - a Z2 - az 

{ 

3 

3 - 2a 
h(a) = 

2a2 

1 - 2a 

si lal < 1, 

si lal > 1. 

16,8 Se define / en el disco B(O; 1) por medio de la ecuación fez) = L~o zn. 
Calcular el desarrollo de Taylor de / en las proximidades del punto a = l y tam-

, 
i 
t 
í 
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bién en las proximidades del punto a = -l. Determinar en cada caso el radio de 

convergencia. 
16.9 Supongamos que / posee un desarrollo de Taylor fez) = L~o a(n)zn, válido 

en B(O; R). Sea 
p-l 

g(z) = ! L: f(ze 2
"lk' P). 

P k=O 
Proba'r que el desarrollo de Taylor de g consta de los términos p-ésimos de /. Esto 

es, si z E B(O; R) tenemos 
00 

g(z) = L: a(pn)zpn. 
n=O 

16.10 Supongamos que f posee el desarrollo de Taylor fez) = L:'=o anz
n
, válido 

en E(O; R). Sea s .. (z) = L~=o akzk. Si 0< r < R y si Izl < r, probar que 

S (z) = - - - dw, 
1 i f(w) w"+1 - zn+l 

n 2ni y wn+ 1 W - Z 

en donde y es la circunferencia de centro O y radio r, orientada positivamente. 
16.11 Dados los desa'ffollos de Taylor fez) = L~O anzn y g(z) = L:'=o bnz

n
, vá­

lidos para Izl < Rl Y Izl < R
2

, respectivamente. Probar que, si Izl < R 1R 2 , tenemos 

~. r f(w) g(!.) dw = t anbnz
n
, 

2m)y w W n=O 

en donde "Y es una circunferencia de radio Rl. Y centro O, orientada positivamente. 
16.12 Supongamos que / posee un desarrollo de Taylor fez) = L~o anCz - a)n, vá­

lido en B(a; R). 
a) Si O < r < R, deducimos la identidad de Parseval: 

- If(a + rei8)12 dO = L: lanl2 
r

2n
. 1 12" 00 

2n o n=O 

b) Utilizar (a) para deducir la desigualdad L~O lanl2 r 2n < M(r)2, en donde 
M(r) es el máximo de 1/1 en la circunferencia Iz - al = r. 

c) Utilizar (b) para obtener otra demostración del principio del máximo local 
del módulo (teorema 16.27). 

16.13 Probar el lema de Schwarz: Sea / analítica en el disco B(O; 1). Supongamos 

que feO) = O Y lf(z)1 < 1, si Izl < 1. Entonces 

If(O)1 < 1 y If(z)1 < Iz l, si Izl < 1. 

Si 1/,(0)1 = 1 o si II(zo)1 = Iz I para uno por lo menos de los Zo de B'(O; 1}, entonces 

fez) = éaz, en donde ·cx es reaJ. 

Indicación. Aplicar el teorema del módulo máximo a g, en donde g(O) =, /,(0) y 

g(z) = /(z)/ z si z =1= O. 
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Desarrollos de Laurent, singularidades, residuos 

16.14 Sean 1 y g anaUticas en una región abierta S. Sea 'Y un circuito de Jordan 
de gráfica r tal que tanto r comO' su región interior pertenezcan a S. Supongamos 
que 19{z)1 < I/(z)1 para cada z de r. 

a) Probar que 

_1 J I'(z)~ g'(z) dz = ~ J I'(z) dz 
2ni y fez) + g(z) 2ni y "f(z) . 

Indicación. Sea m = inf {1/(z)I-lg(z)l: z E r}. Entonces m> O Y por lO' 
tanto 

If(z) + (g(z)1 ;::: m> O 

para cada t de [O, IJ Y cada z de r. Sea ahora 

t/J(t) = _1 J I'(z) + Ig'(z) dz 
2ni i fez) + Ig(z) , 

siO<I<l. 

EntO'nces p es cO'ntinua, y por lO' tanto constante en [O, 1]. Luego 
p(O) = pO}. ' 

b) Utilizar (a) para probar que 1 y 1 + g tienen el mismo número de ceros 
en el interior de r. (Teorema de Rouché.) 

16.15 Sea p un polinomio de grado n, por ejemplo pez) = ao + a1z + ... + a .. zn, 
en donde a". =1= O. Hacer I(z) = a,nzn, g(z) = pez) - I(z) en el teorema de Rouc"hé, 
y demostrar que p posee en e exactamente n ceros. 
1.6.16 Sea f analítica en la adherencia del disco B(O; 1) Y supongamos que I/(z)1 < 1 
NI 1<:1 =.~. Pro~~r que existe un punto Zo de B(O, 1), y sólO' uno, tal que f(zo) = Zo. 
Inc[¡caClOn. UtIlIzar el teorema de Rouché. 

16.17 Si P .. (z) designa la n-ésima suma parcial del desarrollo de Taylor eZ = 
~'%o z"/~!. Utilizar el teorema de Rouché (u otros) para probar que, para cada 
r > 0, eXIste un N (que depende de r) tal que n > N implica P .. (z) =1= O para cada z 
de B(O; r). 

16.18 Si a > e, buscar el número de ceros de la función fez) = eZ _ azn que se 
hallan en el interior del círculo Izl = 1. 

16.19 Dar un eje~plo d~ una función que verifica todacs las propiedades siguientes, 
o exponer por que no eXIste una tal función: 1 es analítica en todo e excepto para 
un polo de ord~n 2 en O y polos simples en i y -i; I(z) = f( - z) para todo z; 
f( 1) =:: 1; la funclón g(z) = 1(1/z) tiene un cero de orden 2 en z =:: O; Y Resz=d(z) = 2i. 
16.20 Probar que cada uno de los siguientes desarrollos de Laurent es válido en la 
región indicada: 

1 00 z" 00 1 
a) (z _ 1)(2 _ z>"= ~ 2"+1 + 6;;;; sil < Izl < 2. 

1 00 1 _ 2"-1 
b) (z _ 1)(2 -z) = ~ ~- si Izl > 2. 
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16.21 Para cada ( fijo de e, definimO's '.,;(t) como el coeficiente de zn en el desarrO'llo 
de Laurent 

00 

e(z-I/Z)t / 2 = ¿ J,,(1)z". 
n=-oo 

PrO'bar que para n > O tenemos 

lI" J,,(t) = - cos (t senO - nO) dO 
n o 

y que ' .. (t) = (-l)'"',,;(t). Deducir el desarrollo en serie de potencias 

00 (-Ile!-t) "+2k 

J,,(t) = ~ k! (n + k)! (n ;::: O). 

La función 'n se llama junción de Bessel de orden n. 
16.22 Probar el teorema de Riemann: Si Zo es una singularidad aislada de f y si 
f está acotada en un entorno perforado B'(zo)' entonces Zo es una singularidad 
evitable. Indicación. Calcular las integrales que dan los coeficientes a". del desarrollo 
de Laurent de j y probar que a", = O para cada n < O. 
16.23 Proba.r el teorema de Casorati-Weierstrass: Supongamos que Zo es una sin­
gularidad esencial de f y sea c un número complejo cualquiera. Entonces, para cada 
E > O Y cada disco B(zo), existe un punto z de B(zo) tal que If(z) - f(c)1 < E. Indi­
cación. Supongamos que el teorema es falso y obtengamos una contradicción apli­
cando el ejercicio 16.22 a g, siendo g(z) =:: lf[f(z)-c]. 
16.24 El punto del infinito. Una función f es analítica en el 00 si la funoión g defi­
nida por medio de la ecuación g(z) = lO f z) es analítica en el origen. Análogamente, 
decimos que f tiene un cero, un polo, una singularidad evitable, o una singularidad 
esencial en 00 si g tiene un cero, un polo, etc., en O. El teorema de LiouviUe esta­
blece que una función que es analítica en todo e* debe ser constante. Probar que 

a) f es un polinomio si, y sólo si, la única singularidad de 1 en e* es un 
polo en 00, en cuyo caso el orden del polo es igual al grado del polinomio. 

b) f es una función racional si, y sólo si, f carece de singularidades en e* 
que no sean polos. 

16.25 Deducir los siguientes «métodos breves» para calcular los residuos: 
a) Si a es un polo de primer orden de f, entonces 

Resf(z) = lim (z - a)f(z). 

b) Si a es un polo de orden 2 de f, entonces 

Res f(z) = g'(a), en donde g(z) = (z - a)2f(z). 
z=a 
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c) Supongamos que f y g son analíticas en a, con fea) * O Y a es un cero 
de primer orden de g. Probar que 

Res fez) = fea) 
z=a g(z) g'(a) , 

Res ~ = f'(a)g'(a) - f(a)g"(a) 

z=a [g(zW [g'(a)]3 

d) Si f y g cumplen las mismas condiciones que en (e), excepto por el hecho 
de que a es un cero de segundo orden de g, entonces 

Res fez) = 6f'(a)gl/(a) - 2f(a)g"'(a). 

z=a g(z) 3 [g"(a)]2 

16.16 Calcular los residuos en los polos de f si 

zez 
a)f(z) = --

Z2 - 1 ' 
eZ 

b)f(z) = , 
z(z - 1)2 

c) fez) = sen z 
d)f(z) = _1_, 

1 - eX 
, 

z cos z 

1 
e) fez) = - - (en donde n es un entero positivo). 

1 - zn 

16.17 Si y{a ; r ) designa un círculo de centro en a y radio r, orientado positivamente, 
rrnbar que 

a) J 3z - 1 dz = 6ni, 
y(0 ;4) (z + 1)(z - 3) 

b) J ~ dz = 4ni, 
y(0;2) Z2 + 1 

f Z3 
c) -4-- dz = 2ni, 

y(0;2) z - 1 
d) 2 dz = 2nie2

• J 
eX 

y(2;1) (z ~ 2) 

Cn\cular las integrales de los ejercicios que van desde el 16.28 al 16.35 por medio 
de residuos. 

si ° < b < a. 
16.28 (21< dt 

Jo (a + b cos t)2 

2na 

16.19 (21< cos 2t dt _ _ 2_n_a_2_ 

Jo 1 - 2a cos t + a 2 1 - a 2 

16.30 (2" (1 + cos 3t) dt = n(a
2 

- a + 1) 

Jo 1 - 2a cos t + a 2 1 - a 
siO<a<l. 

12" sen2 t dt 2n(a - .J a 2 - b2 ) 
16.31 = ---'---- ---' 

o a + b cos t b2 
si O < b < a. 

7 
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16.32 fOO 2 1 dx = 2n.J3 . 
- 00 x + x + 1 3 

16.33 foo x
6 

dx = 3n.J2 . 
-00 (1 + X

4
)2 16 

16.35 a) ---- dx = - sen - . l oo x ni 2n 
o 1 + x 5 5 5 

Indicación. Integrar z /(l + Z5) alrededor de la frontera del sector circu­
la,r S = {re i9 : O =::; r =::; R, O=::;(} =::; 2n/5}, y hagamos que R ~ oo. 

l oo x2m ni · (2m + 1 ) b) 2 dx = - sen --- n , 
o 1 + x n 2n 2n 

m, n enteros, 0< m < n. 

16.36 Probar que la fórmula (38) se verifica si f es el cociente de dos polinomios, 
por ejemplo f = P/Q, en donde el grado de Q excede al grado de P en 2 o más 
unidades. 
16.37 Probar que la fórmula (38) se verifica si fez) = eimzP(z)/Q(z), en donde m > O 
Y P Y Q son polinomios tales que el grado de Q excede al de P en 1 o más unidades. 
Esto hace posible calcular integrales de la forma 

500 1m" P(x)d e -- x 
-00 Q(x) 

por el método descrito en el teorema 16.37. 
16.38 Utilizar el método sugerido en el ejercicio 16.37 a fin de calcular las siguien­
tes integrales: 

a) dx = - (1 - e- am ) l oo senmx n 

o x(a2 + X2) 2a2 
si m 2: 0, a > O. 

x=-e sen - -b) l oo cos mx d n -ma¡..t2 (ma + n) 
o x 4 + a4 2a3 .J2 4 

si m > 0, a> o. 

16.39 Sea w = e2
"i/J y sea l' una circunferencia orientada positivamente cuya grá­

fica no contenga ni a 1, ni a w, ni a w 2
• Los números 1, w, w 2 son las raíces cúbicas 

de la unidad.) Probar que la integral 

J (z + 1) dz 
y Z3 - 1 

es igual a 2rri(m+nw)/3, en donde m y n son enteros. Determinar los posibles va­
lores de m y n y determinar en qué forma dependen de y. 

d 
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16.40 Sea y una circunferencia de centro en O y radio < 271", orientada positiva­
m~nte. Si a es complejo y n es un entero, sea 

Probar que 

1(0, a) = t - a, 

1 J zn- 1eoz 
len, a) = - --- dz. 

2ni y 1 - eZ 

1(1, a) = -1, y len, a) = O si n> 1. 

Calcular 1(- n, a) en términos de polinomios de BernQulli cuando n > 1 (ver ejer­
cicio 9.38). 

16.41 Este ejercicio requiere de ciertos detalles de la demostración del teorema 16.38. 
Sean 

n-l 

g(z) = L e"¡O(z+r)l/n , fez) = g(z)/(e2"¡Z ~. 1), 
r=Q 

en donde a y n son enteros positivos con na par. Probar que: 

a) g(z + 1) - g(z) = e"iOzl/n(e21CIZ - 1) ¿':::6 e21Cimz. 

b) Resz=o f(z) = g(0)/(2ni). 

c) La parte real de i(t + Re"i/4 + r)2 es - ( .J2fR + R 2 + .J2rR). 

Funciones analíticas uno a uno 

16.42 Sea S un subconjunto abierto de C y supongamos que f es analítica y uno 
a Utlo en S. Probar que 

a) f'(z) =i= O para cada z de S. (Luego f es conforme en cada punto de S.) 
b) Si g es la inversa de f,entonces g es analítica en feS) y g'(w) = l/f'(g(w» 

si w E feS). 
16.43 Sea f: C ~ C analítica y uno a uno en C. Probar que fez) = az + b, en don­
de q =i= O. ¿ Qué podemos deducir si f es uno a uno en e y analítica en C salvo 
a lo más en un número finito de polos? 
16.44 Si f y g son transformaciones de Mobius, probar que la función compuesta 
f o g es también una transformación de Mobius. 
16.45 Describir geométricamente qué le ocurre al punto z cuando se transforma en 
el PUnto fez) por medio de las siguientes transformaciones especiales de M6bius: 

a) fez) = z + b (Traslación). 
b) fez) = az, en donde a > O (Dilatación O' contracción). 
c) fez) = éaz, en donde O( es real (Rotación). 
d) fez) = l/z (Inversión). 

16.46 Si e =i= O, tenemos 

az + b a be - ad 
--- = - + - ----
ez + d e e(ez + d) 
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Luego cada transformación de Mobius se puede expresar como una composición de 
los casos especiales descritos en el ejercicio 16.45. Utilizar este result~do par.a de­
mostrar que las transformaciones de M6bius transforman ci~cunferen.cIas en cIr~un­
ferencias (en donde las líneas rectas se consideran casos espeCIales de CIrcunferencIas). 
16.47 a) Probar que todas las transformaciones de Mobius que aplican el semiplano 

superior T = {x + iy: y ?: O} en la adherencia del disco B(O; 1} se pueden 
expresar en la forma fez) = eia(z - a)/(z -li), en donde O( es real y a E T. 

b) Probar que a yO( se pueden elegir siempre de forma que tres puntos dados 
cualesquiera del eje real se transformen en tres puntos cualesquiera de la 
circunferencia unidad. 

16.48 Hallar todas las transformaciones de Mobius que aplican el semiplano de la 
derecha 

S = {x + iy: x > O} 

en la adherencia de B(O; 1). . 
16.49 Hallar todas las transformaciones de M6bius que aplican la adherenCIa de 
B(O; 1) en sí misma. '" . 
16.50 Los puntos fijos de una transformacIón de Mobms 

fez) = az + b (ad - be -:f- O) 
ez + d 

son los puntos z para los que' fez) = z. Sea D = (d - a)2 + 4bc. 
a) Determinar todos los puntos fijos cuando e = O. . 
b) Si e =i= O Y D =i= O, probar que f tiene exactamente 2 puntos tiJos z¡ y Z2 

(ambos finitos) y que satisfacen la ecuación 

fez) - ZI = Rei8 z - ZI, en donde R > O Y O es real. 
fez) - Z2 Z - Z2 

c) Si e =i= O Y D = O, probar que f tiene exactamente un punto fijo z¡ y que 
satisface la ecuación 

1 =_l __ +C 
fez) - ZI Z - ZI 

para un e =i= O. 

d) Dada una transformación de Mobius, investigar las imágenes sucesivas 
de un punto dado w. Esto es, sea 

Wl = f(w), Wz = f(Wl), 

y estudiar el comportamiento de la sucesión {w .. }. Considerar el caso par­
ticular en el que son a, b, e, d, reales, y ad - be = 1. 

EJERCICIOS VARIOS 

16.51 Determinar todos los complejos z tal que 
00 n 

Z = L L e21tikzln 
n=2 k=1 
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16.52 Si fez) = L.:~o anz
n es una función entera tal que If(re¡o) I :s; Me" para todo 

r > O, donde M > O Y k > O, probar que 

Men1k 
la I < - -- para n ?: 1. 

• - (n/k)nlk 

16.53 Supongamos que I es analítica sobre un entorno perforado B'(O; a). Probar 
que limz_of(z) existe (posiblemente infinito) si, y sólo si, existe un entero n y una 
función g, analítica en B(O; a), con g(O) * O, tal que fez) = z·g(z) en E(O; a). 

16.54 Sea vez) = L.:Z=o akzk un polinomio de grado n con coeficientes reales sa­
tisfaciendo ao > al > '" > a.-l > a. > O. Probar que pez) = O implica Izl > l. 
Indicación. Considerar (1 - z)p(z). 

16.55 Una función I definida sobre un disco B(a; r) se dice tiene un cero de orden 
infinito en a si, y sólo si, para cada entero k > O' hay una función gk' analítica en a, 
tal que I(z) = (z - a'j<&(z) en E(a; r). Si I tiene un cero de. orden infinito en a, 
probar que I = O en todo ECa; r). 
16.56 Probar el teorema de Morera: Si I es continua en una región abierta S de C 
y si Sr f = O para todo circuito poligonal y en S, entonces I es analítica en S. 
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lndice de símbolos especiales 

E, ($., pertenece a (no pertenece a) (o está en, no está en), 1, 39 
~, es un subconjunto propio de, 1, 40 
R, conjunto de los números reales, 2 
R+, R-, conjunto de los números reales positivos (negativos), 3 
{x: x verifica P}, el conjunto de las x que satisfacen la propiedad P, 4 . 
(a, b), [a, b], intervalo abierto (cerrado) de extremos a y b, ~ . 
[a. b) (a, b], intervalos semiabiertos (por la derecha. por la IzqUlerda), 4 
(a, +(0), [a, +(0), (-00, a), (-00, aJ, intervalos infinitos, 4 
Z+, conjunto de los enteros positivos, 5 
Z, conjunto de todos los enteros (positivos, negativos y cero), 5 
Q, conjunto de los números racionales, ~ 
max S, min S, elemento máximo (mínimo) de S, 10 
sup, inf. supremo (ínfimo), 11 
[x], mayor entero < x, 14 
R*, sistema ampliado de los números reales, 18 
C, el conjunto de los números complejos, el plano complejo, 19 
C*, sistema ampliado de los números complejos, 30 
A X B, producto cartesiano de A por B, 41 
F(S), imagen de S por F, 43 
F: S -+ T, aplicación de S en T, 43 
{F,,}, sucesión cuyo n-ésimo término es F", 46 
U, v, reunión o unión, 49 n, n, intersección, 50 
B - A, el conjunto de los puntos de B, pero no de A, 50 
¡-l(y), antiimagen de Y por F, 54 (ejerc. 2.7), 98 
Rn, espacio euclídeo n-dimensional, 57 
(Xl' ... , xn), punto n-dimensional (vector con n componentes), 57 
Ilxll, norma o longitud de un vector, 59 
Uk. vector coordenado unidad, 59 . 
B(a), B(a; r), n-bola abierta con centro en a (de radIO r), 60 
int S, interior de S, 60, 75 
(a, b), [a, b], intervalo abierto (cerrado) n-dimensional, 60, 63 
S, adherencia de S, 65 
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S', conjunto de los puntos de acumulación (o conjunto derivado) de S. 65 
(M. d), espacio métrico M de mé~rica d, 74 
e/ex, y), distancia entre x e y en espacio métrico, 74 
E,/(a; r) bola en espacio métrico M. 74 
ilS, frontera de un conjunto S. 78 
lim, lim, límite lateral por la derecha (izquierda), 113 

1«('+). I(c-), límite lateral por la derecha (izquierda) en c. 113 
!l,(n, oscilación de I en un conjunto T. 119 (ejerc. 4.24), 207 
I",(X). oscilación de I en un punto x, 119 (eje re. 4.24), 207 
red. derivada de I en e, 126, 138, 141 
f)kf. derivada parcial de I respecto a la k-ésima coordenada, 139 
Do,!. derivada parcial de Dd respecto a la r-ésima variable, o derivada de se-

gundo orden, 140 
CV[a. h]. conjunto de todas las particiones posibles de [a, b], 154" 170 
V,. variación total de l. 156 
1\" longitud de un camino I rectificable, 162 
,';(1). l. ce), suma de Riemann-Stieltjes, 171 
lE-; R(ex) en [a. b], I es integrable de Riemann respecto a ce en [a. b], 171 
I L R en [a. b], I es integrable de Riemann en [a. b], 171 
01 l' en [a. b], ce es creciente en [a, b], 182 
11(/'. f ex), L(P. l. 'ex) suma superior (inferior) de Stieltjes, 183 
11m sup, límite superior, 224 
11m inf, límite inferior, 224 
ti" = O(h,,), 0" = o(b.,), notación O grande (o pequeña), 234 
I.e.m.,!" = f, {I.,} converge en media hacia l. 282 

1 E C"", I tiene derivada de cualquier orden, 293 
r.e.t .. casi en todo, 210 
1" l' I c.e.t. S. la sucesión creciente {I .. } en S converge casi en todo S, 310 
S(I), conjunto de todas las funciones escalonadas en un intervalo 1, 312 
U(/), conjunto de funciones superiores en un intervalo l. 312 
/.(/), conjunto de funciones integrables de Lebesgue en l. 318 
1 f, f-, parte positiva (negativa) de una función real l. 319 
M(/). conjunto de funciones medibles en un intervalo l. 341 
,\, •. función característica de S. 352 
¡¡(S). medida de Lebesgue del subconjunto S, 353 
(l. ¡:). producto interior de cada par de funciones I y g de V(l), 358, 359 
Ilfll. U-norma de 1, 358, 359 
/}(I). funcióQ de cuadrado integrable, 358 
f • K. convolución de I y g, 399 
f(e; u), derivación direccional de f en el punto e y en la dirección D, 418 
T". f'(e), derivada total, 420. 421 

r 
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In dice de símbolos especiales 

\11. vector gradiente de 1, 422 
m(T), matriz de T, 424 
Df(e), matriz jacobiana de f en e, 426 
L(x, y) segmento rectilíneo que une x e y. 430 
det [ai;], determinante de una matriz cuadrada [a¡}], 446 
J ro determinante jacobiano, 446 
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fE C', f es continuamente diferenciable (o las componentes de f tienen deri-
vadas parciales de primer orden continuas), 450 

L f(x) dx, integral múltiple, 473, 494 

feS), c(S), contenido n-dimensional interior (exterior) de Jordan de S, 481 

c(S), contenido de Jordan de S, 481 

I f, integral de contorno de I a lo largo de r. 529 

A(a; r 1 , r.), anillo de centro en a 532 
n(y, z), número de giros de y respecto a z, 541 
B'(a), E'(a; r), entorno perforado de a, 557 

Res f(z), residuo de I en a, 559 
%=41 
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A 

Abierta, aplicación, 449, 552 
teorema de la, 450, 552 

Abierto, conjunto en un espacio métri­
co,75 
conjunto en R", 59 
intervalo en R, 5 

en R", 60 
Absoluta convergencia, de productos. 352 

de series, 230 
Abe!, Neils Henrik (1802-1829), 236. 298, 

303 
Algebra de conjuntos, 49 
Anillo, 532 
Antiimagen, 54 (Ej. 27), 98 
Aplicación, 43 
Aplicaciones topológicas, 102 

propiedades, 102 
Arco, 107, 528 
Area de una región plana, 481 
Argand, Jean-Robert (1768-1822),21 
Argumento de un número complejo, 26 
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